research papers Acta Crystallographica Section C

able to coordinate to rhodium affording a seven-membered chelate complex. The authors reported that the resulting chelate has reduced conformational freedom because of the two cyclopentane rings in the ligand backbone. Additionally, they calculated (MM2) that the four stereogenic centres in the rhodium–BICP complex dictate the orientation of the phenyl

Structural Chemistry ISSN 2053-2296

Two precatalysts for application in asymmetric homogeneous hydrogenation Antje Meißner, Cornelia Pribbenow, Hans-Joachim Drexler* and Detlef Heller Leibniz-Institut fu¨r Katalyse e. V. an der Universita¨t Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany Correspondence e-mail: [email protected] Received 7 July 2014 Accepted 23 August 2014

The title compounds, [(1R,10 R,2R,20 R)-2,20 -bis(diphenylphosphanyl)-1,10 -dicyclopentane](4-norbornadiene)rhodium(I) tetrafluoridoborate, [Rh(C34H36P2)(C7H8)]BF4, (I), and [(1R,10 R,2R,20 R)-2,20 -bis(diphenylphosphanyl)-1,10 -dicyclopentane][4-(Z,Z)-cycloocta-1,5-diene]rhodium(I) tetrafluoridoborate dichloromethane monosolvate, [Rh(C34H36P2)(C8H12)]BF4CH2Cl2, (II), are applied as precatalysts in asymmetric homogeneous hydrogenation, e.g. in the reduction of dehydroamino acids, affording excellent enantiomeric excesses [Zhu, Cao, Jiang & Zhang (1997). J. Am. Chem. Soc. 119, 1799–1800]. Keywords: crystal structure; rhodium complex; hydrogenation; precatalysts; hydrogen consumption; homogeneous asymmetric catalysis.

1. Introduction One of our main interests lies in the field of homogeneous asymmetric catalysis, with a special focus on asymmetric hydrogenation promoted by chiral rhodium bisphosphane complexes. Relevant ligands in this context are shown in Scheme 1. Besides the well known chiral ligands which form five-membered-ring chelates, e.g. DIPAMP {1,2-bis[(2-methoxyphenyl)(phenyl)phosphanyl]ethane; Knowles et al., 1972} or ChiraPHOS [(2S,3S)-2,3-bis(diphenylphosphanyl)butane; Fryzuk & Bosnich, 1977], there are many established ligands which give rise to larger seven-membered-ring chelates, e.g. DIOP [4,5-bis(diphenylphosphanyl)-2,2-dimethyl-1,3-dioxolane; Kagan & Dang, 1972] or BINAP [2,20 -bis(diphenylphosphanyl)-1,10 -binaphthalene; Miyashita et al., 1980]. While the former possess rather stiff backbones, seven-memberedring chelates are more flexible and can adopt several conformations. Zhang and co-workers (Zhu et al., 1997) developed a novel ligand, BICP [systematic name: (1R,10 R,2R,20 R)-2,20 -bis(diphenylphosphanyl)-1,10 -bicyclopentane] (Scheme 1), which is Acta Cryst. (2014). C70, 941–944

groups in alternate sterically hindered and non-hindered quadrants. The preferred conformation adopted by the ligand in the metal complex should be a skewed seven-membered ring (Zhu et al., 1997). Such a conformation should result in higher enantioselectivity. However, the first structures of rhodium–BICP complexes (Scheme 2), viz. [Rh(BICP)(nbd)]BF4 (ndb is norbornadiene), (I), and [Rh(BICP)(cod)]BF4 (cod is cycloocta-1,5-diene), (II), which we present in this article, suggest that this assumption is not correct.

2. Experimental All manipulations were carried out using standard Schlenk techniques under argon. NMR spectra were recorded on a

doi:10.1107/S205322961401910X

# 2014 International Union of Crystallography

941

research papers Table 1 Experimental details. (I)

(II)

[Rh(C34H36P2)(C7H8)]BF4 788.42 Monoclinic, P21 200 10.002 (2), 9.0293 (18), 39.251 (8) 95.17 (3) 3530.4 (12) 4 Mo K 0.63 0.34  0.28  0.25

[Rh(C34H36P2)(C8H12)]BF4CH2Cl2 889.39 Monoclinic, P21 150 10.2285 (2), 13.9823 (3), 14.5131 (4) 108.2650 (12) 1971.06 (8) 2 Mo K 0.70 0.38  0.34  0.16

Stoe IPDS 2 diffractometer Numerical (X-SHAPE; Stoe & Cie, 2005) 0.453, 0.897 38678, 12426, 7748

Bruker APEXII CCD area-detector diffractometer Multi-scan (SADABS; Bruker, 2008) 0.670, 0.749 64265, 9780, 9496

0.087 0.595

0.034 0.667

Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters No. of restraints H-atom treatment ˚ 3) max, min (e A Absolute structure

0.046, 0.103, 0.83 12426 883 13 H-atom parameters constrained 2.80, 1.09 Flack (1983), with 5782 Friedel pairs

Absolute structure parameter

0.03 (3)

0.020, 0.048, 1.04 9780 524 25 H-atom parameters constrained 0.46, 0.46 Flack x determined using 4470 quotients [(I+)  (I)]/[(I+) + (I)] (Parsons et al., 2013) 0.015 (5)

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A

Computer programs: X-AREA (Stoe & Cie, 2005), APEX2 (Bruker, 2009), SAINT (Bruker, 2009), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SHELXTL (Sheldrick, 2008).

Bruker ARX-300 spectrometer. Hydrogen consumptions were monitored using the device described by Drexler et al. (2007). 2.1. Synthesis and crystallization

The cationic complexes [Rh(BICP)(nbd)]BF4, (I), and [Rh(BICP)(cod)]BF4CH2Cl2, (II), were prepared by reaction of [Rh(diolefin)(acac)] (diolefin is either nbd or cod; acac is acetylacetate) and BICP, followed by addition of HBF4 to the resulting solution, according to a modification of a previously published procedure (Schrock & Osborn, 1971). For the preparation of [Rh(BICP)(cod)]BF4, (I), a dry argon-flushed Schlenk tube was charged with [Rh(cod)(acac)] (97.2 mg, 0.313 mmol) and tetrahydrofuran (THF, 10 ml). A solution of BICP (158 mg, 0.313 mmol) in THF (10 ml) was added dropwise at 273 K. After stirring for 30 min at room temperature, 39 ml of an 8 M solution of HBF4 in Et2O were added. The resulting mixture was stirred for 1 h. Upon addition of Et2O, complex (I) precipitated. It was filtered off and washed with Et2O. Crystals suitable for X-ray analysis were grown by slow diffusion of n-hexane into a CH2Cl2 solution. For the preparation of [Rh(BICP)(nbd)]BF4, (II), a dry argon-flushed Schlenk tube was charged with [Rh(nbd)(acac)] (92.1 mg, 0.313 mmol) and THF (10 ml). A solution of BICP (158 mg, 0.313 mmol) in THF (10 ml) was added dropwise at 273 K. After stirring for 30 min at room temperature, 39 ml of an 8 M solution of HBF4 in Et2O were added. The resulting mixture was stirred for 1 h. Upon addition of Et2O, complex

942

Meißner et al.



(II) precipitated. It was filtered off and washed with Et2O. Crystals suitable for X-ray analysis were grown by slow diffusion of Et2O into the THF solution. Spectroscopic analysis: 31P NMR (MeOH-d4, 298 K, 121 MHz, , p.p.m.): (I), 26.0 (d, JP—Rh = 141.2 Hz); (II), 28.9 (d, JP—Rh = 150.9 Hz). 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in idealized positions, with C—H = 0.93 (aromatic CH), 0.98 ˚ (CH2) for (I), and C—H = 0.95 (methine CH) and 0.97 A ˚ (CH2) for (II), (aromatic CH), 1.00 (methine CH) and 0.99 A and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). The absolute configuration indicators 2R,20 R and 1R,10 R for (I) and (II) were determined using 5782 and 4694 Friedel pairs, respectively, in the refinement. The Flack parameters (Flack, 1983) at convergence were 0.032 (18) for (I) and 0.015 (5) for (II). The anisotropic displacement parameters of atom C51 and neighbouring atoms C52 and C55 in (I) were restrained to similarity in the U ij components. After refinement of the BF4 anion in (II), residual electron density and large anisotropic displacement parameters for the F atoms indicated an alternative orientation for this group. The occupancies of the alternative orientations were refined and their sum was constrained to unity; refinement converged

[Rh(C34H36P2)(C7H8)]BF4 and [Rh(C34H36P2)(C8H12)]BF4CH2Cl2

Acta Cryst. (2014). C70, 941–944

research papers

Figure 1 A view of the cations of [Rh(BICP)(nbd)]BF4, (I), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. The relative orientation of the two molecules in the plot does not reflect their relative orientations in the asymmetric unit.

Figure 2 A view of the cation of [Rh(BICP)(cod)]BF4CH2Cl2, (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and H atoms and the solvent molecule have been omitted for clarity.

Figure 3 Extract of molecular structures from X-ray diffraction analysis, showing the seven-membered-ring chelates of (a) [Rh(BICP)(cod)]BF4, (II) (pronounced deviation from skew conformation), and (b) [Rh(BINAP)(thf)2]BF4 (thf is tetrahydrofuran; skew conformation) (Preetz et al., 2011). The figure was prepared using SCHAKAL (Keller & Pierrard, 1999).

for a ratio of 0.655 (11):0.345 (11) between the major and minor orientations. For the disordered BF4 anion in (II), similarity restraints on the B—F distances and direct F  F distance restraints were used to model the geometry to that of an ideal tetrahedron.

ligand and a bidentate 4-coordinated norborna-2,5-diene. The unit cell of (II) (Fig. 2) contains one cation, one anion and a cocrystallized dichloromethane molecule per unit cell. The metal centre is coordinated by a BICP and a 4-coordinated cycloocta-1,5-diene ligand. The intramolecular P—Rh—P bite angles are 94.25 (10) and 94.88 (10) for nbd-containing compound (I), and 91.85 (2) for cod-containing compound (II). The dihedral angles between the P/Rh/P and CM /Rh/CM planes (CM is the centroid of the double bond) are 9.5 (2) and

3. Structural commentary The title compounds, (I) and (II), crystallize as red crystals in the noncentrosymmetric space group P21. Compound (I) (Fig. 1) contains two cations and two anions in the asymmetric unit. In the complex cation, rhodium(I) coordinates to a BICP Table 2 Selected distances and angles of the title rhodium–BICP diolefin complexes. CM denotes the centroid of a double bond of the olefin. Complex

˚) Rh—P (A

˚) Rh—CM (A

P—Rh—P ( )

CM—Rh—CM ( )

[Rh(BICP)(nbd)]BF4, (I) [Rh(BICP)(cod)]BF4CH2Cl2, (II)

2.304–2.319 (2) 2.320 (1), 2.341 (1)

2.090–2.110 (1) 2.117 (1), 2.150 (1)

94.25 (7), 94.88 (7) 91.85 (2)

69.49 (3), 69.92 (3) 84.19 (1)

Acta Cryst. (2014). C70, 941–944

Meißner et al.



