E XP ER I ME NTAL C E LL RE S E ARCH

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Q1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

] (]]]]) ]]]–]]]

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/yexcr

Review Article

Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment Farhadul Islama, Vinod Gopalana, Robert A. Smitha,b, Alfred K.-Y. Lama,c,n a

Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld, Australia Genomics Research Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia c Department of Pathology, Gold Coast University Hospital, Gold Coast, Qld, Australia b

article information

abstract

Article Chronology:

Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in

Received 31 January 2015

most cancer types. One important clinical implication of CSCs is their role in cancer metastases, as

Received in revised form

reflected by their ability to initiate and drive micro and macro-metastases. The other important

22 April 2015

contributing factor for CSCs in cancer management is their function in causing treatment

Accepted 25 April 2015

resistance and recurrence in cancer via their activation of different signalling pathways such as Notch, Wnt/β-catenin, TGF-β, Hedgehog, PI3K/Akt/mTOR and JAK/STAT pathways. Thus, many

Keywords:

different therapeutic approaches are being tested for prevention and treatment of cancer

Cancer stem cell

recurrence. These may include treatment strategies targeting altered genetic signalling pathways

Treatment

by blocking specific cell surface molecules, altering the cancer microenvironments that nurture

Metastases

cancer stem cells, inducing differentiation of CSCs, immunotherapy based on CSCs associated

Resistant to therapy

antigens, exploiting metabolites to kill CSCs, and designing small interfering RNA/DNA molecules

Targeted therapy

that especially target CSCs. Because of the huge potential of these approaches to improve cancer management, it is important to identify and isolate cancer stem cells for precise study and application of prior the research on their role in cancer. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting and filtration approaches, the use of different surface markers and xenotransplantation. Overall, given their significance in cancer biology, refining the isolation and targeting of CSCs will play an important role in future management of cancer. & 2015 Elsevier Inc. All rights reserved.

Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 n

Correspondence to: Griffith Medical School, Gold Coast Campus, Gold Coast, Qld 4222, Australia. Fax: þ61 7 56780303. E-mail address: a.lam@griffith.edu.au (A.-Y. Lam).

http://dx.doi.org/10.1016/j.yexcr.2015.04.018 0014-4827/& 2015 Elsevier Inc. All rights reserved.

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

94 95 96 97 98 99 100 101 102 103

2

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

E XP E RI ME N TAL CE L L R ES E ARC H

Clonal verses CSC model of cancer pathogenesis . . Detection and isolation of CSC . . . . . . . . . . . . . . . . CSC markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CSC and metastasis . . . . . . . . . . . . . . . . . . . . . . . . . CSCs and resistance to Cancer therapy . . . . . . . . . . Signalling pathways involved in therapy resistance Approaches in targeting CSCs . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Uncited references . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...... ...... ...... ...... ...... of CSC ...... ...... ...... ...... ......

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

Introduction The ability of cancer stem cells (CSCs) to contribute to resistance to chemo-radiation based therapies has been associated with multiple factors that are unique to CSCs, including increased expression of drug transporters (such as ATP-binding cassette transporters), intracellular detoxification enzymes (that mediate drug efflux and metabolism), up-regulation of anti-apoptotic proteins, increased capacity for DNA damage repair, alteration in cell-cycle kinetics and tumour micro-environmental factors [1]. Also, several signalling pathways such as Notch, Wnt, and Hedgehog have been shown to be involved in the chemo-resistance displayed by CSCs in various cancers [2,3]. Evidence from preclinical and clinical studies have demonstrated that most of the currently utilised chemotherapeutic agents effectively destroy the highly proliferating and relatively differentiated cells that form the bulk of the tumour rather than the more quiescent CSCs [4,5]. Paradoxically, the elimination of nonCSCs by such treatment may allow more space for CSCs to expand and evolve into a more aggressive malignancy with higher self-renewal potential [6–10]. In this review, we aim to present the latest developments in detection of cancer stem cell research and illustrate the current clinical implications of CSCs.

Clonal verses CSC model of cancer pathogenesis Most cancers are composed of a variety of cell types with distinct genetic, epigenetic and morphologic make-up as well as behaviours. The two most common concepts which can explain this heterogeneity and cancer pathogenesis are cancer stem cell hypothesis and clonal evolution model [11]. Among these, the clonal evolution model of carcinogenesis dominated among cancer researchers in the second half of 19th century. This model states that the cancer cells over time acquire various combinations of mutations within a cancer [11]. This genetic drift and stepwise natural selection for the fittest, most aggressive cells ultimately drives cancer progression. According to this concept, cancer initiation takes place once multiple mutations occur in a random single cell, which is called a transformed cell [11]. This transformed cell has a selective growth advantage over adjacent normal cells. As cancer progresses, genetic instability and uncontrolled proliferation allow the production of cells with additional genetic alterations and hence new behavioural characteristics. These cells may leave a large number of offspring by chance. Alternatively, the new mutations may provide a growth advantage over the other cancer cells such as resistance to therapies and

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

] (]]]]) ]]]–]]]

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

2 2 3 3 5 5 5 7 7 7 7

insensitivity to apoptotic signals [12]. In either case, new subpopulations of variant cells will be formed, and other subpopulations may contract, resulting in cancer heterogeneity. Through this process, any cancer cell can potentially become invasive and cause metastasis or become resistant to therapies and cause recurrence [13–16]. On the other hand, the cancer stem cell hypothesis is a progressive concept to account for several factors related to the cellular biology of human cancers [17]. The cancer stem cell hypothesis describes that a particular subset of cancer cells with stem cell-like properties, called “cancer stem cells” (CSCs), can leads to cancer initiation, progression and recurrence. By definition, these cells have the abilities to self-renew indefinitely and to differentiate into different lineages of cells, characteristics of normal adult stem cells. These self-renewal and differentiation will in turn leads to the production of all cancer cell types and thereby generating cancer heterogeneity [18,19]. Simultaneously, the other differentiated tumour cells in a cancer do not have unlimited self-renewal capacity and cannot differentiate to produce all cancer cell types [20].

Detection and isolation of CSC It is important to identify and isolate CSC for the accurate study of their properties. Different analytical methods and techniques have been used to detect the traits of CSCs. Commonly used methodologies for detection and isolation of CSCs include functional, image-based, molecular, cytological sorting, filtration approaches and xenotransplantation [21–24]. These approaches have been developed on the basis of unique features of CSCs. For example, assays including colony formation, sphere formation, side population (SP) analysis, aldehyde dehydrogenase (ALDH) activity and therapy resistance assays are routinely used to discriminate CSCs from non-CSCs on the basis of their functional properties [24]. Cell sorting methods like flow-cytometry and magnetic activated cell sorting (MACS) separate CSCs from nonCSCs on the basis of different cell surface and intracellular molecules with high performance and reliability [25,26]. Similarly, multiplex reverse-transcription PCR (RT-PCR) and highly sensitive multiplex reverse-transcription quantitative PCR (RTqPCR) are molecular methods used to detect CSCs in cancer patients with great target specificity [27–31]. In addition, techniques such as immunocytochemistry, immunofluorescence and immunohistochemistry are used to identify cancer stem cells based on the level and site of expression of protein markers [21]. The gold standard functional assay for detection and isolation of

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E X PE R IM EN TA L C ELL R E S EA RC H

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

3

] (]]]]) ]]]–]]]

Table 1 – Approaches used to detect and isolation of cancer stem cells. Approach

Method

Advantages

Disadvantages

References

Cytological sorting

Flow cytometry

Able to isolate and quantify rare cell, multi-parameter separation Easy and fast

Processing may cause artefact and bias cell analysis, limited to cell suspension Isolate the cells on basis of single parameter, suitable for cell suspension only

[26,133,134]

Colony formation assay Microsphere assay

Easy and able to quantitate CSCs Simple and easy

ALDH assay SP assay

Highly stable Easy and simple

PKH retention assay Therapy resistance assay Xenotransplantation

Easy and widely useful Fast and simple

Reliability is controversial Unable to detect quiescent CSCs and has potential to be biased Low specificity Condition dependent, costly, low specificity, lack of purity Low specificity Low specificity, sensitivity

[22,140] [22]

Widely accepted

Potential to be biased

[32]

RT-PCR

Flexible, multiplex assay, sample, time and cost effective High sensitivity and multiplex analysis

Does not allow accurate CSC detection in sample morphological analysis No morphological analysis

[141,142]

Time consuming, has potential to be biased

[21,143]

Cross-reactivity, background, qualitative only Limited to tissue sample, need well trained pathologist

[144]

Immunohistochemistry

Multi-parameter separation, Highly effective Broad-based and powerful method, relatively inexpensive, very specific Inexpensive, highly specific

Micro-filter

Time effective and specific

[146,147]

Micro-chips

Time and sample effective

No morphological analysis and needs more clinical validation Needs more clinical validation

Magnetic-Activated Cell Sorting (MACS) Functional

Molecular

RT-qPCR Imagebased

Image microscopy Immunocytochemistry

Filtration

CSCs is xenotransplantation into immune-deficient animals [32]. As these methods have advantages and disadvantages based on their experimental setup, a combination of these methods would be more reliable to detect and isolate of CSCs. Table 1 summarises the comparative merits and drawbacks of methods available for CSC detection and isolation.

CSC markers CSCs have been identified in different cancers in a variety of frequencies using combinations of cell-surface antigens as well as soluble proteins. The ability of these markers to physically isolate distinct subpopulations of neoplastic cells with differing biological features further represents the most compelling evidence that tumour cells can reside in multiple, alternative phenotypic states within a given cancer and explains the phenotype of intra-tumour heterogeneity. Several cell-surface molecules which are used for the isolation of CSCs represent cell-surface antigens that are expressed by their corresponding adult stem cells. CD133 for example, has been used as a CSC marker in different cancers, including brain [33], lung [34], pancreas [35], and prostate [36]. In addition to cell-surface markers, certain intracellular proteins molecules have also been used for isolating and detecting CSCs. For example, aldehyde dehydrogenase 1 (ALDH1), a soluble protein is used detect CSCs in various cancers, including leukaemia [37], breast cancer [38], colon cancer [39], liver cancer [40], lung cancer [41] and pancreatic cancer [42]. SP-cells, are a

[135]

[24,136] [137] [135,138] [135,139]

[27–29,31]

[145]

[148,149]

population of cells which are capable of efflux of Hoechst 33,342 dye, which is another non-cell-surface marker that has also been used for detection of normal stem cells as well as CSCs [43,44]. Bio-molecules used for the detection and isolation of CSCs in different cancers to date are summarised in Table 2 along their functions in normal tissues. The similarity of antigens, regardless of whether they are cellsurface or soluble (cytoplasmic/nuclear), displayed by normal stem cells and CSCs from corresponding neoplastic tissues has demonstrated further support to the notion that CSCs are, at least in certain respects, true stem cells. Accordingly, this sharing of markers indicates that CSCs are likely to directly originate from normal tissue stem cells through the accumulation of different degrees of epigenetic and genetic alteration.

CSC and metastasis The CSC model is in perfect agreement with the classical ‘seed and soil’ hypothesis of cancer distribution and spread by Paget et al. [45]. In this hypothesis, a CSC seed is fed by reaching a fertile soilthe metastatic site, where the local microenvironment promotes the growth of the CSC which bears some defined genetic and/or epigenetic alterations. The altered genotype in CSC, in turn drives the differentiation process in a specific fashion which corresponds to the phenotype of the primary cancer from which the CSC derives. CSCs are capable of initiating and driving cancer growth and metastases are believed to be started from CSCs [46].

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

4

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

E XP E RI ME N TAL CE L L R ES E ARC H

] (]]]]) ]]]–]]]

Table 2 – Commonly used CSC markers in different cancers type. Name of Marker

Normal Functions

Reported Cancers

References

ALDH

CD26 CD29 CD133

T cell signal transduction Cell adhesion, epithelial to mesenchymal transition Regulates cell membrane topology

CD166 LGR5/ GPR49 CD15 Nestin CD13 ABCG2

Cell adhesion and cell-cell interactions Cell adhesion Cell adhesion, migration, phagocytosis and chemotaxis Remodelling of the cell Regulate peptides and lipid turnover transport various molecules across extra- and intracellular membranes Regulates B cell differentiation Regulates neuronal cell differentiation and survival Regulates invasive growth Regulates chemotactic activity of lymphocytes Cell differentiation and signal transduction Signal transduction Membrane transporter regulate amino acid transport Structural framework of keratinocytes Transactivation, regulate apoptosis Cell division and stem cell renewal

Breast, colon, head and neck, liver, pancreas, skin (melanoma) Breast, colon, stomach, head and neck, liver, ovary, pancreas, prostate Brain, liver, breast, and lung Breast, stomach, pancreas Breast, colon Haematological Breast, prostate, brain (glioma) Colon, skin (melanoma), Colon, liver, ovary, breast, lung, brain (glioblastoma) Colon, leukaemia Breast, colon Brain, colon, endometrium, liver, lung, ovary, pancreas, prostate and breast Colon, lung Colon Brain (glioma), Hodgkin's lymphoma Brain (glioma), prostate Liver Lung, breast, brain

[37–42]

CD90 CD24 Hedgehog-Gli activity CD38 α6-Integrin ABCB5 β-Catenin activity

Conversion of aldehyde to carboxylic acid involved in ester hydrolysis and retinoic acid signalling pathway Cell adhesion and migration, cell-cell interactions, cell signalling, leucocyte attachment and rolling Cell adhesion and signal transduction in T cells B cell proliferation and maturation Signal transduction, tissue regeneration and maintenance Signal transduction, calcium signalling and cell adhesion Cell adhesion, cell-surface mediated signalling Transmembrane transport of molecules Cell-cell adhesion, transcriptional regulator

CD44

CD20 CD271 C-met CXCR4/CD184 Nodal activity Trop2 CD98 Keratin 5(K5) P63 BMI-1 OCT-4 OCT-3/4 Ep-CAM KIT/CD117 CD34 Side-population (Hoechst 33342 dye exclusion)

Maintenance of stem cell pluripotency Regulates stem cell identity and cell fate Cell adhesion, migration, signalling Cell signal transduction Regulation of cell adhesion Efflux of dye via ABC transporter

Although, in CSCs, the inherent features may reflect a transient state, which are regulated by tumour micro-environment rather than by intrinsic factors [47]. Cellular plasticity of CSCs allows the conversion of non-CSC to CSC and a phenotypically differentiated cell can de-differentiate to acquire the stem cell characteristics [20]. This plasticity of CSC compartment is often debatable. However, the de-differentiation of differentiated tumour cells into CSC exists and many studies supports this hypothesis and this bring closure to the clonal and CSCs model of cancer pathogenesis [48–51]. The number of circulating cancer cells in peripheral blood is correlated with cancer progression and patient prognosis [52]. Approximately 106 cancer cells are shed into the bloodstream per gram of tumour tissue per day, which is not reflected in the extent of distant metastasis [53]. This also indicates the metastatic inefficiency of the great bulk of cancer cells and reinforced the

Skin (melanoma) Skin (melanoma), head and neck Pancreas, Breast Lung, ovarian Pancreatic Prostate Head and neck Bladder, lung Bladder Bladder, skin, prostate, ovary, breast, colon Bladder, breast Liver, breast Colon, pancreas, liver Ovary Haematological Brain (glioma), gastrointestinal tract, liver, lung, thyroid

[150–152] [153–157] [158,159] [160,161] [162] [160,163] [160,164,165] [160,203] [160,166,167] [168] [169–172] [173] [174] [160,175] [176] [177] [171] [163,164] [160,180] [160,181] [171] [160,182] [160] [183] [184,185] [184,186] [184,204] [184,187] [188,189,205] [190] [191] [192–194] [195–199]

prevailing idea that there is only a small fraction of cells (specifically CSCs) present in a cancer which have the capacity to make a successful distant metastasis. It is worth mentioning that CSCs are the only cells capable of forming a metastasis following injection of cancer cells into the tail vein of mice, whereas non-CSCs are defined by their failure to form tumours in this circumstance [46,54]. More experimental evidence, however, is needed to determine the capacity for stemness, especially when considering the potential for non-CSCs to revert to a CSC state, depending on their microenvironment or following genetic alteration. Furthermore, current evidence suggests that CSCs capable of metastasising are themselves a subset of the entire CSC population that is endowed with a migratory ability [55]. This migratory subpopulation of CSCs can be detected using specific markers such as CD26, CXCR4 and CD44v6 or experimentally using lentiviral barcode tracing [35,56–58].

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

E X PE R IM EN TA L C ELL R E S EA RC H

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

CSCs and resistance to Cancer therapy Chemotherapy and radiotherapy have been the choice for treating cancer for the past 50 years and afford notable reductions in tumour burden. Nonetheless, despite the continuous improvements of therapeutic set-up, cancer recurrence and therapy resistance still occur in most patients. Studies from a multitude of observations in cell culture, animal models and cancer patients in different cancers have determined that CSCs are responsible for therapy resistance and tumour relapses [59–64]. Colak et al. reported that cultured CSCs in colon cancers were selectively resistant to chemotherapy induced apoptosis whereas differentiated colon cancer cells underwent the process of apoptotic cell death in response to such treatment [65]. This study has also found that the surviving CSCs can re-establish the culture, confirming that CSCs are responsible for therapy resistance [65]. Several studies have demonstrated that CSCs isolated from different cancers such as liver cancer, lung cancer, pancreatic cancer, breast cancer, leukaemia and glioblastoma were resistant to conventional chemotherapeutic drugs such as gemcitabine, cisplatin, 5-fluouracil and imatinib [66–71]. CSCs and their evasion from therapy were also demonstrated in animal models by different research groups. These studies have observed that xenotransplanted CSC numbers were remarkably increased in mice after exposure to chemotherapy compared to differentiated non-CSCs [68,72–74]. CSCs also confer resistance to radiotherapy in various cancers [63,75]. Bao et al. for instance described that irradiated mice with gliomas presented with increased numbers of CD133þ (CSCs) cells compared to those with non-irradiated tumours [76]. In addition, Diehn et al. reported that CSCs of breast cancer (Thy1þ CD24þ Lin- cell) and head & neck cancer (CD44þ Lin- cell) increased up to two fold after irradiation in comparison to non-irradiated mice [77]. Thus, it is evident that therapy resistance of CSCs is a generic or common feature and further research to uncover the delicate mechanisms involved in this phenomenon have significant potential in cancer research. Therefore, it is essential to develop novel treatment strategies in future targeting CSCs to overcome their resistance to chemo-radiation therapies.

] (]]]]) ]]]–]]]

5

Notch pathway by inhibitors or siRNA treatment increased the sensitivity to platinum based therapy [85]. The Hedgehog pathways transmit signals to embryonic cells required for appropriate development [86]. Hyper-activation of Hedgehog signalling pathways has been found in stem cells in various cancers including basal cell carcinoma, prostate adenocarcinoma, gastric adenocarcinoma, meduloblastoma, glioma, oral squamous cell carcinoma and ovarian adenocarcinomas [87–91]. Ma et al. reported that elevated expression of Hedgehog target genes such as glioma-associated oncogene homolog 1 (gli1) or human patched gene 1 occurred in gastric adenocarcinomas and was responsible for resistance in therapy. Treatment of these cancer cells with cyclopamine (a Hedgehog inhibitor) caused increased cell growth inhibition and apoptosis [88]. Also, Qiang and co-workers noted that CD133þ stem cell in glioblastoma overexpressed Hedgehog target genes like gli1 and Bmi1 and these cells have been shown to be more resistant to hypoxia, irradiation and chemotherapy than CD133- cells [87]. Wnt signalling is involved in a wide spectrum of important biological phenomena, ranging from embryonic development to cell behaviours in several diseases, especially cancers [92]. Aberrant Wnt signalling pathways have been found to be involved in pathogenesis in different cancers and their resistance to chemoradiation therapies [93–97]. Heidel and colleagues demonstrated that genetic inactivation or pharmacologic modulation of βcatenin (a target of Wnt pathway) remarkably increased the sensitivity of hematopoietic stem cells to a chemotherapy drugimatinib (a tyrosine kinase inhibitor) [96]. Similarly, Yeung et al., reported that intervention in the Wnt pathways (by β-catenin deletion) in mixed lineage leukaemia stem cells will make the leukaemia become non-oncogenic [98]. Also, this deletion makes the leukaemia highly sensitive to chemotherapy (glycogen synthase kinase-3 inhibitor) [98]. In addition, other pathways like PI3K/Akt/mTOR and JAK/STAT, also contribute to the therapy resistant properties of CSCs [78–81]. Thus, CSCs can be regulated by the modulation of different genetic pathways and this in turn contributes to the therapeutic resistance of CSCs.