[Rh(C34H36P2)(C7H8)]BF4 and [Rh(C34H36P2)(C8H12)]BF4CH2Cl2

943

research papers Table 3 ˚ ) from the cyclopentane C atoms of the seven-membered metallacycle to the plane through the Rh and P atoms. Distances (A Complex

C(P)a

C(bridging)b

[Rh(BICP)(nbd)]BF4, (I) [Rh(BICP)(cod)]BF4CH2Cl2, (II) [Rh(BINAP)(thf)2]BF4c

0.133 (9), 1.364 (9); 0.118 (9), 1.489 (11) 0.065 (2), 1.495 (2) 1.261, 0.860

2.013 (9), 1.126 (9); 2.009 (9), 1.127 (10) 2.094 (2), 1.211 (2) 1.027, 0.327

Notes: (a) carbon bonded to phosphorus; (b) carbon bridging the cyclopentanes; (c) Preetz et al. (2011).

Catalytic hydrogenations of cod and nbd, respectively, with [Rh(BICP)(nbd)]BF4 or [Rh(BICP)(cod)]BF4 were carried out in MeOH according to Preetz et al. (2008) and Heller et al. (2007). Fig. 4 shows the hydrogen consumption curves for the catalytic hydrogenation of a ca 100-fold excess of cod and nbd. Pseudo-rate constants (k0 ) were determined from the slope of the hydrogen consumption from the linear part of the curve, which represents the hydrogenation of the first double bond of the diolefin. For the hydrogenation of nbd, we obtained 2.225 min1, and for cod 0.056 min1. This gives a k0 2nbd/k0 2cod ratio of 39.7. The rate constants are slightly lower than those we found for other seven-membered-ring chelate rhodium complexes (Meißner et al., 2014). Figure 4 Hydrogen consumption for the hydrogenation of a 100-fold excess of cod (red) and nbd (green) {standard conditions: 0.01 mmol [Rh(BICP)(diolefin)]BF4, 1.0 mmol cod or nbd, 15 ml MeOH 298 K and 1.01 bar overall pressure (1 bar = 100000 Pa)}.

11.2 (2) for nbd, and 14.2 (1) for cod. These values and the bond lengths and angles in the coordination environments (Table 2) are in the same ranges as for related rhodium complexes of BINAP (Preetz et al., 2010).

4. Discussion In the three independent cations in (I) and (II), we consistently found that all C atoms should be located in or above the P—Rh—P plane (Fig. 3a and Table 3). This means strong deviations from the ideal skew conformation. Nevertheless, the rhodium–BICP complexes afforded very good enantioselectivities in the asymmetric hydrogenation of standard substrates (Zhu et al., 1997). In contrast, in almost all examined X-ray structures of rhodium complexes containing BINAP, a ligand with a less flexible backbone (all sp2 C atoms), we found a skew conformation (Preetz et al., 2010, 2011) (Fig. 3b). In such complexes, the C atoms are arranged symmetrically above and below the P/Rh/P plane (Table 3). However, asymmetric hydrogenation of standard substrates with rhodium–BINAP complexes as catalysts leads to poor enantioselectivities (Preetz et al., 2010).

944

Meißner et al.



References Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Drexler, H.-J., Preetz, A., Schmidt, T. & Heller, D. (2007). Handbook of Homogeneous Hydrogenation, edited by J. G. de Vries & C. J. Elsevier, pp. 257–293. Weinheim: Wiley-VCH. Flack, H. D. (1983). Acta Cryst. A39, 876–881. Fryzuk, M. D. & Bosnich, B. (1977). J. Am. Chem. Soc. 99, 6262–6267. Heller, D., de Vries, A. H. M. & de Vries, J. G. (2007). Handbook of Homogeneous Hydrogenation, edited by J. G. de Vries & C. J. Elsevier, pp. 6429–6433. Weinheim: Wiley-VCH. Kagan, H. B. & Dang, T.-P. (1972). J. Am. Chem. Soc. 94, 6429–6433. Keller, E. & Pierrard, J.-S. (1999). SCHAKAL99. University of Freiburg, Germany. Knowles, W. S., Sabacky, M. J. & Vineyard, B. D. (1972). J. Chem. Soc. Chem. Commun. pp. 10–11. Meißner, A., Alberico, E., Drexler, H.-J., Baumann, W. & Heller, D. (2014). Catal. Sci. Technol. doi:10.1039/c4cy00497c. Miyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. 102, 7932–7934. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Preetz, A., Drexler, H.-J., Fischer, C., Dai, Z., Bo¨rner, A., Baumann, W., Spannenberg, A., Thede, R. & Heller, D. (2008). Chem. Eur. J. 14, 1445– 1451. Preetz, A., Drexler, H.-J., Schulz, S. & Heller, D. (2010). Tetrahedron Asymmetry, 21, 1226–1231. Preetz, A., Fischer, C., Kohrt, C., Drexler, H.-J., Baumann, W. & Heller, D. (2011). Organometallics, 30, 5155–5159. Schrock, R. R. & Osborn, J. A. (1971). J. Am. Chem. Soc. 93, 2397–2407. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Stoe & Cie (2005). X-SHAPE, X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Zhu, G., Cao, P., Jiang, Q. & Zhang, X. (1997). J. Am. Chem. Soc. 119, 1799– 1800.

[Rh(C34H36P2)(C7H8)]BF4 and [Rh(C34H36P2)(C8H12)]BF4CH2Cl2

Acta Cryst. (2014). C70, 941–944

supporting information

supporting information Acta Cryst. (2014). C70, 941-944

[doi:10.1107/S205322961401910X]

Two precatalysts for application in asymmetric homogeneous hydrogenation Antje Meißner, Cornelia Pribbenow, Hans-Joachim Drexler and Detlef Heller Computing details Data collection: X-AREA (Stoe & Cie, 2005) for RhBICPnbdBF4; APEX2 (Bruker, 2009) for RhBICPcodBF4. Cell refinement: X-AREA (Stoe & Cie, 2005) for RhBICPnbdBF4; SAINT (Bruker, 2009) for RhBICPcodBF4. Data reduction: X-RED32 (Stoe & Cie, 2005) for RhBICPnbdBF4; SAINT (Bruker, 2009) for RhBICPcodBF4. For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008). (RhBICPnbdBF4) [(1R,1′R,2R,2′R)-2,2′-Bis(diphenylphosphanyl)-1,1′-dicyclopentane](η4norbornadiene)rhodium(I) tetrafluoroborate Crystal data [Rh(C34H36P2)(C7H8)]BF4 Mr = 788.42 Monoclinic, P21 a = 10.002 (2) Å b = 9.0293 (18) Å c = 39.251 (8) Å β = 95.17 (3)° V = 3530.4 (12) Å3 Z=4

F(000) = 1624 Dx = 1.483 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 16122 reflections θ = 2.0–26.8° µ = 0.63 mm−1 T = 200 K Prism, red 0.34 × 0.28 × 0.25 mm

Data collection Stoe IPDS 2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 6.67 pixels mm-1 rotation method scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005) Tmin = 0.453, Tmax = 0.897

38678 measured reflections 12426 independent reflections 7748 reflections with I > 2σ(I) Rint = 0.087 θmax = 25.0°, θmin = 1.6° h = −11→11 k = −10→10 l = −46→45

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.046 wR(F2) = 0.103 S = 0.83 12426 reflections 883 parameters Acta Cryst. (2014). C70, 941-944

13 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

sup-1

supporting information Δρmin = −1.09 e Å−3 Absolute structure: Flack (1983), with 5782 Friedel pairs Absolute structure parameter: −0.03 (3)

H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0481P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.002 Δρmax = 2.80 e Å−3 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Rh1 Rh2 P1 P2 P3 P4 C1 H1 C2 H2A H2B C3 H3A H3B C4 H4A H4B C5 H5 C6 H6 C7 H7A H7B C8 H8A H8B C9 H9A H9B

x

y

z

Uiso*/Ueq

0.18661 (9) 0.30267 (9) 0.1097 (3) 0.0173 (3) 0.3821 (3) 0.4662 (2) 0.0943 (10) 0.1867 0.0158 (11) 0.0580 −0.0760 0.0193 (17) −0.0700 0.0776 0.0736 (12) 0.1671 0.0228 0.0596 (9) 0.1276 −0.0811 (10) −0.1459 −0.1144 (13) −0.0395 −0.1339 −0.2376 (12) −0.3182 −0.2290 −0.2454 (11) −0.2469 −0.3261

0.65107 (6) 0.01815 (6) 0.7273 (3) 0.7703 (3) 0.0920 (3) 0.1403 (3) 0.9246 (10) 0.9538 0.9947 (11) 0.9714 0.9587 1.1637 (13) 1.2058 1.2131 1.1798 (11) 1.2099 1.2540 1.0285 (10) 1.0181 1.0109 (10) 1.0235 1.1272 (11) 1.1399 1.2218 1.0694 (11) 1.1180 1.0889 0.9041 (12) 0.8503 0.8800

0.36836 (3) 0.13129 (3) 0.41955 (7) 0.33469 (7) 0.08043 (7) 0.16557 (6) 0.4237 (3) 0.4311 0.4516 (3) 0.4742 0.4499 0.4449 (4) 0.4446 0.4625 0.4100 (3) 0.4127 0.3965 0.3925 (2) 0.3762 0.3738 (2) 0.3909 0.3460 (3) 0.3322 0.3562 0.3241 (3) 0.3305 0.3001 0.3304 (3) 0.3090 0.3412

0.0266 (4) 0.0267 (4) 0.0278 (7) 0.0265 (6) 0.0261 (7) 0.0265 (6) 0.032 (3) 0.038* 0.038 (3) 0.046* 0.046* 0.056 (4) 0.067* 0.067* 0.037 (3) 0.044* 0.044* 0.029 (2) 0.035* 0.032 (2) 0.038* 0.039 (3) 0.047* 0.047* 0.041 (3) 0.049* 0.049* 0.041 (3) 0.049* 0.049*