Approaches in targeting CSCs Signalling pathways involved in therapy resistance of CSC Activation of different signalling pathways such as Notch, Wnt/βcatenin, TGF-β and Hedgehog has been reported in the attribution of therapy resistance of CSCs during or after treatment [78–82]. Many studies have demonstrated that chemical intervention or downregulation of these signalling pathways increased the therapy sensitivity of CSCs in various cancers [83–85]. Ulasov et al. reported that CD133þ glioblastoma stem cells increase the expression of the genes involved in Notch and Hedgehog pathways, making the glioblastoma insensitive to chemotherapy (temozolomide) [83]. Also, inhibition of components of theses pathways with gamma-secretase inhibitors and cyclopamine, respectively, increased the sensitivity of CSCs to the treatment [83]. In addition, treatment of non-small cell lung cancer stem cells (CD133þ cell) with gamma-secretase inhibitors or Notch1 shRNA increased their sensitivity against doxorubicin and paclitaxel [84]. Similarly, in ovarian cancer, down regulation of the

In addition to intervention of signalling pathways, CSCs can be eliminated by targeting specific cell surface molecules. Using this approach, targeting of CSCs can be achieved by blocking their interactions with the tumour microenvironment, inducing them to become terminally differentiated cells, killing them selectively with immunotherapy or targeting CSCs metabolism directly. As CSCs can be identified on the basis of their cell surface molecules, developing specific antibodies/immunotoxins against these antigens will be a useful way to eradicate CSCs selectively [99–104]. Swaminathan and colleagues developed polymeric nanoparticles (CD133NPs) consisting of a monoclonal antibody against CD133, paclitaxel (a conventional chemo-agent) and a fluorescence probe [99]. They investigated the effectiveness of CD133NPs as anti-CSCs agents by examining mammosphere formation and soft-agar colony formation as well as in a xenograft model [99]. Treatment of cells (Caco-2, which express abundant of CD133) with CD133NPs showed remarkable reduction in the ability of mammosphere and colony formation compared to the untreated control or paclitaxel-only treated cells. Also, in vivo tumour

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

6

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

E XP E RI ME N TAL CE L L R ES E ARC H

growth was reduced significantly in the CD133NP treated animal groups [99]. Similarly, Yao and colleagues established a drug delivery system (SAL-SWNT-CHI-HA) having salinomycin (SAL, a chemo-agent) and chitosan (CHI, a linear polysaccharide to help in drug delivery) coated single wall carbon nanotubes (SWNT) conjugated with hyaluronic acid (HA, for drug delivery) [102]. Treatment of gastric cancer cells with this complex selectively eradicated gastric CSCs (CD44þ cells) and decreased mammosphere and colony formation of such cells [102]. Another complex (ctd-Mab), developed by Damek-Poprawa et al. (containing genetically modified cyto-lethal distending toxin [ctd] and monoclonal antibody against CD133 [-Mab]) selectively killed CD133þ cells in cultured primary head and neck cancer cells [100]. Another study by Bach et al. reported the selective elimination of CD133þ cells from tumour of NOD/SCID mice with treatment using an oncolytic measles virus [101]. Heterogeneous signals from fibroblasts, myofibroblasts, adipocytes, mesenchymal cells, infiltrating immune cells and endothelial cells of tumour microenvironments nurture cancer stem cells [105,106]. Pharmacological interruptions of these paracrine signalling systems thus have therapeutic potential to eradicate CSCs in the tumour bulk. Ma and colleagues reported that the blocking of stroma-derived signals using a prostaglandin E2 receptor antagonist (RQ-15986) in breast cancer cells resulted in complete protection from the immunosuppressive effects of the tumour microenvironment [107]. They also found that such treatment reversed the tumour-promoting effects of mesenchymal stem cells on carcinoma cells [107]. Lin and his colleagues have demonstrated that the blocking of immune cell activated interleukin-6/STAT3 signalling pathways can inhibit the self-renewal and proliferation of CSCs [108]. Similarly, the inhibition of CXCL12/CXCR4 (chemokine and its receptor) autocrine/paracrine signalling using a CXCR4 antagonist (AMD3100) reduced the CSCs of glioblastoma [109]. Thus therapeutic approaches to disrupt

] (]]]]) ]]]–]]]

stromal signals can target CSCs and might in turn improve the clinical outcomes of cancer management. Induced differentiation of CSCs to shift them into terminal epithelial phenotypic cells is an emerging strategy in making CSCs sensitive to conventional therapies. An all-trans retinoic acid was combined with conventional chemotherapy and used to treat patients with acute promyelocytic leukaemia, with successful induction of differentiation [110,111]. Recent studies have demonstrated that induction of differentiation of hepatic carcinoma stem cells by down-regulation of BC047440 (a gene involved in cancer growth and proliferation) suppressed the tumorigenic potential of hepatic carcinoma stem cells both in vivo and in vitro [112,113]. Also, Zieker and co-workers reported the induced differentiation of gastric carcinoma stem cells (CD44þ cells) by knocking-down phosphoglycerate kinase 1 (a metabolic enzyme responsible for cancer cell invasion and dissemination) using shRNA. They noted reduced tumour growth in culture and mice after this phenotypic change of CSCs [114]. In addition, Dong et al., described the differentiation of glioblastoma stem cells by blocking platelet derived growth factor receptor and c-kit (a stem cell factor) with imatinib and also with siRNAs for c-kit and platelet derived growth factor receptor. They found that cells treated with imatinib and siRNA showed reduced expression of stem cell markers (CD133, Oct3/4, nestin and Bmi1) and increased expression of terminal neuronal markers at the mRNA level [115]. Other compounds used as differentiating agents in different cancer include hexamethylamine bisacetamide, dimethylsulphoxide and suberoylanilide hydroxamic acid, among others [116–120]. CSCs can also be eliminated selectively by developing immunotherapies based on tumour specific and CSCs associated antigens in cancer [121–125]. Vik-Mo and colleagues reported a vaccination against autologous cancer stem cells with dendritic cells in glioblastoma cancer patients. They noted a three-fold increase of cancer free survival of vaccinated patients in com-

Table 3 – Therapeutic strategies targeting cancer stem cells. Therapeutic approach

Potential Targets

Possible Outcome

References

Signalling pathways Cell-surface molecules Microenvironment

Notch1, Wnt, Hedgehog, TGF-β, PI3K/Akt/mTOR and JAK/ STAT etc. CD44, CD133, Lrg5, CD26, CD271, CD90 EpCAM etc.

Inhibits cell proliferation and increases the sensitivity of CSCs against therapies Selectively eliminate or killed the CSCs

[83– 85,87,96] [99–104]

Cytokine network, stroma cells, immune cells, extracellular matrix, etc. Autologous CSC

Interruption of stromal signals could help to eliminate the CSCs as well as tumour bulk Selective eradication of CSCs by modified host immune response Inhibit the switching of stem cell like properties of cancer cells and prevent CSC generation Make the CSCs more sensitive to conventional therapies and killed them completely Induce CSCs to differentiated cells and make them more sensitive to conventional therapies Increased sensitivity to chemotherapies Inhibit cell proliferation and self-renewal

[107–109]

Direct immunotherapy Preventing EMT

Differentiation Metabolic pathways Side-population Intracellular molecules Preventing DNA repair Increasing apoptosis of CSCs

Signalling pathways and molecules involved in, epithelial to mesenchymal transition such as TGF- β, BMI-1 etc. Switching on metabolic pathways associated with cell maturation Metabolic enzymes and regulators like AMP-kinase Drug transporters Transcription factors, intracellular enzymes such as ALDH Enzymes and proteins involve in DNA repair Proteins regulate apoptosis

Increased apoptosis and inhibit cell proliferation Increased apoptosis

[121–125] [200–202]

[112–115] [126–132] [195–199] [39–41] [32,206] [32,207,208]

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

E X PE R IM EN TA L C ELL R E S EA RC H

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

pared to the matched control group [121]. Similarly, Gammaitoni and co-workers investigated the melanoma CSC killing efficiency of cytokine induced killer cells and noted a remarkable increase in the killing of CSCs (up to 71% killing of CSCs) [122]. These cytokine induce killer cells also inhibited tumour growth and lymphatic infiltration of autologous melanoma in mice [122]. Another study by Nishio et al., demonstrated that Zoledronate (a mevalonate pathway inhibitor) sensitised neuroblastoma stem cells to cytolysis by γδ T-cells (a subpopulation of T-cells that recognise and kill target cells) [123]. This study also observed that Zoledronate activated γδT-cells inhibit in vitro colony formation and in vivo neuroblastoma outgrowth in an animal model [123]. Therefore, development of immunotherapy targeting CSC specific tumour antigens might have great potential for clinical improvements in cancer management. Despite the immense development of cancer molecular biology understanding in recent years, cancer metabolism and especially CSC metabolism remains poorly understood. According to the observation of the Warburg effect (high energy production of cancer cells using lactic acid fermentation), cancer cell generate their ATP through aerobic glycolysis rather than oxidative phosphorylation, even in the presence of non-hypoxic conditions [126]. Several studies revealed that changes/mutations in the metabolic pathways as well as the metabolites produced in cancer cells can make them resistant to cancer therapy [127–132]. Thus research to unveil the details of the metabolic changes in CSCs and possible pharmacological approaches targeting those abnormalities will further open the horizons of cancer research. Other approaches such as blocking the DNA repair capacity of CSCs, promoting apoptosis and targeting anti-apoptotic properties of CSCs, has the therapeutic potential and could be effectively sensitize CSCs to the existing therapies. Table 3 presents a summary of approaches to eradicate CSCs selectively from cancers.

Conclusion Q3 Identification and isolation of CSCs are important for the transla-

tional work in cancer research. CSCs are fundamental in giving rise to cancer metastases and thus cancer recurrence. They also directly contribute to resistance to current modes of cancer therapy. From a clinical standpoint, novel clinical trials that examine the efficacies of treatment and target of CSCs are of prime importance. Understanding the mechanisms of CSCs in cancer pathogenesis and targeting treatment to CSCs will ultimately improve survival and quality of life of patients with cancer.

Q2

Uncited references [178,179].

Acknowledgments Q4 The authors would like to thank Griffith University (Visiting

Fellowship and Higher Degree Research scholarship) and National Natural Science Foundation of China (Grant no. 81200796) for funding support for this manuscript.

] (]]]]) ]]]–]]]

7

references [1] M.R. Alison, W.R. Lin, S.M. Lim, L.J. Nicholson, Cancer stem cells: in the line of fire, Cancer Treat Rev. 38 (2012) 589–598. [2] C. Li, D.G. Heidt, P. Dalerba, C.F. Burant, L. Zhang, V. Adsay, M. Wicha, M.F. Clarke, D.M. Simeone, Identification of pancreatic cancer stem cells, Cancer Res. 67 (2007) 1030–1037. [3] C. Zhao, A. Chen, C.H. Jamieson, M. Fereshteh, A. Abrahamsson, J. Blum, H.Y. Kwon, J. Kim, J.P. Chute, D. Rizzieri, M. Munchhof, T. VanArsdale, P.A. Beachy, T. Reya, Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia, Nature 458 (2009) 776–779. [4] L. Vermeulen, F. de Sousa e Melo, D.J. Richel, J.P. Medema, The developing cancer stem-cell model: clinical challenges and opportunities, Lancet Oncol. 13 (2012) e83–e89. [5] B.K. Garvalov, T. Acker, Cancer stem cells: a new framework for the design of tumor therapies, J. Mol. Med. (Berl) 89 (2011) 95–107. [6] M.S. Wicha, S. Liu, G. Dontu, Cancer stem cells: an old idea-a paradigm shift, Cancer Res. 66 (2006) 1883–1890. [7] M. Shackleton, Normal stem cells and cancer stem cells: similar and different, Semin. Cancer Biol. 20 (2010) 85–92. [8] H. Lou, M. Dean, Targeted therapy for cancer stem cells: the patched pathway and ABC transporters, Oncogene 26 (2007) 1357–1360. [9] A.B. Mak, K.M. Blakely, R.A. Williams, P.A. Penttilä, A.I. Shukalyuk, K.T. Osman, D. Kasimer, T. Ketela, J. Moffat, CD133 protein Nglycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope, J. Biol. Chem. 286 (2011) 41046–41056. [10] N.N. Waldron, D.S. Kaufman, S. Oh, Z. Inde, M.K. Hexum, J.R. Ohlfest, D.A. Vallera, Targeting tumor-initiating cancer cells with dCD133KDEL shows impressive tumor reductions in a xenotransplant model of human head and neck cancer, Mol. Cancer Ther. 10 (2011) 1829–1838. [11] L.L. Campbell, K. Polyak, Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6 (2007) 2332–2338. [12] P.C. Nowell, The clonal evolution of tumor cell populations, Science 194 (1976) 23–28. [13] G.H. Heppner, F.R. Miller, The cellular basis of tumor progression, Int. Rev. Cytol. 177 (1998) 1–56. [14] L.M. Merlo, J.W. Pepper, B.J. Reid, C.C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer 6 (2006) 924–935. [15] B. Crespi, K. Summers, Evolutionary biology of cancer, Trends Ecol. Evol. 20 (2005) 545–552. [16] B.B. Tysnes, R. Bjerkvig, Cancer initiation and progression: involvement of stem cells and the microenvironment, Biochim. Biophys. Acta 1775 (2007) 283–297. [17] M.L. O'Connor, D. Xiang, S. Shigdar, J. Macdonald, Y. Li, T. Wang, C. Pu, Z. Wang, L. Qiao, W. Duan, Cancer stem cells: a contentious hypothesis now moving forward, Cancer Lett. 344 (2014) 180– 187. [18] T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells, Nature 414 (2001) 105–111. [19] M. Al-Hajj, M.F. Clarke, Self-renewal and solid tumor stem cells, Oncogene 23 (2004) 7274–7282. [20] F. Islam, B. Qiao, R.A. Smith, V. Gopalan, A.K. Lam, Cancer stem cell: fundamental experimental pathological concepts and updates, Exp. Mol. Pathol. 98 (2015) 184–191. [21] E.S. Lianidou, A. Markou, Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges, Clin. Chem. 57 (2011) 1242–1255. [22] V. Tirino, V. Desiderio, F. Paino, A. De Rosa, F. Papaccio, M. La Noce, L. Laino, F. De Francesco, G. Papaccio, Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization, FASEB J. 27 (2013) 13–24.

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

8

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

E XP E RI ME N TAL CE L L R ES E ARC H

[23] A.N. Milne, F. Carneiro, C. O'Morain, G.J. Offerhaus, Nature meets nurture: molecular genetics of gastric cancer, Hum. Genet. 126 (2009) 615–628. [24] M. Podberezin, J. Wen, C.C. Chang, Cancer stem cells: a review of potential clinical applications, Arch. Pathol. Lab Med. 137 (2013) 1111–1116. [25] N.A. Kentrou, N.J. Tsagarakis, K. Tzanetou, M. Damala, K.A. Papadimitriou, D. Skoumi, A. Stratigaki, N.I. Anagnostopoulos, E. Malamou-Lada, P. Athanassiadou, G. Paterakis, An improved flow cytometric assay for detection and discrimination between malignant cells and atypical mesothelial cells, in serous cavity effusions, Cytometry B Clin. Cytom. 80 (2011) 324–334. [26] B. Greve, C. Beller, U. Cassens, W. Sibrowski, W. Göhde, The impact of erythrocyte lysing procedures on the recovery of hematopoietic progenitor cells in flow cytometric analysis, Stem Cells 24 (2006) 793–799. [27] A. Stathopoulou, A. Gizi, M. Perraki, S. Apostolaki, N. Malamos, D. Mavroudis, V. Georgoulias, E.S. Lianidou, Real-time quantification of CK-19 mRNA-positive cells in peripheral blood of breast cancer patients using the lightcycler system, Clin. Cancer Res. 9 (2003) 5145–5151. [28] A. Stathopoulou, M. Ntoulia, M. Perraki, S. Apostolaki, D. Mavroudis, N. Malamos, V. Georgoulias, E.S. Lianidou, A highly specific real-time RT-PCR method for the quantitative determination of CK-19 mRNA positive cells in peripheral blood of patients with operable breast cancer, Int. J. Cancer 119 (2006) 1654–1659. [29] E. Obermayr, F. Sanchez-Cabo, M.K. Tea, C.F. Singer, M. Krainer, M.B. Fischer, J. Sehouli, A. Reinthaller, R. Horvat, G. Heinze, D. Tong, R. Zeillinger, Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients, BMC Cancer 10 (2010) 666. [30] B. Aktas, M. Tewes, T. Fehm, S. Hauch, R. Kimmig, S. KasimirBauer, Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients, Breast Cancer Res. 11 (2009) R46. [31] A.M. Sieuwerts, J. Kraan, J. Bolt-de Vries, P. van der Spoel, B. Mostert, J.W. Martens, J.W. Gratama, S. Sleijfer, J.A. Foekens, Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR, Breast Cancer Res. Treat 118 (2009) 455–468. [32] L. Fulawka, P. Donizy, A. Halon, Cancer stem cells – the current status of an old concept: literature review and clinical approaches, Biol. Res. 47 (2014) 66. [33] S.K. Singh, I.D. Clarke, M. Terasaki, V.E. Bonn, C. Hawkins, J. Squire, P.B. Dirks, Identification of a cancer stem cell in human brain tumors, Cancer Res. 63 (2003) 5821–5828. [34] A. Eramo, F. Lotti, G. Sette, E. Pilozzi, M. Biffoni, A. Di Virgilio, C. Conticello, L. Ruco, C. Peschle, R. De Maria, Identification and expansion of the tumorigenic lung cancer stem cell population, Cell Death Differ 15 (2007) 504–514. [35] P.C. Hermann, S.L. Huber, T. Herrler, A. Aicher, J.W. Ellwart, M. Guba, C.J. Bruns, C. Heeschen, Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer, Cell Stem Cell 1 (2007) 313–323. [36] A.T. Collins, P.A. Berry, C. Hyde, M.J. Stower, N.J. Maitland, Prospective identification of tumorigenic prostate cancer stem cells, Cancer Res. 65 (2005) 10946–10951. [37] A.M. Cheung, T.S. Wan, J.C. Leung, L.Y. Chan, H. Huang, Y.L. Kwong, R. Liang, A.Y. Leung, Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/ SCID engrafting potential, Leukemia 21 (2007) 1423–1430. [38] C. Ginestier, M.H. Hur, E. Charafe-Jauffret, F. Monville, J. Dutcher, M. Brown, J. Jacquemier, P. Viens, C.G. Kleer, S. Liu, A. Schott, D. Hayes, D. Birnbaum, M.S. Wicha, G. Dontu, ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome, Cell Stem Cell 1 (2007) 555–567.

] (]]]]) ]]]–]]]