Acta Cryst. (2014). C70, 941-944

sup-2

supporting information C10 H10 C11 C12 H12 C13 H13 C14 H14 C15 H15 C16 H16 C17 C18 H18 C19 H19 C20 H20 C21 H21 C22 H22 C23 C24 H24 C25 H25 C26 H26 C27 H27 C28 H28 C29 C30 H30 C31 H31 C32 H32 C33 H33 C34 H34 C35 H35

−0.1169 (10) −0.1465 0.2231 (11) 0.3420 (10) 0.3604 0.4320 (11) 0.5103 0.4072 (12) 0.4675 0.2924 (10) 0.2761 0.2018 (11) 0.1251 −0.0444 (10) −0.1097 (12) −0.0754 −0.2262 (11) −0.2670 −0.2804 (11) −0.3603 −0.2165 (10) −0.2502 −0.1020 (10) −0.0614 0.0807 (10) 0.2079 (10) 0.2626 0.2510 (12) 0.3353 0.1740 (14) 0.2036 0.0503 (12) 0.0001 0.0021 (11) −0.0818 −0.0683 (11) −0.1788 (9) −0.2161 −0.2317 (10) −0.3064 −0.1761 (11) −0.2104 −0.0678 (11) −0.0310 −0.0167 (11) 0.0550 0.3088 (10) 0.3007

Acta Cryst. (2014). C70, 941-944

0.8623 (10) 0.7934 0.6788 (10) 0.7604 (11) 0.8403 0.7231 (12) 0.7779 0.6076 (14) 0.5849 0.5232 (13) 0.4428 0.5592 (11) 0.5018 0.6340 (11) 0.6655 (14) 0.7379 0.5875 (12) 0.6042 0.4845 (12) 0.4368 0.4531 (11) 0.3810 0.5305 (11) 0.5112 0.9028 (10) 0.9672 (10) 0.9350 1.0779 (12) 1.1195 1.1280 (14) 1.2063 1.0616 (11) 1.0914 0.9522 (10) 0.9106 0.6342 (12) 0.5533 (10) 0.5786 0.4368 (11) 0.3868 0.3939 (13) 0.3124 0.4723 (11) 0.4451 0.5895 (12) 0.6417 0.5967 (12) 0.6473

0.3545 (3) 0.3716 0.4565 (3) 0.4639 (3) 0.4501 0.4914 (3) 0.4958 0.5119 (3) 0.5306 0.5050 (3) 0.5189 0.4774 (3) 0.4729 0.4284 (3) 0.4581 (4) 0.4733 0.4646 (3) 0.4846 0.4406 (3) 0.4441 0.4118 (3) 0.3965 0.4063 (3) 0.3863 0.3052 (3) 0.3130 (3) 0.3320 0.2926 (3) 0.2980 0.2648 (4) 0.2521 0.2554 (3) 0.2355 0.2754 (3) 0.2694 0.3067 (3) 0.3169 (3) 0.3370 0.2973 (3) 0.3039 0.2682 (3) 0.2559 0.2572 (3) 0.2372 0.2761 (3) 0.2685 0.3257 (3) 0.3035

0.027 (2) 0.032* 0.027 (3) 0.037 (3) 0.044* 0.043 (3) 0.051* 0.047 (3) 0.056* 0.047 (3) 0.056* 0.037 (3) 0.044* 0.026 (3) 0.039 (3) 0.047* 0.045 (3) 0.054* 0.051 (3) 0.061* 0.039 (3) 0.046* 0.033 (2) 0.040* 0.030 (2) 0.034 (2) 0.041* 0.045 (3) 0.054* 0.044 (3) 0.053* 0.043 (3) 0.052* 0.035 (2) 0.042* 0.031 (3) 0.031 (2) 0.037* 0.037 (3) 0.044* 0.044 (3) 0.053* 0.040 (3) 0.048* 0.038 (3) 0.045* 0.034 (2) 0.041*

sup-3

supporting information C36 H36 C37 H37 C38 H38 C39 H39 C40 H40 C41 H41A H41B C51 H51 C52 H52A H52B C53 H53A H53B C54 H54A H54B C55 H55 C56 H56 C57 H57A H57B C58 H58A H58B C59 H59A H59B C60 H60 C61 C62 H62 C63 H63 C64 H64 C65 H65

0.2341 (10) 0.1661 0.3215 (9) 0.2961 0.3230 (11) 0.3156 0.3978 (10) 0.4503 0.4421 (11) 0.5179 0.4603 (10) 0.4718 0.5321 0.3959 (11) 0.3047 0.4810 (11) 0.4409 0.5721 0.4748 (16) 0.5643 0.4223 0.4091 (12) 0.3145 0.4517 0.4279 (10) 0.3577 0.5651 (10) 0.6310 0.5925 (13) 0.5162 0.6093 0.7166 (12) 0.7076 0.7968 0.7239 (11) 0.7180 0.8080 0.6037 (10) 0.6384 0.2710 (10) 0.1501 (10) 0.1289 0.0621 (12) −0.0173 0.0911 (13) 0.0328 0.2068 (11) 0.2257

Acta Cryst. (2014). C70, 941-944

0.4744 (10) 0.4309 0.3803 (10) 0.2761 0.4761 (10) 0.4345 0.5989 (11) 0.6535 0.5801 (12) 0.6408 0.4114 (11) 0.3749 0.3757 0.3065 (12) 0.3374 0.3575 (10) 0.3298 0.3199 0.5283 (14) 0.5704 0.5762 0.5487 (11) 0.5715 0.6287 0.3961 (10) 0.3847 0.3805 (11) 0.3938 0.5020 (11) 0.5139 0.5956 0.4526 (12) 0.4782 0.4995 0.2831 (12) 0.2341 0.2554 0.2374 (10) 0.1687 0.0427 (11) 0.1202 (10) 0.1979 0.0829 (13) 0.1359 −0.0325 (15) −0.0553 −0.1133 (14) −0.1928

0.3333 (3) 0.3167 0.3586 (3) 0.3606 0.3915 (3) 0.4143 0.3856 (3) 0.4038 0.3487 (3) 0.3428 0.3474 (3) 0.3247 0.3636 0.0764 (3) 0.0682 0.0479 (3) 0.0254 0.0512 0.0540 (4) 0.0561 0.0351 0.0869 (3) 0.0821 0.1003 0.1069 (3) 0.1225 0.1263 (3) 0.1096 0.1530 (3) 0.1664 0.1420 0.1759 (3) 0.1995 0.1688 0.1715 (3) 0.1933 0.1627 0.1458 (3) 0.1294 0.0430 (3) 0.0356 (3) 0.0497 0.0076 (3) 0.0032 −0.0137 (4) −0.0328 −0.0064 (3) −0.0202

0.034 (2) 0.040* 0.030 (2) 0.036* 0.039 (3) 0.047* 0.036 (3) 0.043* 0.041 (3) 0.049* 0.037 (3) 0.044* 0.044* 0.035 (2) 0.042* 0.039 (3) 0.047* 0.047* 0.051 (4) 0.061* 0.061* 0.036 (3) 0.043* 0.043* 0.031 (2) 0.037* 0.032 (2) 0.039* 0.036 (3) 0.043* 0.043* 0.044 (3) 0.052* 0.052* 0.041 (3) 0.049* 0.049* 0.033 (2) 0.040* 0.029 (3) 0.036 (3) 0.043* 0.047 (3) 0.056* 0.051 (3) 0.062* 0.049 (3) 0.058*

sup-4

supporting information C66 H66 C67 C68 H68 C69 H69 C70 H70 C71 H71 C72 H72 C73 C74 H74 C75 H75 C76 H76 C77 H77 C78 H78 C79 C80 H80 C81 H81 C82 H82 C83 H83 C84 H84 C85 H85 C86 H86 C87 H87 C88 H88 C89 H89 C90 H90 C91

0.2959 (11) 0.3736 0.5387 (11) 0.5900 (9) 0.5473 0.7098 (11) 0.7446 0.7736 (11) 0.8520 0.7205 (11) 0.7638 0.6057 (12) 0.5726 0.3976 (10) 0.2725 (10) 0.2207 0.2241 (11) 0.1406 0.2979 (14) 0.2672 0.4221 (12) 0.4720 0.4681 (11) 0.5488 0.5514 (11) 0.4961 (11) 0.4192 0.5503 (12) 0.5118 0.6620 (11) 0.6978 0.7208 (11) 0.7971 0.6656 (11) 0.7042 0.1797 (11) 0.1880 0.2537 (11) 0.3212 0.1707 (10) 0.1970 0.1655 (10) 0.1722 0.0906 (10) 0.0382 0.0467 (12) −0.0290 0.0290 (10)

Acta Cryst. (2014). C70, 941-944

−0.0757 (11) −0.1313 −0.0008 (11) −0.1046 (10) −0.1226 −0.1833 (11) −0.2537 −0.1558 (11) −0.2063 −0.0528 (13) −0.0357 0.0258 (12) 0.0953 0.2754 (11) 0.3388 (10) 0.3015 0.4564 (11) 0.4969 0.5134 (13) 0.5952 0.4456 (12) 0.4802 0.3291 (11) 0.2844 0.0102 (12) −0.0329 (11) 0.0149 −0.1422 (12) −0.1654 −0.2187 (11) −0.2949 −0.1804 (11) −0.2298 −0.0696 (10) −0.0464 −0.0375 (12) 0.0130 −0.1596 (10) −0.2028 −0.2530 (11) −0.3569 −0.1565 (10) −0.1970 −0.0322 (13) 0.0233 −0.0514 (13) 0.0089 −0.2222 (13)

0.0218 (3) 0.0265 0.0727 (3) 0.0966 (3) 0.1163 0.0904 (3) 0.1061 0.0617 (3) 0.0579 0.0383 (3) 0.0187 0.0430 (3) 0.0269 0.1937 (3) 0.1840 (3) 0.1651 0.2021 (3) 0.1951 0.2301 (4) 0.2415 0.2414 (3) 0.2609 0.2234 (3) 0.2313 0.1952 (3) 0.2250 (3) 0.2309 0.2458 (3) 0.2658 0.2372 (3) 0.2512 0.2075 (3) 0.2017 0.1868 (3) 0.1668 0.1737 (3) 0.1959 0.1664 (3) 0.1832 0.1405 (3) 0.1383 0.1081 (3) 0.0851 0.1144 (3) 0.0963 0.1508 (3) 0.1570 0.1515 (3)