[39] J.E. Carpentino, M.J. Hynes, H.D. Appelman, T. Zheng, D.A. Steindler, E.W. Scott, E.H. Huang, Aldehyde dehydrogenaseexpressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer, Cancer Res. 69 (2009) 8208– 8215. [40] S. Ma, K.W. Chan, T.K. Lee, K.H. Tang, J.Y. Wo, B.J. Zheng, X.Y. Guan, Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations, Mol. Cancer Res. 6 (2008) 1146– 1153. [41] F. Jiang, Q. Qiu, A. Khanna, N.W. Todd, J. Deepak, L. Xing, H. Wang, Z. Liu, Y. Su, S.A. Stass, R.L. Katz, Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer, Mol. Cancer Res. 7 (2009) 330–338. [42] Z.A. Rasheed, J. Yang, Q. Wang, J. Kowalski, I. Freed, C. Murter, S. M. Hong, J.B. Koorstra, N.V. Rajeshkumar, X. He, M. Goggins, C. Iacobuzio-Donahue, D.M. Berman, D. Laheru, A. Jimeno, M. Hidalgo, A. Maitra, W. Matsui, Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma, J. Natl. Cancer Inst. 102 (2010) 340–351. [43] R. Li, X. Wu, H. Wei, S. Tian, Characterization of side population cells isolated from the gastric cancer cell line SGC-7901, Oncol. Lett 5 (2013) 877–883. [44] X.X. Li, Y. Dong, W. Wang, H.L. Wang, Y.Y. Chen, G.Y. Shi, J. Yi, J. Wang, Emodin as an effective agent in targeting cancer stem-like side population cells of gallbladder carcinoma, Stem Cells Dev. 22 (2013) 554–566. [45] S. Paget, The distribution of growth in cancer of the breast, Lancet 1 (1889) 571–573. [46] C. Southam, A. Brunschwig, Quantitative studies of autotransplantation of human cancer, Cancer 14 (1961) 461–463. [47] L. Vermeulen, M.R. Sprick, K. Kemper, G. Stassi, J.P. Medema, Cancer stem cells-old concepts, new insights, Cell Death Differ 15 (2008) 947–958. [48] B.E. Petersen, W.C. Bowen, K.D. Patrene, W.M. Mars, A.K. Sullivan, N. Murase, S.S. Boggs, J.S. Greenberger, J.P. Goff, Bone marrow as a potential source of hepatic oval cells, Science 284 (1999) 1168– 1170. [49] C.R. Bjornson, R.L. Rietze, B.A. Reynolds, M.C. Magli, A.L. Vescovi, Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo, Science 283 (1999) 534–537. [50] H.M. Blau, T.R. Brazelton, J.M. Weimann, The evolving concept of a stem cell: entity or function?, Cell 105 (2001) 829–841. [51] D. Zipori, The nature of stem cells: state rather than entity, Nat. Rev. Genet. 5 (2004) 873–878. [52] S. Mocellin, U. Keilholz, C.R. Rossi, D. Nitti, Circulating tumor cells: the ‘leukemic phase’ of solid cancers, Trends Mol. Med. 12 (2006) 130–139. [53] Y.S. Chang, T.E. di, D.M. McDonald, R. Jones, R.K. Jain, L.L. Munn, Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood, Proc. Natl. Acad. Sci. USA 97 (2000) 14608–14613. [54] I. Malanchi, A. Santamaria-Martinez, E. Susanto, H. Peng, H.A. Lehr, J.F. Delaloye, J. Huelsken, Interactions between cancer stem cells and their niche govern metastatic colonization, Nature 481 (2012) 85–89. [55] T. Brabletz, A. Jung, S. Spaderna, F. Hlubek, T. Kirchner, Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression, Nat. Rev. Cancer 5 (2005) 744–749. [56] S.S. Zhang, Z.P. Han, Y.Y. Jing, S.F. Tao, T.J. Li, H. Wang, Y. Wang, R. Li, Y. Yang, X. Zhao, X.D. Xu, E.D. Yu, Y.C. Rui, H.J. Liu, L. Zhang, L.X. Wei, CD133(þ)CXCR4(þ) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients, BMC Med. 10 (2012) 85. [57] R. Pang, W.L. Law, A.C. Chu, J.T. Poon, C.S. Lam, A.K. Chow, L. Ng, L. W. Cheung, X.R. Lan, H.Y. Lan, V.P. Tan, T.C. Yau, R.T. Poon, B.C. Wong, A subpopulation of CD26þ cancer stem cells with metastatic capacity in human colorectal cancer, Cell Stem Cell 6 (2010) 603–615.

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

E X PE R IM EN TA L C ELL R E S EA RC H

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

[58] S.M. Dieter, C.R. Ball, C.M. Hoffmann, A. Nowrouzi, F. Herbst, O. Zavidij, U. Abel, A. Arens, W. Weichert, K. Brand, M. Koch, J. Weitz, M. Schmidt, C. von Kalle, H. Glimm, Distinct types of tumor-initiating cells form human colon cancer tumors and metastases, Cell Stem Cell 9 (2011) 357–365. [59] S. Colak, J.P. Medema, Cancer stem cells–important players in tumor therapy resistance, FEBS J. 281 (2014) 4779–4791. [60] M. Cojoc, K. Mäbert, M.H. Muders, A. Dubrovska, A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms pii: S1044-579X, Semin. Cancer Biol. (14) (2014) 00079 0. [61] M.E. Ciurea, A.M. Georgescu, S.O. Purcaru, S.A. Artene, G.H. Emami, M.V. Boldeanu, D.E. Tache, A. Dricu, Cancer stem cells: biological functions and therapeutically targeting, Int. J. Mol. Sci. 15 (2014) 8169–8185. [62] J. Wang, Z.H. Li, J. White, L.B. Zhang, Lung cancer stem cells and implications for future therapeutics, Cell Biochem. Biophys. 69 (2014) 389–398. [63] K. Rycaj, D.G. Tang, Cancer stem cells and radioresistance, Int. J. Radiat. Biol. 90 (2014) 615–621. [64] E. Paldino, V. Tesori, P. Casalbore, A. Gasbarrini, M.A. Puglisi, Tumor initiating cells and chemoresistance: which is the best strategy to target colon cancer stem cells?, Biomed. Res. Int. 2014 (2014) 859871. [65] S. Colak, C.D. Zimberlin, E. Fessler, L. Hogdal, P.R. Prasetyanti, C.M. Grandela, A. Letai, J.P. Medema, Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells, Cell Death Differ 21 (2014) 1170–1177. [66] S. Ma, T.K. Lee, B.J. Zheng, K.W. Chan, X.Y. Guan, CD133þ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway, Oncogene 27 (2008) 1749–1758. [67] G. Bertolini, L. Roz, P. Perego, M. Tortoreto, E. Fontanella, L. Gatti, G. Pratesi, A. Fabbri, F. Andriani, S. Tinelli, E. Roz, R. Caserini, S. Lo Vullo, T. Camerini, L. Mariani, D. Delia, E. Calabrò, U. Pastorino, G. Sozzi, Highly tumorigenic lung cancer CD133þ cells display stem-like features and are spared by cisplatin treatment, Proc. Natl. Acad. Sci. USA 106 (2009) 16281–16286. [68] M.P. Kim, J.B. Fleming, H. Wang, J.L. Abbruzzese, W. Choi, S. Kopetz, D.J. McConkey, D.B. Evans, G.E. Gallick, ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma, PLoS One 6 (2011) e20636. [69] C. Ginestier, S. Liu, M.E. Diebel, H. Korkaya, M. Luo, M. Brown, J. Wicinski, O. Cabaud, E. Charafe-Jauffret, D. Birnbaum, J.L. Guan, G. Dontu, M.S. Wicha, CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts, J. Clin. Invest. 120 (2010) 485–497. [70] T. O'Hare, A.S. Corbin, B.J. Druker, Targeted CML therapy: controlling drug resistance, seeking cure, Curr. Opin. Genet. Dev. 16 (2006) 92–99. [71] K.I. Oravecz-Wilson, S.T. Philips, O.H. Yilmaz, H.M. Ames, L. Li, B. D. Crawford, A.M. Gauvin, P.C. Lucas, K. Sitwala, J.R. Downing, S.J. Morrison, T.S. Ross, Persistence of leukemia-initiating cells in a conditional knockin model of an imatinib-responsive myeloproliferative disorder, Cancer Cell 16 (2009) 137–148. [72] M. Todaro, M.P. Alea, A.B. Di Stefano, P. Cammareri, L. Vermeulen, F. Iovino, C. Tripodo, A. Russo, G. Gulotta, J.P. Medema, G. Stassi, Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4, Cell Stem Cell 1 (2007) 389–402. [73] S.J. Dylla, L. Beviglia, I.K. Park, C. Chartier, J. Raval, L. Ngan, K. Pickell, J. Aguilar, S. Lazetic, S. Smith-Berdan, M.F. Clarke, T. Hoey, J. Lewicki, A.L. Gurney, Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy, PLoS One 3 (2008) e2428. [74] F. Ishikawa, S. Yoshida, Y. Saito, A. Hijikata, H. Kitamura, S. Tanaka, R. Nakamura, T. Tanaka, H. Tomiyama, N. Saito, M. Fukata,

[75] [76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

] (]]]]) ]]]–]]]

9

T. Miyamoto, B. Lyons, K. Ohshima, N. Uchida, S. Taniguchi, O. Ohara, K. Akashi, M. Harada, L.D. Shultz, Chemotherapy-resistant human AML stem cells home to and engraft within the bonemarrow endosteal region, Nat. Biotechnol. 25 (2007) 1315–1321. M. Baumann, M. Krause, R. Hill, Exploring the role of cancer stem cells in radioresistance, Nat. Rev. Cancer 8 (2008) 545–554. S. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M. W. Dewhirst, D.D. Bigner, J.N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature 444 (2006) 756–760. M. Diehn, R.W. Cho, N.A. Lobo, T. Kalisky, M.J. Dorie, A.N. Kulp, D. Qian, J.S. Lam, L.E. Ailles, M. Wong, B. Joshua, M.J. Kaplan, I. Wapnir, F.M. Dirbas, G. Somlo, C. Garberoglio, B. Paz, J. Shen, S.K. Lau, S.R. Quake, J.M. Brown, I.L. Weissman, M.F. Clarke, Association of reactive oxygen species levels and radioresistance in cancer stem cells, Nature 458 (2009) 780–783. J. Zhou, J. Wulfkuhle, H. Zhang, P. Gu, Y. Yang, J. Deng, J.B. Margolick, L.A. Liotta, E. Petricoin 3rd, Y. Zhang, Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance, Proc. Natl. Acad. Sci. USA 104 (2007) 16158–16163. O. Hardt, S. Wild, I. Oerlecke, K. Hofmann, S. Luo, Y. Wiencek, E. Kantelhardt, C. Vess, G.P. Smith, G.P. Schroth, A. Bosio, J. Dittmer, Highly sensitive profiling of CD44þ/CD24- breast cancer stem cells by combining global mRNA amplification and next generation sequencing: evidence for a hyperactive PI3K pathway, Cancer Lett. 325 (2012) 165–174. K. Berns, H.M. Horlings, B.T. Hennessy, M. Madiredjo, E.M. Hijmans, K. Beelen, S.C. Linn, A.M. Gonzalez-Angulo, K. StemkeHale, M. Hauptmann, R.L. Beijersbergen, G.B. Mills, M.J. van de Vijver, R. Bernards, A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer, Cancer Cell 12 (2007) 395–402. L.L. Marotta, V. Almendro, A. Marusyk, M. Shipitsin, J. Schemme, S.R. Walker, N. Bloushtain-Qimron, J.J. Kim, S.A. Choudhury, R. Maruyama, Z. Wu, M. Gönen, L.A. Mulvey, M.O. Bessarabova, S.J. Huh, S.J. Silver, S.Y. Kim, S.Y. Park, H.E. Lee, K.S. Anderson, A.L. Richardson, T. Nikolskaya, Y. Nikolsky, X.S. Liu, D.E. Root, W.C. Hahn, D.A. Frank, K. Polyak, The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24- stem cell-like breast cancer cells in human tumors, J. Clin. Invest. 121 (2011) 2723–2735. C. Peitzsch, I. Kurth, L. Kunz-Schughart, M. Baumann, A. Dubrovska, Discovery of the cancer stem cell related determinants of radio resistance, Radiother. Oncol. 108 (2013) 378–387. I.V. Ulasov, S. Nandi, M. Dey, A.M. Sonabend, M.S. Lesniak, Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(þ) glioma stem cells to temozolomide therapy, Mol. Med. 17 (2011) 103–112. Y.P. Liu, C.J. Yang, M.S. Huang, C.T. Yeh, A.T. Wu, Y.C. Lee, T.C. Lai, C.H. Lee, Y.W. Hsiao, J. Lu, C.N. Shen, P.J. Lu, M. Hsiao, Cisplatin selects for multidrug-resistant CD133þ cells in lung adenocarcinoma by activating Notch signaling, Cancer Res. 73 (2013) 406–416. S.M. McAuliffe, S.L. Morgan, G.A. Wyant, L.T. Tran, K.W. Muto, Y.S. Chen, K.T. Chin, J.C. Partridge, B.B. Poole, K.H. Cheng, J. Daggett Jr, K. Cullen, E. Kantoff, K. Hasselbatt, J. Berkowitz, M.G. Muto, R.S. Berkowitz, J.C. Aster, U.A. Matulonis, D.M. Dinulescu, Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy, Proc. Natl. Acad. Sci. USA 109 (2012) E2939–E2948. J. Mohler, Requirements for hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila, Genetics 120 (1988) 1061–1072. L. Qiang, Y. Yang, Y.J. Ma, F.H. Chen, L.B. Zhang, W. Liu, Q. Qi, N. Lu, L. Tao, X.T. Wang, Q.D. You, Q.L. Guo, Isolation and characterization of cancer stem like cells in human glioblastoma cell lines, Cancer Lett. 279 (2009) 13–21. X. Ma, K. Chen, S. Huang, X. Zhang, P.A. Adegboyega, B.M. Evers, H. Zhang, J. Xie, Frequent activation of the hedgehog pathway in

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

10

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

E XP E RI ME N TAL CE L L R ES E ARC H

advanced gastric adenocarcinomas, Carcinogenesis 26 (2005) 1698–1705. [89] M.D. Taylor, L. Liu, C. Raffel, C.C. Hui, T.G. Mainprize, X. Zhang, R. Agatep, S. Chiappa, L. Gao, A. Lowrance, A. Hao, A.M. Goldstein, T. Stavrou, S.W. Scherer, W.T. Dura, B. Wainwright, J.A. Squire, J.T. Rutka, D. Hogg, Mutations in SUFU predispose to medulloblastoma, Nat. Genet. 31 (2002) 306–310. [90] N. Dahmane, J. Lee, P. Robins, P. Heller, A. Ruiz i Altaba, Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours, Nature 389 (1997) 876–881. [91] A. Ruiz i Altaba, P. Sánchez, N. Dahmane, Gli and hedgehog in cancer: tumours, embryos and stem cells, Nat. Rev. Cancer 2 (2002) 361–372. [92] R. Nusse, H. Varmus, Three decades of Wnts: a personal perspective on how a scientific field developed, EMBO J. 31 (2012) 2670–2684. [93] L. Vermeulen, E. De Sousa, F. Melo, M. van der Heijden, K. Cameron, J.H. de Jong, T. Borovski, J.B. Tuynman, M. Todaro, C. Merz, H. Rodermond, M.R. Sprick, K. Kemper, D.J. Richel, G. Stassi, J.P. Medema, Wnt activity defines colon cancer stem cells and is regulated by the microenvironment, Nat. Cell Biol. 12 (2010) 468–476. [94] P. Polakis, Wnt signaling in cancer, Cold Spring Harb. Perspect Biol. (2012) 4 pii: a008052. [95] R. Pardal, M.F. Clarke, S.J. Morrison, Applying the principles of stem-cell biology to cancer, Nat. Rev. Cancer 3 (2003) 895–902. [96] F.H. Heidel, L. Bullinger, Z. Feng, Z. Wang, T.A. Neff, L. Stein, D. Kalaitzidis, S.W. Lane, S.A. Armstrong, Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML, Cell Stem Cell 10 (2012) 412–424. [97] Y. Wang, A.V. Krivtsov, A.U. Sinha, T.E. North, W. Goessling, Z. Feng, L.I. Zon, S.A. Armstrong, The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML, Science 327 (2010) 1650–1653. [98] J. Yeung, M.T. Esposito, A. Gandillet, B.B. Zeisig, E. Griessinger, D. Bonnet, C.W. So, β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells, Cancer Cell 18 (2010) 606–618. [99] S.K. Swaminathan, E. Roger, U. Toti, L. Niu, J.R. Ohlfest, J. Panyam, CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer, J. Control Release 171 (2013) 280–287. [100] M. Damek-Poprawa, A. Volgina, J. Korostoff, T.P. Sollecito, M.S. Brose, B.W. O'Malley Jr, S.O. Akintoye, J.M. DiRienzo, Targeted inhibition of CD133þ cells in oral cancer cell lines, J. Dent. Res. 90 (2011) 638–645. [101] P. Bach, T. Abel, C. Hoffmann, Z. Gal, G. Braun, I. Voelker, C.R. Ball, I.C. Johnston, U.M. Lauer, C. Herold-Mende, M.D. Mühlebach, H. Glimm, C.J. Buchholz, Specific elimination of CD133þ tumor cells with targeted oncolytic measles virus, Cancer Res. 73 (2013) 865–874. [102] H.J. Yao, Y.G. Zhang, L. Sun, Y. Liu, The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells, Biomaterials 35 (2014) 9208–9223. [103] N.N. Waldron, S.H. Barsky, P.R. Dougherty, D.A. Vallera, A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma, Target Oncol. 9 (2014) 239–249. [104] Y. Song, Z. Zhu, Y. An, W. Zhang, H. Zhang, D. Liu, C. Yu, W. Duan, C.J. Yang, Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture, Anal. Chem. 85 (2013) 4141–4149. [105] M.M. Mueller, N.E. Fusenig, Friends or foes – bipolar effects of the tumour stroma in cancer, Nat. Rev. Cancer 4 (2004) 839– 849. [106] D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell 21 (2012) 309–322. [107] X. Ma, D. Holt, N. Kundu, J. Reader, O. Goloubeva, Y. Take, A.M. Fulton, A prostaglandin E (PGE) receptor EP4 antagonist

[108]

[109]

[110] [111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

] (]]]]) ]]]–]]]

protects natural killer cells from PGE(2)-mediated immunosuppression and inhibits breast cancer metastasis, Oncoimmunology 2 (2013) e22647. L. Lin, R. Amin, G.I. Gallicano, E. Glasgow, W. Jogunoori, J.M. Jessup, M. Zasloff, J.L. Marshall, K. Shetty, L. Johnson, L. Mishra, A.R. He, The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling, Oncogene 28 (2009) 961–972. M. Gatti, A. Pattarozzi, A. Bajetto, R. Würth, A. Daga, P. Fiaschi, G. Zona, T. Florio, F. Barbieri, Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity, Toxicology 314 (2013) 209–220. R.P. Warrell, H.J. The de, Z.Y. Wang, L. Degos, Acute promyelocytic leukaemia, N. Engl. J. Med. 3 (1993) 177–189. D. Nowak, D. Stewart, H.P. Koeffler, Differentiation therapy of leukemia: 3 decades of development, Blood 113 (2009) 3655– 3665. N. You, L. Zheng, W. Liu, X. Zhong, W. Wang, J. Li, Proliferation inhibition and differentiation induction of hepatic cancer stem cells by knockdown of BC047440: a potential therapeutic target of stem cell treatment for hepatocellular carcinoma, Oncol. Rep. 31 (2014) 1911–1920. L. Zheng, P. Liang, J. Li, X.B. Huang, W.W. Wang, L. Wang, H. Feng, Expression of BC047440 protein in hepatocellular carcinoma and its relationship to prognosis, Chin. J. Cancer 29 (2010) 931– 936. D. Zieker, S. Bühler, Z. Ustündag, I. Königsrainer, S. Manncke, K. Bajaeifer, J. Vollmer, F. Fend, H. Northoff, A. Königsrainer, J. Glatzle, Induction of tumor stem cell differentiation–novel strategy to overcome therapy resistance in gastric cancer, Langenbecks Arch. Surg. 398 (2013) 603–688. Y. Dong, Q. Han, Y. Zou, Z. Deng, X. Lu, X. Wang, W. Zhang, H. Jin, J. Su, T. Jiang, H. Ren, Long-term exposure to imatinib reduced cancer stem cell ability through induction of cell differentiation via activation of MAPK signaling in glioblastoma cells, Mol. Cell Biochem. 370 (2012) 89–102. H. Wu, B.M. Scher, C.L. Chu, M. Leonard, R. Olmedo, G.S. Scher, S. Stecker, W. Scher, S. Waxman, Reduction in lactate accumulation correlates with differentiation-induced terminal cell division of leukemia cells, Differentiation 48 (1991) 51–58. A. Arcangeli, M. Carlà, M.R. Del Bene, A. Becchetti, E. Wanke, M. Olivotto, Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential, Proc. Natl. Acad. Sci. USA 90 (1993) 5858–5862. I. Olsson, U. Gullberg, I. Ivhed, K. Nilsson, Induction of differentiation of the human histiocytic lymphoma cell line U-937 by 1 alpha,25-dihydroxycholecalciferol, Cancer Res. 43 (1983) 5862–5867. P.N. Munster, T. Troso-Sandoval, N. Rosen, R. Rifkind, P.A. Marks, V.M. Richon, The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells, Cancer Res. 61 (2001) 8492–8497. H. Uchida, T. Maruyama, T. Nagashima, H. Asada, Y. Yoshimura, Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycodelin, Endocrinology 146 (2005) 5365–5373. E.O. Vik-Mo, M. Nyakas, B.V. Mikkelsen, M.C. Moe, P. DueTønnesen, E.M. Suso, S. Sæbøe-Larssen, C. Sandberg, J.E. Brinchmann, E. Helseth, A.M. Rasmussen, K. Lote, S. Aamdal, G. Gaudernack, G. Kvalheim, I.A. Langmoen, Therapeutic vaccination against autologous cancer stem cells with mRNAtransfected dendritic cells in patients with glioblastoma, Cancer Immunol. Immunother. 62 (2013) 1499–1509. L. Gammaitoni, L. Giraudo, V. Leuci, M. Todorovic, G. Mesiano, F. Picciotto, A. Pisacane, A. Zaccagna, M.G. Volpe, S. Gallo, D. Caravelli, E. Giacone, T. Venesio, A. Balsamo, Y. Pignochino, G. Grignani, F. Carnevale-Schianca, M. Aglietta, D. Sangiolo,