0.040 (3) 0.048* 0.029 (3) 0.031 (2) 0.037* 0.044 (3) 0.053* 0.046 (3) 0.055* 0.045 (3) 0.053* 0.036 (3) 0.043* 0.032 (2) 0.032 (2) 0.038* 0.038 (3) 0.046* 0.048 (4) 0.057* 0.044 (3) 0.053* 0.036 (3) 0.044* 0.033 (3) 0.035 (3) 0.042* 0.043 (3) 0.052* 0.043 (3) 0.051* 0.042 (3) 0.051* 0.036 (3) 0.044* 0.035 (3) 0.042* 0.033 (2) 0.040* 0.035 (2) 0.042* 0.036 (3) 0.043* 0.040 (3) 0.048* 0.043 (3) 0.052* 0.045 (3)

sup-5

supporting information H91A H91B B1 F1 F2 F3 F4 B2 F5 F6 F7 F8

0.0164 −0.0421 0.5125 (13) 0.4698 (8) 0.5735 (8) 0.4022 (7) 0.6041 (8) 0.9696 (14) 0.8890 (9) 1.0871 (7) 0.9044 (9) 1.0017 (7)

−0.2601 −0.2573 0.0297 (16) 0.0156 (13) −0.0958 (8) 0.0648 (10) 0.1456 (9) 0.3904 (16) 0.5118 (9) 0.4084 (10) 0.2694 (9) 0.3704 (13)

0.1741 0.1350 0.3946 (4) 0.3601 (2) 0.4075 (2) 0.4122 (2) 0.3975 (3) 0.1064 (4) 0.1004 (3) 0.0911 (2) 0.0926 (3) 0.1408 (2)

0.054* 0.054* 0.046 (3) 0.090 (3) 0.081 (3) 0.077 (2) 0.071 (3) 0.049 (3) 0.073 (3) 0.080 (3) 0.094 (3) 0.097 (3)

Atomic displacement parameters (Å2)

Rh1 Rh2 P1 P2 P3 P4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26

U11

U22

U33

U12

U13

U23

0.0296 (5) 0.0298 (5) 0.0302 (15) 0.0285 (14) 0.0281 (14) 0.0295 (13) 0.028 (5) 0.053 (7) 0.104 (12) 0.052 (7) 0.039 (5) 0.045 (6) 0.056 (7) 0.048 (7) 0.039 (6) 0.034 (6) 0.035 (6) 0.039 (6) 0.036 (6) 0.037 (7) 0.040 (6) 0.032 (6) 0.029 (5) 0.037 (7) 0.036 (6) 0.029 (6) 0.030 (6) 0.044 (6) 0.038 (6) 0.036 (6) 0.053 (7) 0.061 (8)

0.0254 (7) 0.0250 (7) 0.0250 (14) 0.0256 (13) 0.0246 (14) 0.0242 (13) 0.021 (5) 0.038 (6) 0.021 (6) 0.022 (6) 0.024 (4) 0.023 (4) 0.021 (6) 0.033 (5) 0.047 (6) 0.020 (5) 0.022 (5) 0.031 (5) 0.041 (6) 0.061 (8) 0.053 (6) 0.038 (6) 0.019 (5) 0.040 (7) 0.046 (6) 0.059 (8) 0.034 (5) 0.035 (5) 0.026 (5) 0.032 (5) 0.040 (6) 0.037 (7)

0.0245 (9) 0.0251 (9) 0.0285 (18) 0.0249 (16) 0.0253 (17) 0.0258 (16) 0.047 (7) 0.024 (6) 0.044 (10) 0.034 (7) 0.025 (5) 0.027 (6) 0.038 (8) 0.039 (7) 0.036 (7) 0.025 (6) 0.025 (7) 0.039 (7) 0.048 (8) 0.042 (8) 0.049 (7) 0.039 (7) 0.028 (7) 0.040 (9) 0.056 (8) 0.064 (9) 0.051 (8) 0.023 (5) 0.026 (6) 0.034 (6) 0.043 (8) 0.036 (8)

0.0028 (4) −0.0023 (4) −0.0018 (11) 0.0018 (11) 0.0009 (10) −0.0007 (12) −0.003 (4) 0.005 (5) 0.009 (6) −0.005 (5) 0.003 (5) 0.009 (5) −0.001 (5) 0.011 (5) 0.005 (5) 0.006 (4) 0.004 (4) −0.006 (5) −0.001 (5) 0.018 (6) 0.014 (6) 0.001 (4) −0.004 (4) −0.001 (5) 0.001 (5) −0.015 (5) −0.008 (4) 0.003 (5) 0.001 (4) −0.004 (4) −0.013 (5) −0.004 (6)

0.0013 (5) 0.0021 (5) 0.0040 (13) 0.0003 (12) 0.0018 (12) 0.0017 (11) 0.005 (5) 0.006 (5) 0.016 (9) −0.009 (5) 0.005 (4) 0.001 (4) −0.009 (6) −0.001 (6) −0.002 (5) −0.004 (5) 0.001 (5) 0.000 (5) −0.012 (6) 0.000 (6) 0.009 (5) 0.000 (5) −0.006 (5) 0.007 (6) 0.017 (6) 0.001 (6) −0.004 (5) 0.010 (5) 0.003 (5) 0.004 (5) 0.015 (6) 0.017 (6)

−0.0001 (4) −0.0003 (4) −0.0023 (11) 0.0005 (11) −0.0011 (11) 0.0024 (13) 0.007 (5) −0.002 (5) 0.002 (5) −0.007 (5) 0.008 (5) 0.002 (5) 0.000 (5) 0.006 (5) 0.002 (5) −0.004 (4) −0.004 (5) 0.004 (5) 0.002 (6) 0.007 (7) 0.022 (7) 0.007 (5) 0.007 (4) 0.005 (6) 0.008 (6) 0.021 (6) 0.007 (5) 0.003 (5) −0.003 (4) 0.000 (4) −0.007 (6) 0.008 (6)

Acta Cryst. (2014). C70, 941-944

sup-6

supporting information C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64 C65 C66 C67 C68 C69 C70 C71 C72 C73 C74 C75 C76 C77 C78 C79 C80 C81 C82 C83

0.059 (7) 0.043 (6) 0.029 (6) 0.025 (5) 0.030 (6) 0.047 (7) 0.043 (7) 0.033 (6) 0.036 (6) 0.032 (6) 0.018 (5) 0.046 (7) 0.036 (6) 0.029 (6) 0.026 (5) 0.033 (5) 0.054 (6) 0.082 (10) 0.047 (7) 0.038 (5) 0.035 (6) 0.055 (7) 0.051 (7) 0.041 (6) 0.030 (5) 0.028 (5) 0.036 (6) 0.035 (6) 0.050 (8) 0.039 (6) 0.033 (6) 0.030 (6) 0.028 (5) 0.044 (7) 0.031 (6) 0.036 (6) 0.045 (7) 0.034 (6) 0.038 (6) 0.037 (6) 0.062 (8) 0.055 (7) 0.033 (6) 0.028 (5) 0.040 (6) 0.055 (7) 0.047 (7) 0.042 (6)

Acta Cryst. (2014). C70, 941-944

0.039 (6) 0.030 (5) 0.034 (6) 0.032 (6) 0.035 (5) 0.037 (5) 0.041 (6) 0.047 (6) 0.042 (6) 0.029 (5) 0.029 (5) 0.037 (6) 0.033 (5) 0.045 (6) 0.040 (6) 0.055 (6) 0.036 (6) 0.037 (8) 0.019 (5) 0.025 (5) 0.031 (5) 0.019 (5) 0.040 (6) 0.038 (6) 0.028 (5) 0.029 (6) 0.024 (5) 0.048 (7) 0.062 (8) 0.064 (7) 0.032 (6) 0.023 (5) 0.018 (4) 0.035 (6) 0.046 (7) 0.056 (7) 0.030 (6) 0.033 (5) 0.032 (5) 0.038 (5) 0.036 (6) 0.047 (6) 0.043 (6) 0.034 (6) 0.027 (5) 0.048 (6) 0.033 (5) 0.036 (6)

0.032 (7) 0.031 (6) 0.028 (7) 0.036 (6) 0.045 (7) 0.047 (7) 0.036 (7) 0.032 (7) 0.025 (6) 0.039 (7) 0.043 (7) 0.035 (7) 0.037 (7) 0.048 (8) 0.044 (7) 0.018 (5) 0.028 (6) 0.034 (9) 0.043 (8) 0.029 (6) 0.030 (6) 0.033 (7) 0.038 (7) 0.041 (7) 0.039 (7) 0.031 (7) 0.046 (7) 0.056 (9) 0.041 (8) 0.043 (8) 0.053 (8) 0.033 (7) 0.045 (7) 0.052 (8) 0.061 (9) 0.045 (8) 0.032 (8) 0.028 (6) 0.026 (6) 0.041 (7) 0.047 (9) 0.031 (7) 0.033 (7) 0.038 (8) 0.038 (7) 0.026 (6) 0.045 (7) 0.048 (8)

0.006 (5) 0.001 (4) 0.000 (5) 0.000 (4) −0.005 (4) 0.002 (5) 0.002 (5) 0.002 (5) 0.007 (5) 0.010 (4) 0.001 (4) 0.019 (5) −0.002 (5) −0.001 (5) 0.007 (5) 0.000 (5) −0.003 (5) −0.005 (6) 0.003 (5) 0.002 (4) −0.009 (5) −0.008 (5) −0.007 (5) −0.014 (5) 0.001 (4) 0.003 (4) 0.003 (4) −0.001 (5) −0.019 (7) −0.010 (6) 0.000 (4) 0.003 (4) 0.006 (4) 0.015 (5) 0.011 (5) −0.002 (5) 0.004 (5) −0.004 (4) 0.000 (4) 0.005 (5) 0.005 (6) −0.009 (6) −0.006 (4) 0.004 (5) −0.002 (4) −0.007 (5) 0.002 (5) 0.006 (5)

0.009 (6) 0.003 (5) −0.006 (5) 0.003 (5) −0.005 (5) −0.011 (5) 0.003 (5) 0.000 (5) −0.001 (5) −0.001 (5) 0.007 (5) 0.005 (5) −0.008 (5) 0.008 (5) −0.001 (5) 0.004 (4) 0.007 (5) 0.011 (8) 0.013 (6) 0.004 (4) 0.003 (5) −0.005 (6) −0.004 (6) −0.006 (5) −0.006 (5) 0.005 (5) −0.005 (5) −0.006 (6) 0.002 (6) 0.003 (6) −0.002 (5) 0.003 (5) −0.009 (5) −0.003 (6) 0.006 (6) 0.015 (6) 0.002 (6) 0.003 (5) 0.004 (5) 0.009 (5) 0.019 (7) 0.004 (6) 0.005 (5) −0.003 (5) 0.004 (5) −0.005 (5) −0.010 (6) −0.004 (6)