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

E X PE R IM EN TA L C ELL R E S EA RC H

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

[123]

[124]

[125]

[126] [127]

[128] [129]

[130] [131] [132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features, Clin. Cancer Res. 19 (2013) 4347–4358. N. Nishio, M. Fujita, Y. Tanaka, H. Maki, R. Zhang, T. Hirosawa, A. Demachi-Okamura, Y. Uemura, O. Taguchi, Y. Takahashi, S. Kojima, K. Kuzushima, Zoledronate sensitizes neuroblastomaderived tumor-initiating cells to cytolysis mediated by human γδ T cells, J. Immunother. 35 (2012) 598–606. F. Cervantes, B.A. Pierson, P.B. McGlave, C.M. Verfaillie, J.S. Miller, Autologous activated natural killer cells suppress primitive chronic myelogenous leukemia progenitors in long-term culture, Blood 87 (1996) 2476–2485. Q. Xu, G. Liu, X. Yuan, M. Xu, H. Wang, J. Ji, B. Konda, K.L. Black, J. S. Yu, Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens, Stem Cells 27 (2009) 1734–1740. O. Warburg, F. Wind, E. Negelein, The metabolism of tumors in the body, J. Gen Physiol. 8 (1927) 519–530. R.G. Jones, C.B. Thompson, Tumor suppressors and cell metabolism: a recipe for cancer growth, Genes Dev. 23 (2009) 537– 548. C.B. Thompson, Rethinking the regulation of cellular metabolism, Cold Spring Harb. Symp. Quant. Biol. 76 (2011) 23–29. D. Daye, K.E. Wellen, Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis, Semin Cell Dev. Biol. 23 (2012) 362–369. G. Kroemer, J. Pouyssegur, Tumor cell metabolism: cancer's Achilles' heel, Cancer Cell 13 (2008) 472–482. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144 (2011) 646–674. Y. Akao, S. Noguchi, A. Iio, K. Kojima, T. Takagi, T. Naoe, Dysregulation of microRNA-34a expression causes drugresistance to 5-FU in human colon cancer DLD-1 cells, Cancer Lett. 300 (2011) 197–204. U. Cassens, B. Greve, K. Tapernon, B. Nave, E. Severin, W. Sibrowski, W. Göhde, A novel true volumetric method for the determination of residual leucocytes in blood components, Vox Sang 82 (2002) 198–206. D.M. Panchision, H.L. Chen, F. Pistollato, D. Papini, H.T. Ni, T.S. Hawley, Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24, Stem Cells 25 (2007) 1560– 1570. M. Moghbeli, F. Moghbeli, M.M. Forghanifard, M.R. Abbaszadegan, Cancer stem cell detection and isolation, Med. Oncol. 31 (2014) 69. G.A. Ablett, P.J. Smith, J.W. Sheridan, M.G. Lihou, Limitations of the agar colony-forming assay for the assessment of paediatric tumours, Br. J. Cancer 50 (1984) 541–544. E. Pastrana, V. Silva-Vargas, F. Doetsch, Eyes wide open: a critical review of sphere-formation as an assay for stem cells, Cell Stem Cell 8 (2011) 486–498. C. Yu, Z. Yao, J. Dai, H. Zhang, J. Escara-Wilke, X. Zhang, E.T. Keller, ALDH activity indicates increased tumorigenic cells, but not cancer stem cells, in prostate cancer cell lines, In Vivo 25 (2011) 69–76. S.L. Mo, J. Li, Y.S. Loh, R.D. Brown, A.L. Smith, Y. Chen, D. Joshua, B.D. Roufogalis, G.Q. Li, K. Fan, M.C. Ng, D.M. Sze, Factors influencing the abundance of the side population in a human myeloma cell line, Bone Marrow Res. 2011 (2011) 524845. S. Pece, D. Tosoni, S. Confalonieri, G. Mazzarol, M. Vecchi, S. Ronzoni, L. Bernard, G. Viale, P.G. Pelicci, P.P. Di Fiore, Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content, Cell 140 (2010) 62–73. M.J. Slade, B.M. Smith, H.D. Sinnett, N.C. Cross, R.C. Coombes, Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer, J. Clin. Oncol. 17 (1999) 870–879.

] (]]]]) ]]]–]]]

11

[142] M.M. Reinholz, A. Nibbe, L.M. Jonart, K. Kitzmann, V.J. Suman, J. N. Ingle, R. Houghton, B. Zehentner, P.C. Roche, W.L. Lingle, Evaluation of a panel of tumor markers for molecular detection of circulating cancer cells in women with suspected breast cancer, Clin. Cancer Res. 11 (2005) 3722 2732. [143] F. Progatzky, M.J. Dallman, C. Lo Celso, From seeing to believing: labelling strategies for in vivo cell-tracking experiments, Interface Focus 3 (2013) 20130001. [144] D. Schadendorf, A. Dorn-Beineke, S. Borelli, G. Riethmuller, K. Pantel, Limitations of the immunocytochemical detection of isolated tumor cells in frozen samples of bone marrow obtained from melanoma patients, Exp. Dermatol. 12 (2003) 165–171. [145] M. Bunea, O. Zarnescu, New current aspects on the immunohistochemical techniques, Roum Biotechnol. Lett. 6 (2001) 177–206. [146] H.K. Lin, S. Zheng, A.J. Williams, M. Balic, S. Groshen, H.I. Scher, M. Fleisher, W. Stadler, R.H. Datar, Y.C. Tai, R.J. Cote, Portable filter-based microdevice for detection and characterization of circulating tumor cells, Clin. Cancer Res. 16 (2010) 5011–5018. [147] S. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.C. Tai, 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood, Biomed. Microdev. 13 (2011) 203–213. [148] S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Isolation of rare circulating tumour cells in cancer patients by microchip technology, Nature 450 (2007) 1235–1239. [149] S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd Jr, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip, Proc. Natl. Acad. Sci. USA 107 (2010) 18392–18397. [150] H. Ponta, L. Sherman, P.A. Herrlich, CD44: from adhesion molecules to signalling regulators, Nat. Rev. Mol. Cell Biol. 4 (2003) 33–45. [151] S. Takaishi, T. Okumura, S. Tu, S.S. Wang, W. Shibata, R. Vigneshwaran, S.A. Gordon, Y. Shimada, T.C. Wang, Identification of gastric cancer stem cells using the cell surface marker CD44, Stem Cells 27 (2009) 1006–1020. [152] M.E. Prince, R. Sivanandan, A. Kaczorowski, G.T. Wolf, M.J. Kaplan, P. Dalerba, I.L. Weissman, M.F. Clarke, L.E. Ailles, Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma, Proc. Natl. Acad. Sci. USA 104 (2007) 973–978. [153] Z.F. Yang, D.W. Ho, M.N. Ng, C.K. Lau, W.C. Yu, P. Ngai, P.W. Chu, C.T. Lam, R.T. Poon, S.T. Fan, Significance of CD90þ cancer stem cells in human liver cancer, Cancer Cell 13 (2008) 153–166. [154] T.A. Rege, J.S. Hagood, Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/ growth factor responses, Biochim. Biophys. Acta 1763 (2006) 991–999. [155] R.A. Kroczek, K.C. Gunter, R.N. Germain, E.M. Shevach, Thy-1 functions as a signal transduction molecule in T lymphocytes and transfected B lymphocytes, Nature 322 (1986) 181–184. [156] J. He, Y. Liu, T. Zhu, J. Zhu, F. Dimeco, A.L. Vescovi, J.A. Heth, K.M. Muraszko, X. Fan, D.M. Lubman, CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays, Mol. Cell Proteomics 11 (M111) (2012) 010744. [157] Z.F. Yang, P. Ngai, D.W. Ho, W.C. Yu, M.N. Ng, C.K. Lau, M.L. Li, K. H. Tam, C.T. Lam, R.T. Poon, S.T. Fan, Identification of local and circulating cancer stem cells in human liver cancer, Hepatology 47 (2008) 919–928. [158] G. Kristiansen, M. Sammar, P. Altevogt, Tumour biological aspects of CD24, a mucin-like adhesion molecule, J. Mol. Histol. 35 (2004) 255–262.