0.007 (5) −0.004 (5) 0.000 (5) 0.004 (4) 0.001 (5) −0.017 (5) −0.008 (5) 0.000 (5) −0.004 (5) −0.009 (4) 0.000 (5) 0.004 (5) 0.005 (5) 0.005 (5) 0.001 (5) 0.024 (5) 0.003 (5) −0.007 (6) −0.014 (5) 0.000 (4) 0.003 (5) −0.008 (5) −0.005 (5) −0.001 (5) −0.013 (5) 0.004 (5) −0.007 (4) 0.003 (6) −0.003 (7) −0.032 (6) −0.004 (5) −0.005 (5) −0.004 (5) −0.007 (5) −0.008 (6) −0.007 (6) 0.004 (5) 0.000 (5) −0.002 (4) 0.005 (5) 0.002 (6) −0.004 (5) −0.002 (5) 0.000 (5) 0.009 (5) 0.009 (5) 0.004 (5) 0.000 (5)

sup-7

supporting information C84 C85 C86 C87 C88 C89 C90 C91 B1 F1 F2 F3 F4 B2 F5 F6 F7 F8

0.042 (6) 0.042 (7) 0.045 (6) 0.038 (6) 0.036 (6) 0.023 (5) 0.039 (7) 0.027 (6) 0.042 (7) 0.061 (5) 0.085 (6) 0.045 (4) 0.067 (6) 0.049 (8) 0.069 (6) 0.045 (4) 0.089 (6) 0.040 (4)

0.031 (5) 0.036 (6) 0.033 (5) 0.031 (5) 0.033 (6) 0.046 (6) 0.045 (6) 0.049 (6) 0.043 (7) 0.159 (9) 0.043 (4) 0.121 (7) 0.054 (5) 0.049 (8) 0.068 (6) 0.126 (7) 0.053 (5) 0.200 (11)

0.036 (6) 0.027 (7) 0.022 (6) 0.035 (7) 0.038 (7) 0.049 (8) 0.045 (8) 0.063 (9) 0.051 (9) 0.049 (5) 0.110 (7) 0.066 (6) 0.091 (8) 0.049 (9) 0.079 (8) 0.072 (6) 0.134 (9) 0.050 (5)

−0.001 (5) −0.009 (5) −0.005 (5) 0.001 (4) −0.013 (4) −0.005 (5) 0.002 (5) −0.012 (5) −0.009 (7) 0.003 (6) −0.004 (4) 0.002 (4) −0.021 (5) 0.007 (7) 0.034 (5) 0.003 (5) −0.006 (5) 0.018 (6)

0.003 (5) 0.006 (5) 0.004 (5) 0.006 (5) −0.006 (5) −0.006 (5) 0.002 (6) 0.015 (5) −0.005 (6) −0.006 (4) −0.013 (5) 0.011 (4) −0.003 (5) −0.006 (7) −0.005 (5) 0.020 (4) −0.015 (6) −0.005 (4)

0.001 (5) −0.005 (5) 0.009 (4) −0.001 (5) 0.001 (5) 0.003 (6) 0.003 (6) 0.004 (6) −0.007 (7) −0.021 (6) 0.021 (5) 0.010 (5) 0.011 (4) −0.008 (7) −0.012 (5) −0.012 (5) −0.013 (5) 0.034 (6)

Geometric parameters (Å, º) Rh1—C36 Rh1—C39 Rh1—C35 Rh1—C38 Rh1—P2 Rh1—P1 Rh2—C86 Rh2—C89 Rh2—C85 Rh2—C88 Rh2—P4 Rh2—P3 P1—C1 P1—C11 P1—C17 P2—C29 P2—C10 P2—C23 P3—C61 P3—C67 P3—C51 P4—C79 P4—C73 P4—C60 C1—C2 C1—C5 C1—H1

Acta Cryst. (2014). C70, 941-944

2.187 (9) 2.210 (10) 2.216 (11) 2.226 (10) 2.317 (3) 2.319 (3) 2.199 (9) 2.212 (10) 2.214 (11) 2.230 (10) 2.304 (3) 2.312 (3) 1.797 (10) 1.813 (12) 1.818 (10) 1.813 (12) 1.813 (10) 1.819 (10) 1.817 (12) 1.824 (11) 1.950 (11) 1.811 (12) 1.820 (10) 1.859 (11) 1.540 (14) 1.558 (13) 0.9800

C38—C39 C38—H38 C39—C40 C39—H39 C40—C41 C40—H40 C41—H41A C41—H41B C51—C55 C51—C52 C51—H51 C52—C53 C52—H52A C52—H52B C53—C54 C53—H53A C53—H53B C54—C55 C54—H54A C54—H54B C55—C56 C55—H55 C56—C57 C56—C60 C56—H56 C57—C58 C57—H57A

1.369 (14) 0.9800 1.561 (16) 0.9800 1.536 (15) 0.9800 0.9700 0.9700 1.456 (15) 1.534 (13) 0.9800 1.562 (15) 0.9700 0.9700 1.512 (18) 0.9700 0.9700 1.587 (14) 0.9700 0.9700 1.516 (14) 0.9800 1.523 (14) 1.532 (14) 0.9800 1.532 (16) 0.9700

sup-8

supporting information C2—C3 C2—H2A C2—H2B C3—C4 C3—H3A C3—H3B C4—C5 C4—H4A C4—H4B C5—C6 C5—H5 C6—C7 C6—C10 C6—H6 C7—C8 C7—H7A C7—H7B C8—C9 C8—H8A C8—H8B C9—C10 C9—H9A C9—H9B C10—H10 C11—C16 C11—C12 C12—C13 C12—H12 C13—C14 C13—H13 C14—C15 C14—H14 C15—C16 C15—H15 C16—H16 C17—C22 C17—C18 C18—C19 C18—H18 C19—C20 C19—H19 C20—C21 C20—H20 C21—C22 C21—H21 C22—H22 C23—C24 C23—C28

Acta Cryst. (2014). C70, 941-944

1.549 (15) 0.9700 0.9700 1.525 (19) 0.9700 0.9700 1.531 (13) 0.9700 0.9700 1.536 (13) 0.9800 1.529 (15) 1.567 (13) 0.9800 1.529 (16) 0.9700 0.9700 1.517 (16) 0.9700 0.9700 1.572 (14) 0.9700 0.9700 0.9800 1.384 (14) 1.407 (14) 1.384 (15) 0.9300 1.353 (16) 0.9300 1.384 (16) 0.9300 1.387 (15) 0.9300 0.9300 1.366 (15) 1.416 (17) 1.404 (16) 0.9300 1.398 (17) 0.9300 1.374 (16) 0.9300 1.376 (14) 0.9300 0.9300 1.407 (14) 1.420 (14)

C57—H57B C58—C59 C58—H58A C58—H58B C59—C60 C59—H59A C59—H59B C60—H60 C61—C66 C61—C62 C62—C63 C62—H62 C63—C64 C63—H63 C64—C65 C64—H64 C65—C66 C65—H65 C66—H66 C67—C68 C67—C72 C68—C69 C68—H68 C69—C70 C69—H69 C70—C71 C70—H70 C71—C72 C71—H71 C72—H72 C73—C78 C73—C74 C74—C75 C74—H74 C75—C76 C75—H75 C76—C77 C76—H76 C77—C78 C77—H77 C78—H78 C79—C80 C79—C84 C80—C81 C80—H80 C81—C82 C81—H81 C82—C83

0.9700 1.543 (15) 0.9700 0.9700 1.553 (14) 0.9700 0.9700 0.9800 1.389 (14) 1.404 (14) 1.384 (15) 0.9300 1.383 (18) 0.9300 1.376 (17) 0.9300 1.399 (15) 0.9300 0.9300 1.390 (15) 1.417 (17) 1.433 (14) 0.9300 1.369 (16) 0.9300 1.378 (16) 0.9300 1.376 (16) 0.9300 0.9300 1.396 (14) 1.397 (14) 1.390 (14) 0.9300 1.368 (18) 0.9300 1.419 (17) 0.9300 1.368 (14) 0.9300 0.9300 1.393 (17) 1.414 (15) 1.360 (14) 0.9300 1.380 (15) 0.9300 1.398 (15)

sup-9

supporting information C24—C25 C24—H24 C25—C26 C25—H25 C26—C27 C26—H26 C27—C28 C27—H27 C28—H28 C29—C34 C29—C30 C30—C31 C30—H30 C31—C32 C31—H31 C32—C33 C32—H32 C33—C34 C33—H33 C34—H34 C35—C36 C35—C40 C35—H35 C36—C37 C36—H36 C37—C41 C37—C38 C37—H37

1.374 (14) 0.9300 1.355 (18) 0.9300 1.394 (17) 0.9300 1.375 (14) 0.9300 0.9300 1.407 (16) 1.413 (15) 1.381 (14) 0.9300 1.368 (16) 0.9300 1.395 (16) 0.9300 1.365 (14) 0.9300 0.9300 1.381 (14) 1.550 (15) 0.9800 1.522 (14) 0.9800 1.519 (13) 1.551 (14) 0.9800

C82—H82 C83—C84 C83—H83 C84—H84 C85—C86 C85—C90 C85—H85 C86—C87 C86—H86 C87—C88 C87—C91 C87—H87 C88—C89 C88—H88 C89—C90 C89—H89 C90—C91 C90—H90 C91—H91A C91—H91B B1—F2 B1—F1 B1—F4 B1—F3 B2—F7 B2—F5 B2—F8 B2—F6

0.9300 1.372 (14) 0.9300 0.9300 1.372 (14) 1.541 (16) 0.9800 1.511 (14) 0.9800 1.541 (14) 1.544 (14) 0.9800 1.384 (14) 0.9800 1.545 (16) 0.9800 1.553 (16) 0.9800 0.9700 0.9700 1.363 (16) 1.388 (16) 1.388 (15) 1.391 (15) 1.360 (16) 1.369 (15) 1.370 (16) 1.377 (16)

C36—Rh1—C39 C36—Rh1—C35 C39—Rh1—C35 C36—Rh1—C38 C39—Rh1—C38 C35—Rh1—C38 C36—Rh1—P2 C39—Rh1—P2 C35—Rh1—P2 C38—Rh1—P2 C36—Rh1—P1 C39—Rh1—P1 C35—Rh1—P1 C38—Rh1—P1 P2—Rh1—P1 C86—Rh2—C89 C86—Rh2—C85 C89—Rh2—C85 C86—Rh2—C88

77.4 (4) 36.6 (4) 66.9 (4) 65.1 (4) 35.9 (4) 77.9 (4) 99.7 (3) 154.5 (3) 95.5 (3) 162.1 (3) 150.4 (3) 100.4 (3) 165.7 (3) 95.5 (3) 94.25 (10) 77.1 (4) 36.2 (4) 66.2 (4) 65.0 (4)

C39—C38—H38 C37—C38—H38 Rh1—C38—H38 C38—C39—C40 C38—C39—Rh1 C40—C39—Rh1 C38—C39—H39 C40—C39—H39 Rh1—C39—H39 C41—C40—C35 C41—C40—C39 C35—C40—C39 C41—C40—H40 C35—C40—H40 C39—C40—H40 C37—C41—C40 C37—C41—H41A C40—C41—H41A C37—C41—H41B

123.4 123.4 123.4 105.8 (9) 72.7 (6) 94.7 (6) 123.4 123.4 123.4 100.1 (9) 100.5 (9) 103.3 (8) 116.8 116.8 116.8 93.4 (8) 113.0 113.0 113.0

Acta Cryst. (2014). C70, 941-944

sup-10

supporting information C89—Rh2—C88 C85—Rh2—C88 C86—Rh2—P4 C89—Rh2—P4 C85—Rh2—P4 C88—Rh2—P4 C86—Rh2—P3 C89—Rh2—P3 C85—Rh2—P3 C88—Rh2—P3 P4—Rh2—P3 C1—P1—C11 C1—P1—C17 C11—P1—C17 C1—P1—Rh1 C11—P1—Rh1 C17—P1—Rh1 C29—P2—C10 C29—P2—C23 C10—P2—C23 C29—P2—Rh1 C10—P2—Rh1 C23—P2—Rh1 C61—P3—C67 C61—P3—C51 C67—P3—C51 C61—P3—Rh2 C67—P3—Rh2 C51—P3—Rh2 C79—P4—C73 C79—P4—C60 C73—P4—C60 C79—P4—Rh2 C73—P4—Rh2 C60—P4—Rh2 C2—C1—C5 C2—C1—P1 C5—C1—P1 C2—C1—H1 C5—C1—H1 P1—C1—H1 C1—C2—C3 C1—C2—H2A C3—C2—H2A C1—C2—H2B C3—C2—H2B H2A—C2—H2B C4—C3—C2

Acta Cryst. (2014). C70, 941-944

36.3 (4) 77.5 (4) 99.8 (3) 152.3 (3) 94.8 (3) 162.8 (3) 149.8 (3) 101.2 (3) 166.3 (3) 95.6 (3) 94.88 (10) 102.7 (5) 111.1 (5) 102.4 (5) 114.3 (4) 112.9 (4) 112.4 (4) 104.1 (5) 103.4 (5) 106.6 (4) 108.2 (4) 120.0 (3) 113.0 (3) 103.0 (5) 102.7 (5) 112.0 (5) 113.3 (4) 112.2 (4) 112.9 (3) 103.1 (5) 104.6 (5) 105.7 (4) 109.4 (4) 112.8 (3) 119.7 (3) 102.8 (7) 121.7 (7) 122.7 (8) 102.0 102.0 102.0 105.3 (9) 110.7 110.7 110.7 110.7 108.8 105.2 (10)

C40—C41—H41B H41A—C41—H41B C55—C51—C52 C55—C51—P3 C52—C51—P3 C55—C51—H51 C52—C51—H51 P3—C51—H51 C51—C52—C53 C51—C52—H52A C53—C52—H52A C51—C52—H52B C53—C52—H52B H52A—C52—H52B C54—C53—C52 C54—C53—H53A C52—C53—H53A C54—C53—H53B C52—C53—H53B H53A—C53—H53B C53—C54—C55 C53—C54—H54A C55—C54—H54A C53—C54—H54B C55—C54—H54B H54A—C54—H54B C51—C55—C56 C51—C55—C54 C56—C55—C54 C51—C55—H55 C56—C55—H55 C54—C55—H55 C55—C56—C57 C55—C56—C60 C57—C56—C60 C55—C56—H56 C57—C56—H56 C60—C56—H56 C56—C57—C58 C56—C57—H57A C58—C57—H57A C56—C57—H57B C58—C57—H57B H57A—C57—H57B C57—C58—C59 C57—C58—H58A C59—C58—H58A C57—C58—H58B

113.0 110.4 109.6 (9) 119.8 (7) 113.9 (7) 103.8 103.8 103.8 98.8 (9) 112.0 112.0 112.0 112.0 109.7 106.1 (10) 110.5 110.5 110.5 110.5 108.7 105.9 (9) 110.5 110.5 110.5 110.5 108.7 119.0 (9) 93.9 (8) 113.1 (9) 109.9 109.9 109.9 112.2 (9) 120.4 (8) 104.1 (9) 106.4 106.4 106.4 106.2 (9) 110.5 110.5 110.5 110.5 108.7 105.5 (9) 110.6 110.6 110.6

sup-11

supporting information C4—C3—H3A C2—C3—H3A C4—C3—H3B C2—C3—H3B H3A—C3—H3B C3—C4—C5 C3—C4—H4A C5—C4—H4A C3—C4—H4B C5—C4—H4B H4A—C4—H4B C4—C5—C6 C4—C5—C1 C6—C5—C1 C4—C5—H5 C6—C5—H5 C1—C5—H5 C7—C6—C5 C7—C6—C10 C5—C6—C10 C7—C6—H6 C5—C6—H6 C10—C6—H6 C6—C7—C8 C6—C7—H7A C8—C7—H7A C6—C7—H7B C8—C7—H7B H7A—C7—H7B C9—C8—C7 C9—C8—H8A C7—C8—H8A C9—C8—H8B C7—C8—H8B H8A—C8—H8B C8—C9—C10 C8—C9—H9A C10—C9—H9A C8—C9—H9B C10—C9—H9B H9A—C9—H9B C6—C10—C9 C6—C10—P2 C9—C10—P2 C6—C10—H10 C9—C10—H10 P2—C10—H10 C16—C11—C12

Acta Cryst. (2014). C70, 941-944

110.7 110.7 110.7 110.7 108.8 107.1 (9) 110.3 110.3 110.3 110.3 108.6 110.5 (8) 100.3 (8) 116.3 (8) 109.8 109.8 109.8 113.6 (8) 102.6 (8) 118.6 (8) 107.1 107.1 107.1 106.2 (8) 110.5 110.5 110.5 110.5 108.7 107.2 (9) 110.3 110.3 110.3 110.3 108.5 106.4 (9) 110.4 110.4 110.4 110.4 108.6 103.0 (7) 117.0 (7) 116.7 (7) 106.4 106.4 106.4 117.4 (10)

C59—C58—H58B H58A—C58—H58B C58—C59—C60 C58—C59—H59A C60—C59—H59A C58—C59—H59B C60—C59—H59B H59A—C59—H59B C56—C60—C59 C56—C60—P4 C59—C60—P4 C56—C60—H60 C59—C60—H60 P4—C60—H60 C66—C61—C62 C66—C61—P3 C62—C61—P3 C63—C62—C61 C63—C62—H62 C61—C62—H62 C64—C63—C62 C64—C63—H63 C62—C63—H63 C65—C64—C63 C65—C64—H64 C63—C64—H64 C64—C65—C66 C64—C65—H65 C66—C65—H65 C61—C66—C65 C61—C66—H66 C65—C66—H66 C68—C67—C72 C68—C67—P3 C72—C67—P3 C67—C68—C69 C67—C68—H68 C69—C68—H68 C70—C69—C68 C70—C69—H69 C68—C69—H69 C69—C70—C71 C69—C70—H70 C71—C70—H70 C72—C71—C70 C72—C71—H71 C70—C71—H71 C71—C72—C67

110.6 108.8 107.1 (9) 110.3 110.3 110.3 110.3 108.6 104.2 (8) 116.3 (7) 114.3 (8) 107.2 107.2 107.2 117.2 (10) 122.8 (8) 119.8 (8) 121.1 (10) 119.5 119.5 120.6 (11) 119.7 119.7 119.5 (12) 120.3 120.3 120.0 (11) 120.0 120.0 121.6 (10) 119.2 119.2 119.7 (10) 117.9 (9) 122.3 (9) 118.9 (11) 120.5 120.5 120.6 (10) 119.7 119.7 119.4 (10) 120.3 120.3 122.4 (11) 118.8 118.8 119.0 (11)

sup-12

supporting information C16—C11—P1 C12—C11—P1 C13—C12—C11 C13—C12—H12 C11—C12—H12 C14—C13—C12 C14—C13—H13 C12—C13—H13 C13—C14—C15 C13—C14—H14 C15—C14—H14 C14—C15—C16 C14—C15—H15 C16—C15—H15 C11—C16—C15 C11—C16—H16 C15—C16—H16 C22—C17—C18 C22—C17—P1 C18—C17—P1 C19—C18—C17 C19—C18—H18 C17—C18—H18 C20—C19—C18 C20—C19—H19 C18—C19—H19 C21—C20—C19 C21—C20—H20 C19—C20—H20 C20—C21—C22 C20—C21—H21 C22—C21—H21 C17—C22—C21 C17—C22—H22 C21—C22—H22 C24—C23—C28 C24—C23—P2 C28—C23—P2 C25—C24—C23 C25—C24—H24 C23—C24—H24 C26—C25—C24 C26—C25—H25 C24—C25—H25 C25—C26—C27 C25—C26—H26 C27—C26—H26 C28—C27—C26

Acta Cryst. (2014). C70, 941-944

123.0 (8) 119.6 (8) 120.7 (10) 119.7 119.7 120.7 (11) 119.6 119.6 120.1 (12) 119.9 119.9 119.6 (11) 120.2 120.2 121.4 (11) 119.3 119.3 117.5 (10) 120.8 (9) 121.7 (9) 120.0 (12) 120.0 120.0 119.3 (12) 120.4 120.4 120.7 (10) 119.7 119.7 118.7 (10) 120.6 120.6 123.8 (10) 118.1 118.1 118.3 (9) 119.5 (8) 122.1 (8) 119.8 (10) 120.1 120.1 121.8 (11) 119.1 119.1 119.7 (11) 120.1 120.1 120.4 (11)

C71—C72—H72 C67—C72—H72 C78—C73—C74 C78—C73—P4 C74—C73—P4 C75—C74—C73 C75—C74—H74 C73—C74—H74 C76—C75—C74 C76—C75—H75 C74—C75—H75 C75—C76—C77 C75—C76—H76 C77—C76—H76 C78—C77—C76 C78—C77—H77 C76—C77—H77 C77—C78—C73 C77—C78—H78 C73—C78—H78 C80—C79—C84 C80—C79—P4 C84—C79—P4 C81—C80—C79 C81—C80—H80 C79—C80—H80 C80—C81—C82 C80—C81—H81 C82—C81—H81 C81—C82—C83 C81—C82—H82 C83—C82—H82 C84—C83—C82 C84—C83—H83 C82—C83—H83 C83—C84—C79 C83—C84—H84 C79—C84—H84 C86—C85—C90 C86—C85—Rh2 C90—C85—Rh2 C86—C85—H85 C90—C85—H85 Rh2—C85—H85 C85—C86—C87 C85—C86—Rh2 C87—C86—Rh2 C85—C86—H86

120.5 120.5 117.2 (9) 123.4 (8) 119.1 (8) 121.2 (10) 119.4 119.4 120.8 (11) 119.6 119.6 118.8 (11) 120.6 120.6 119.8 (11) 120.1 120.1 122.0 (11) 119.0 119.0 116.3 (10) 121.4 (8) 121.6 (10) 122.6 (11) 118.7 118.7 120.4 (11) 119.8 119.8 119.3 (10) 120.4 120.4 119.8 (10) 120.1 120.1 121.6 (11) 119.2 119.2 105.5 (9) 71.3 (6) 95.2 (7) 123.7 123.7 123.7 108.3 (9) 72.5 (6) 97.2 (6) 122.2

sup-13

supporting information C28—C27—H27 C26—C27—H27 C27—C28—C23 C27—C28—H28 C23—C28—H28 C34—C29—C30 C34—C29—P2 C30—C29—P2 C31—C30—C29 C31—C30—H30 C29—C30—H30 C32—C31—C30 C32—C31—H31 C30—C31—H31 C31—C32—C33 C31—C32—H32 C33—C32—H32 C34—C33—C32 C34—C33—H33 C32—C33—H33 C33—C34—C29 C33—C34—H34 C29—C34—H34 C36—C35—C40 C36—C35—Rh1 C40—C35—Rh1 C36—C35—H35 C40—C35—H35 Rh1—C35—H35 C35—C36—C37 C35—C36—Rh1 C37—C36—Rh1 C35—C36—H36 C37—C36—H36 Rh1—C36—H36 C41—C37—C36 C41—C37—C38 C36—C37—C38 C41—C37—H37 C36—C37—H37 C38—C37—H37 C39—C38—C37 C39—C38—Rh1 C37—C38—Rh1

119.8 119.8 119.9 (10) 120.1 120.1 116.8 (10) 121.5 (9) 121.1 (9) 120.3 (10) 119.9 119.9 121.1 (10) 119.4 119.4 120.0 (10) 120.0 120.0 119.2 (11) 120.4 120.4 122.6 (11) 118.7 118.7 104.5 (9) 70.6 (6) 94.9 (7) 124.1 124.1 124.1 107.3 (9) 72.9 (6) 98.1 (7) 122.2 122.2 122.2 101.2 (8) 101.3 (8) 101.2 (7) 116.8 116.8 116.8 106.1 (9) 71.4 (6) 95.6 (6)

C87—C86—H86 Rh2—C86—H86 C86—C87—C88 C86—C87—C91 C88—C87—C91 C86—C87—H87 C88—C87—H87 C91—C87—H87 C89—C88—C87 C89—C88—Rh2 C87—C88—Rh2 C89—C88—H88 C87—C88—H88 Rh2—C88—H88 C88—C89—C90 C88—C89—Rh2 C90—C89—Rh2 C88—C89—H89 C90—C89—H89 Rh2—C89—H89 C85—C90—C89 C85—C90—C91 C89—C90—C91 C85—C90—H90 C89—C90—H90 C91—C90—H90 C87—C91—C90 C87—C91—H91A C90—C91—H91A C87—C91—H91B C90—C91—H91B H91A—C91—H91B F2—B1—F1 F2—B1—F4 F1—B1—F4 F2—B1—F3 F1—B1—F3 F4—B1—F3 F7—B2—F5 F7—B2—F8 F5—B2—F8 F7—B2—F6 F5—B2—F6 F8—B2—F6

122.2 122.2 102.5 (8) 100.0 (9) 99.6 (9) 117.2 117.2 117.2 106.8 (10) 71.1 (6) 95.1 (6) 123.3 123.3 123.3 106.2 (10) 72.6 (6) 95.2 (7) 123.2 123.2 123.2 103.1 (9) 99.5 (9) 99.8 (10) 117.2 117.2 117.2 93.7 (8) 113.0 113.0 113.0 113.0 110.4 112.0 (12) 109.0 (10) 107.0 (12) 110.7 (11) 108.5 (10) 109.5 (11) 108.7 (11) 110.3 (13) 111.0 (12) 108.6 (11) 110.1 (12) 108.2 (11)

C11—P1—C1—C2 C17—P1—C1—C2 Rh1—P1—C1—C2

−71.5 (9) 37.4 (10) 165.9 (8)

C38—C37—C41—C40 C35—C40—C41—C37 C39—C40—C41—C37

−52.2 (10) −53.5 (10) 52.2 (10)

Acta Cryst. (2014). C70, 941-944

sup-14

supporting information C11—P1—C1—C5 C17—P1—C1—C5 Rh1—P1—C1—C5 C5—C1—C2—C3 P1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C3—C4—C5—C1 C2—C1—C5—C4 P1—C1—C5—C4 C2—C1—C5—C6 P1—C1—C5—C6 C4—C5—C6—C7 C1—C5—C6—C7 C4—C5—C6—C10 C1—C5—C6—C10 C5—C6—C7—C8 C10—C6—C7—C8 C6—C7—C8—C9 C7—C8—C9—C10 C7—C6—C10—C9 C5—C6—C10—C9 C7—C6—C10—P2 C5—C6—C10—P2 C8—C9—C10—C6 C8—C9—C10—P2 C29—P2—C10—C6 C23—P2—C10—C6 Rh1—P2—C10—C6 C29—P2—C10—C9 C23—P2—C10—C9 Rh1—P2—C10—C9 C1—P1—C11—C16 C17—P1—C11—C16 Rh1—P1—C11—C16 C1—P1—C11—C12 C17—P1—C11—C12 Rh1—P1—C11—C12 C16—C11—C12—C13 P1—C11—C12—C13 C11—C12—C13—C14 C12—C13—C14—C15 C13—C14—C15—C16 C12—C11—C16—C15 P1—C11—C16—C15 C14—C15—C16—C11 C1—P1—C17—C22

Acta Cryst. (2014). C70, 941-944

153.7 (8) −97.5 (9) 31.0 (9) −34.2 (12) −176.5 (9) 11.0 (14) 17.1 (14) 85.6 (11) −37.7 (12) 43.6 (10) −174.5 (7) −75.4 (10) 66.4 (11) 60.2 (11) 173.5 (9) −179.2 (9) −65.8 (12) 164.9 (9) 35.6 (11) −19.7 (13) −4.3 (12) −37.3 (10) −163.4 (8) 92.1 (9) −34.0 (11) 25.9 (11) −103.8 (9) −166.1 (7) −57.2 (8) 72.8 (8) −43.5 (9) 65.4 (8) −164.6 (6) 135.2 (9) 19.8 (10) −101.3 (9) −48.0 (9) −163.3 (9) 75.6 (9) −1.2 (16) −178.2 (9) −0.2 (18) 1.4 (19) −1.1 (18) 1.5 (16) 178.4 (9) −0.4 (17) 130.2 (9)

C55—C51—C52—C53 P3—C51—C52—C53 C51—C52—C53—C54 C52—C53—C54—C55 C52—C51—C55—C56 P3—C51—C55—C56 C52—C51—C55—C54 P3—C51—C55—C54 C53—C54—C55—C51 C53—C54—C55—C56 C51—C55—C56—C57 C54—C55—C56—C57 C51—C55—C56—C60 C54—C55—C56—C60 C55—C56—C57—C58 C60—C56—C57—C58 C56—C57—C58—C59 C57—C58—C59—C60 C55—C56—C60—C59 C57—C56—C60—C59 C55—C56—C60—P4 C57—C56—C60—P4 C58—C59—C60—C56 C58—C59—C60—P4 C79—P4—C60—C56 C73—P4—C60—C56 Rh2—P4—C60—C56 C79—P4—C60—C59 C73—P4—C60—C59 Rh2—P4—C60—C59 C67—P3—C61—C66 C51—P3—C61—C66 Rh2—P3—C61—C66 C67—P3—C61—C62 C51—P3—C61—C62 Rh2—P3—C61—C62 C66—C61—C62—C63 P3—C61—C62—C63 C61—C62—C63—C64 C62—C63—C64—C65 C63—C64—C65—C66 C62—C61—C66—C65 P3—C61—C66—C65 C64—C65—C66—C61 C61—P3—C67—C68 C51—P3—C67—C68 Rh2—P3—C67—C68 C61—P3—C67—C72

−39.7 (12) −177.0 (8) 8.4 (13) 21.2 (13) −68.3 (12) 66.1 (11) 50.8 (10) −174.7 (7) −42.4 (11) 81.5 (12) 168.6 (9) 59.8 (12) −68.4 (13) −177.2 (9) 167.0 (9) 35.3 (12) −21.9 (13) 0.4 (13) −161.1 (9) −34.3 (11) −34.2 (12) 92.6 (9) 20.9 (11) −107.1 (9) −165.0 (8) −56.6 (8) 72.0 (8) −43.5 (8) 65.0 (8) −166.4 (6) 18.4 (11) 134.9 (10) −103.0 (9) −165.5 (9) −49.0 (10) 73.1 (9) −2.2 (16) −178.5 (9) 0.3 (18) 1.8 (19) −1.8 (19) 2.2 (17) 178.4 (9) −0.2 (18) −120.5 (9) 129.8 (8) 1.7 (9) 57.3 (10)

sup-15

supporting information C11—P1—C17—C22 Rh1—P1—C17—C22 C1—P1—C17—C18 C11—P1—C17—C18 Rh1—P1—C17—C18 C22—C17—C18—C19 P1—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C21 C19—C20—C21—C22 C18—C17—C22—C21 P1—C17—C22—C21 C20—C21—C22—C17 C29—P2—C23—C24 C10—P2—C23—C24 Rh1—P2—C23—C24 C29—P2—C23—C28 C10—P2—C23—C28 Rh1—P2—C23—C28 C28—C23—C24—C25 P2—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C27 C25—C26—C27—C28 C26—C27—C28—C23 C24—C23—C28—C27 P2—C23—C28—C27 C10—P2—C29—C34 C23—P2—C29—C34 Rh1—P2—C29—C34 C10—P2—C29—C30 C23—P2—C29—C30 Rh1—P2—C29—C30 C34—C29—C30—C31 P2—C29—C30—C31 C29—C30—C31—C32 C30—C31—C32—C33 C31—C32—C33—C34 C32—C33—C34—C29 C30—C29—C34—C33 P2—C29—C34—C33 C40—C35—C36—C37 Rh1—C35—C36—C37 C40—C35—C36—Rh1 C35—C36—C37—C41 Rh1—C36—C37—C41 C35—C36—C37—C38 Rh1—C36—C37—C38

Acta Cryst. (2014). C70, 941-944

−120.8 (9) 0.7 (10) −49.6 (11) 59.4 (10) −179.1 (8) 2.4 (17) −177.9 (9) −3.3 (18) 3.7 (17) −3.2 (16) −1.9 (16) 178.3 (8) 2.4 (16) −142.0 (8) 108.6 (8) −25.3 (9) 42.6 (9) −66.8 (9) 159.3 (7) 1.9 (14) −173.7 (8) 0.2 (17) −3.2 (19) 4.3 (18) −2.2 (16) −0.8 (14) 174.6 (8) 149.5 (9) 38.3 (10) −81.8 (10) −39.7 (10) −150.9 (9) 89.0 (9) −0.3 (15) −171.5 (8) 2.3 (16) −2.9 (17) 1.5 (17) 0.5 (17) −1.1 (16) 170.0 (8) −3.3 (11) −93.3 (7) 90.1 (7) −32.0 (10) −106.5 (7) 72.1 (9) −2.4 (7)

C51—P3—C67—C72 Rh2—P3—C67—C72 C72—C67—C68—C69 P3—C67—C68—C69 C67—C68—C69—C70 C68—C69—C70—C71 C69—C70—C71—C72 C70—C71—C72—C67 C68—C67—C72—C71 P3—C67—C72—C71 C79—P4—C73—C78 C60—P4—C73—C78 Rh2—P4—C73—C78 C79—P4—C73—C74 C60—P4—C73—C74 Rh2—P4—C73—C74 C78—C73—C74—C75 P4—C73—C74—C75 C73—C74—C75—C76 C74—C75—C76—C77 C75—C76—C77—C78 C76—C77—C78—C73 C74—C73—C78—C77 P4—C73—C78—C77 C73—P4—C79—C80 C60—P4—C79—C80 Rh2—P4—C79—C80 C73—P4—C79—C84 C60—P4—C79—C84 Rh2—P4—C79—C84 C84—C79—C80—C81 P4—C79—C80—C81 C79—C80—C81—C82 C80—C81—C82—C83 C81—C82—C83—C84 C82—C83—C84—C79 C80—C79—C84—C83 P4—C79—C84—C83 C90—C85—C86—C87 Rh2—C85—C86—C87 C90—C85—C86—Rh2 C85—C86—C87—C88 Rh2—C86—C87—C88 C85—C86—C87—C91 Rh2—C86—C87—C91 C86—C87—C88—C89 C91—C87—C88—C89 C86—C87—C88—Rh2

−52.4 (11) 179.4 (8) −0.4 (15) 177.4 (8) 0.7 (16) −0.9 (17) 0.8 (18) −0.5 (18) 0.3 (17) −177.4 (9) 41.5 (10) −68.0 (9) 159.4 (7) −144.0 (8) 106.5 (8) −26.1 (9) 3.7 (14) −171.1 (8) −0.1 (16) −3.0 (17) 2.5 (17) 1.2 (16) −4.3 (15) 170.4 (8) 39.7 (10) 150.0 (9) −80.6 (10) −150.3 (9) −39.9 (10) 89.4 (9) 2.1 (17) 172.6 (9) −2.0 (17) 1.5 (16) −1.2 (16) 1.4 (17) −1.8 (16) −172.3 (8) −1.7 (11) −92.0 (7) 90.3 (8) 69.2 (10) −4.6 (8) −33.0 (10) −106.9 (7) −67.2 (10) 35.4 (10) 4.6 (8)

sup-16

supporting information C41—C37—C38—C39 C36—C37—C38—C39 C41—C37—C38—Rh1 C36—C37—C38—Rh1 C37—C38—C39—C40 Rh1—C38—C39—C40 C37—C38—C39—Rh1 C36—C35—C40—C41 Rh1—C35—C40—C41 C36—C35—C40—C39 Rh1—C35—C40—C39 C38—C39—C40—C41 Rh1—C39—C40—C41 C38—C39—C40—C35 Rh1—C39—C40—C35 C36—C37—C41—C40

34.1 (10) −69.9 (10) 106.4 (7) 2.4 (7) 0.5 (10) −90.1 (7) 90.6 (7) 36.9 (11) 108.1 (8) −66.5 (10) 4.7 (8) −34.5 (10) −107.8 (7) 68.6 (10) −4.7 (8) 51.7 (10)

C91—C87—C88—Rh2 C87—C88—C89—C90 Rh2—C88—C89—C90 C87—C88—C89—Rh2 C86—C85—C90—C89 Rh2—C85—C90—C89 C86—C85—C90—C91 Rh2—C85—C90—C91 C88—C89—C90—C85 Rh2—C89—C90—C85 C88—C89—C90—C91 Rh2—C89—C90—C91 C86—C87—C91—C90 C88—C87—C91—C90 C85—C90—C91—C87 C89—C90—C91—C87

107.2 (7) −0.8 (11) −90.4 (7) 89.7 (7) −67.0 (11) 5.0 (9) 35.5 (11) 107.5 (8) 68.3 (10) −5.0 (9) −33.9 (10) −107.3 (7) 51.5 (10) −53.1 (10) −52.5 (10) 52.7 (10)

(RhBICPcodBF4) [(1R,1′R,2R,2′R)-2,2′-Bis(diphenylphosphanyl)-1,1′-dicyclopentane][η4-(Z,Z)-cycloocta-1,5diene]rhodium(I) tetrafluoroborate dichloromethane monosolvate Crystal data [Rh(C34H36P2)(C8H12)]BF4·CH2Cl2 Mr = 889.39 Monoclinic, P21 a = 10.2285 (2) Å b = 13.9823 (3) Å c = 14.5131 (4) Å β = 108.2650 (12)° V = 1971.06 (8) Å3 Z=2

F(000) = 916 Dx = 1.499 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9728 reflections θ = 2.9–33.4° µ = 0.70 mm−1 T = 150 K Part of prism, red 0.38 × 0.34 × 0.16 mm

Data collection Bruker APEXII CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm-1 φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) Tmin = 0.670, Tmax = 0.749

64265 measured reflections 9780 independent reflections 9496 reflections with I > 2σ(I) Rint = 0.034 θmax = 28.3°, θmin = 2.1° h = −13→13 k = −18→18 l = −19→19

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.020 wR(F2) = 0.048 S = 1.04 9780 reflections 524 parameters 25 restraints Hydrogen site location: inferred from neighbouring sites Acta Cryst. (2014). C70, 941-944

H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0228P)2 + 0.6524P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.46 e Å−3 Δρmin = −0.46 e Å−3 Absolute structure: Flack x determined using 4470 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) Absolute structure parameter: −0.015 (5)

sup-17

supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Rh1 P1 P2 C1 H1 C2 H2A H2B C3 H3A H3B C4 H4A H4B C5 H5 C6 H6 C7 H7A H7B C8 H8A H8B C9 H9A H9B C10 H10 C11 C12 H12 C13 H13 C14 H14 C15 H15 C16

x

y

z

Uiso*/Ueq

0.41617 (2) 0.44955 (6) 0.32514 (6) 0.2886 (2) 0.2450 0.2935 (3) 0.3411 0.3402 0.1399 (3) 0.1079 0.1239 0.0631 (3) −0.0010 0.0094 0.1737 (2) 0.1378 0.2084 (2) 0.2452 0.0824 (3) 0.0208 0.0296 0.1447 (3) 0.0828 0.1600 0.2820 (3) 0.2743 0.3557 0.3153 (2) 0.4082 0.5253 (3) 0.4464 (3) 0.3488 0.5098 (3) 0.4552 0.6517 (3) 0.6944 0.7317 (3) 0.8292 0.6685 (3)

0.24643 (2) 0.38414 (4) 0.33385 (4) 0.44676 (18) 0.4052 0.54545 (19) 0.5422 0.5932 0.5693 (2) 0.5509 0.6387 0.5114 (2) 0.4654 0.5547 0.45702 (18) 0.3921 0.51101 (18) 0.5749 0.5299 (2) 0.5782 0.4704 0.5672 (3) 0.5537 0.6371 0.51438 (19) 0.4652 0.5598 0.46676 (17) 0.4903 0.36461 (16) 0.34150 (18) 0.3425 0.31695 (19) 0.3017 0.31456 (19) 0.2966 0.3384 (2) 0.3376 0.36342 (19)

0.23220 (2) 0.15326 (4) 0.33545 (4) 0.09159 (18) 0.0340 0.0459 (2) −0.0038 0.0958 0.0001 (2) −0.0692 0.0052 0.05753 (19) 0.0142 0.0859 0.13946 (18) 0.1475 0.23624 (18) 0.2256 0.26988 (19) 0.2281 0.2690 0.3732 (2) 0.4122 0.3729 0.41508 (19) 0.4622 0.4487 0.32827 (17) 0.3296 0.05541 (17) −0.03916 (18) −0.0568 −0.1077 (2) −0.1720 −0.0830 (2) −0.1299 0.0105 (2) 0.0276 0.07889 (19)

0.01403 (4) 0.01486 (11) 0.01515 (12) 0.0168 (5) 0.020* 0.0240 (5) 0.029* 0.029* 0.0307 (6) 0.037* 0.037* 0.0240 (5) 0.029* 0.029* 0.0182 (5) 0.022* 0.0190 (5) 0.023* 0.0265 (6) 0.032* 0.032* 0.0368 (7) 0.044* 0.044* 0.0225 (5) 0.027* 0.027* 0.0174 (4) 0.021* 0.0176 (4) 0.0213 (5) 0.026* 0.0262 (6) 0.031* 0.0281 (6) 0.034* 0.0261 (5) 0.031* 0.0224 (5)

Acta Cryst. (2014). C70, 941-944

Occ. (

Two precatalysts for application in asymmetric homogeneous hydrogenation.

The title compounds, [(1R,1'R,2R,2'R)-2,2'-bis(diphenylphosphanyl)-1,1'-dicyclopentane](η(4)-norbornadiene)rhodium(I) tetrafluoridoborate, [Rh(C34H36P...
665KB Sizes 2 Downloads 5 Views