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

12

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

E XP E RI ME N TAL CE L L R ES E ARC H

[159] C. Zhang, C. Li, F. He, Y. Cai, H. Yang, Identification of CD44þCD24þ gastric cancer stem cells, J. Cancer Res. Clin. Oncol. 137 (2011) 1679–1686. [160] A. Gulino, E. Ferretti, E. De Smaele, Hedgehog signalling in colon cancer and stem cells, EMBO Mol. Med. 1 (2009) 300–302. [161] J.P. Medema, Cancer stem cells: the challenges ahead, Nat. Cell Biol. 15 (2013) 338–344. [162] E. Ferrero, F. Malavasi, The metamorphosis of a molecule: from soluble enzyme to the leukocyte receptor CD38, J. Leukoc. Biol. 65 (1999) 151–161. [163] A.M. Hoogland, E.I. Verhoef, M.J. Roobol, F.H. Schröder, M.F. Wildhagen, T.H. van der Kwast, G. Jenster, G.J. van Leenders, Validation of stem cell markers in clinical prostate cancer: α6integrin is predictive for non-aggressive disease, Prostate 74 (2014) 488–496. [164] K.G. Chen, G. Szakács, J.P. Annereau, F. Rouzaud, X.J. Liang, J.C. Valencia, C.N. Nagineni, J.J. Hooks, V.J. Hearing, M.M. Gottesman, Principal expression of two mRNA isoforms (ABCB 5alpha and ABCB 5beta) of the ATP-binding cassette transporter gene ABCB 5 in melanoma cells and melanocytes, Pigment Cell Res. 18 (2005) 102–112. [165] B.J. Wilson, K.R. Saab, J. Ma, T. Schatton, P. Pütz, Q. Zhan, G.F. Murphy, M. Gasser, A.M. Waaga-Gasser, N.Y. Frank, M.H. Frank, ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit, Cancer Res. 74 (2014) 4196–4207. [166] C. Morimoto, S.F. Schlossman, The structure and function of CD26 in the T-cell immune response, Immunol. Rev. 161 (1998) 55–70. [167] H. Herrmann, I. Sadovnik, S. Cerny-Reiterer, T. Rülicke, G. Stefanzl, M. Willmann, G. Hoermann, M. Bilban, K. Blatt, S. Herndlhofer, M. Mayerhofer, B. Streubel, W.R. Sperr, T.L. Holyoake, C. Mannhalter, P. Valent, Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia, Blood 123 (2014) 3951–3962. [168] A. Vassilopoulos, C. Chisholm, T. Lahusen, H. Zheng, C.X. Deng, A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer, Oncogene 33 (2014) 5477–5482. [169] S. Rutella, G. Bonanno, A. Procoli, A. Mariotti, M. Corallo, M.G. Prisco, A. Eramo, C. Napoletano, D. Gallo, A. Perillo, M. Nuti, L. Pierelli, U. Testa, G. Scambia, G. Ferrandina, Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors, Clin. Cancer Res. 15 (2009) 4299–4311. [170] S. Ma, K.W. Chan, L. Hu, T.K. Lee, J.Y. Wo, I.O. Ng, B.J. Zheng, X.Y. Guan, Identification and characterization of tumorigenic liver cancer stem/progenitor cells, Gastroenterology 132 (2007) 2542–2556. [171] G. Bertolini, L. Roz, P. Perego, M. Tortoreto, E. Fontanella, L. Gatti, G. Pratesi, A. Fabbri, F. Andriani, S. Tinelli, E. Roz, R. Caserini, S. Lo Vullo, T. Camerini, L. Mariani, D. Delia, E. Calabrò, U. Pastorino, G. Sozzi, Highly tumorigenic lung cancer CD133þ cells display stem-like features and are spared by cisplatin treatment, Proc. Natl. Acad. Sci. USA 106 (2009) 16281–16286. [172] G. Ferrandina, G. Bonanno, L. Pierelli, A. Perillo, A. Procoli, A. Mariotti, M. Corallo, E. Martinelli, S. Rutella, A. Paglia, G. Zannoni, S. Mancuso, G. Scambia, Expression of CD133-1 and CD133-2 in ovarian cancer, Int. J. Gynecol. Cancer 18 (2008) 506–514. [173] M. Tachezy, H. Zander, G. Wolters-Eisfeld, J. Müller, D. Wicklein, F. Gebauer, J.R. Izbicki, M. Bockhorn, Activated leukocyte cell adhesion molecule (CD166): an inert cancer stem cell marker for non-small cell lungcancer?, Stem Cells 32 (2014) 1429–1436. [174] F. Walker, H.H. Zhang, A. Odorizzi, A.W. Burgess, LGR5 is a negative regulator of tumourigenicity, antagonizes Wnt signalling and regulates cell adhesion in colorectal cancer cell lines, PLoS ONE 6 (2011) e22733.

] (]]]]) ]]]–]]]

[175] M.A. Kerr, S.C. Stocks, The role of CD15-(Le(X))-related carbohydrates in neutrophil adhesion, Histochem. J. 24 (1992) 811– 826. [176] W. Kleeberger, G.S. Bova, M.E. Nielsen, M. Herawi, A.Y. Chuang, J. I. Epstein, D.M. Berman, Roles for the stem cell-associated intermediate filament nestin in prostate cancer migration and metastasis, Cancer Res. 67 (2007) 9199–9206. [177] M. Wickström, R. Larsson, P. Nygren, J. Gullbo, Aminopeptidase N (CD13) as a target for cancer chemotherapy, Cancer Sci. 102 (2011) 501–508. [178] D. Fang, T.K. Nguyen, K. Leishear, R. Finko, A.N. Kulp, S. Hotz, P.A. Van Belle, X. Xu, D.E. Elder, M. Herlyn, A tumorigenic subpopulation with stem cell properties in melanomas, Cancer Res. 65 (2005) 9328–9337. [179] T.W. Kuijpers, R.J. Bende, P.A. Baars, A. Grummels, I.A. Derks, K. M. Dolman, T. Beaumont, T.F. Tedder, C.J. van Noesel, E. Eldering, R.A. van Lier, CD20 deficiency in humans results in impaired T cell-independent antibody responses, J. Clin. Invest. 120 (2010) 214–222. [180] O. Murillo-Sauca, M.K. Chung, J.H. Shin, C. Karamboulas, S. Kwok, Y.H. Jung, R. Oakley, J.R. Tysome, L.O. Farnebo, M.J. Kaplan, D. Sirjani, V. Divi, F.C. Holsinger, C. Tomeh, A. Nichols, Q. T. Le, A.D. Colevas, C.S. Kong, R. Uppaluri, J.S. Lewis Jr, L.E. Ailles, J.B. Sunwoo, CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma, Oncotarget 5 (2014) 6854–6866. [181] K.A. Furge, Y.W. Zhang, G.F. Vande Woude, Met receptor tyrosine kinase: enhanced signaling through adapter proteins, Oncogene 19 (49) (2000) 5582–5589. [182] W.W. Branford, H.J. Yost, Nodal signaling: crypticLefty mechanism of antagonism decoded, Curr biol 14 (2004) R341– R343. [183] R.J. Boado, J.Y. Li, M. Nagaya, C. Zhang, W.M. Pardridge, Selective expression of the large neutral amino acid transporter at the blood–brain barrier, Proc. Natl. Acad. Sci. USA 96 (1999) 12079– 12084. [184] E.J. Tokar, B.A. Diwan, M.P. Waalkes, Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype, Environ. Health Perspect. 118 (2010) 108– 115. [185] M.S. Mulvihill, J.R. Kratz, P. Pham, The role of stem cells in airway repair: implications for the origins of lung cancer, Chin. J. Cancer 32 (2013) 71–74. [186] C.J. Di Como, M.J. Urist, I. Babayan, M. Drobnjak, C.V. Hedvat, J. Teruya-Feldstein, K. Pohar, A. Hoos, C. Cordon-Cardo, p63 Expression Profiles in Human Normal and Tumor Tissues, Clin. Cancer Res. 8 (2002) 494–501. [187] G. Shi, Y. Jin, Role of Oct4 in maintaining and regaining stem cell pluripotency, Stem Cell Res. Ther. 1 (2010) 39. [188] L. Cao, Y. Zhou, B. Zhai, J. Liao, W. Xu, R. Zhang, J. Li, Y. Zhang, L. Chen, H. Qian, M. Wu, Z. Yin, Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines, BMC Gastroenterol. 11 (2011) 71. [189] M. Abu-Remaileh, A. Gerson, M. Farago, G. Nathan, I. Alkalay, S. Zins Rousso, M. Gur, A. Fainsod, Y. Bergman, Oct-3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/βcatenin signalling, EMBO J. 29 (2010) 3236–3248. [190] D. Maetzel, S. Denzel, B. Mack, M. Canis, P. Went, M. Benk, C. Kieu, P. Papior, P.A. Baeuerle, M. Munz, O. Gires, Nuclear signalling by tumour-associated antigen EpCAM, Nat. Cell Biol. 11 (2009) 162–171. [191] M. Miettinen, J. Lasota, KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation, Appl. Immunohistochem. Mol. Morphol. 13 (2005) 205–220. [192] C.I. Civin, L.C. Strauss, C. Brovall, M.J. Fackler, J.F. Schwartz, J.H. Shaper, Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

E X PE R IM EN TA L C ELL R E S EA RC H

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

antibody raised against KG-1a cells, J. Immunol. 133 (1984) 157– 165. R.G. Andrews, J.W. Singer, I.D. Bernstein, Precursors of colonyforming cells in humans can be distinguished from colonyforming cells by expression of the CD33 and CD34 antigens and light scatter properties, J. Exp. Med. 169 (1989) 1721–1731. G. Lin, E. Finger, J.C. Gutierrez-Ramos, Expression of CD34 in endothelial cells, hematopoietic progenitors and nervous cells in fetal and adult mouse tissues, Eur. J. Immunol. 25 (1995) 1508–1516. C. Chua, N. Zaiden, K.H. Chong, S.J. See, M.C. Wong, B.T. Ang, C. Tang, Characterization of a side population of astrocytoma cells in response to temozolomide, J. Neurosurg. 109 (2008) 856– 866. N. Haraguchi, T. Utsunomiya, H. Inoue, F. Tanaka, K. Mimori, G.F. Barnard, M. Mori, Characterization of a side population of cancer cells from human gastrointestinal system, Stem Cells 24 (2006) 506–513. A.M. Bleau, D. Hambardzumyan, T. Ozawa, E.I. Fomchenko, J.T. Huse, C.W. Brennan, E.C. Holland, PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells, Cell Stem Cell 4 (2009) 226–235. T. Chiba, K. Kita, Y.W. Zheng, O. Yokosuka, H. Saisho, A. Iwama, H. Nakauchi, H. Taniguchi, Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties, Hepatology 44 (2006) 240–251. M.M. Ho, A.V. Ng, S. Lam, J.Y. Hung, Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells, Cancer Res. 67 (2007) 4827–4833. B. Qiao, V. Gopalan, Z. Chen, R.A. Smith, Q. Tao, A.K. Lam, Epithelial-mesenchymal transition and mesenchymal-epithelial transition are essential for the acquisition of stem cell

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

] (]]]]) ]]]–]]]

13

properties in hTERT-immortalised oral epithelial cells, Biol. Cell 104 (2012) 476–489. B. Qiao, Z. Chen, F. Hu, Q. Tao, A.K. Lam, BMI-1 activation is crucial in hTERT-induced epithelial-mesenchymal transition of oral epithelial cells, Exp. Mol. Pathol. 95 (2013) 57–61. U. Keitel, C. Scheel, M. Dobbelstein, Overcoming EMT-driven therapeutic resistance by BH3 mimetics, Oncoscience 1 (2014) 706–708. S.A. Forbes, N. Bindal, S. Bamford, C. Cole, C.Y. Kok, D. Beare, M. Jia, R. Shepherd, K. Leung, A. Menzies, J.W. Teague, P.J. Campbell, M.R. Stratton, P.A. Futreal, COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer, Nucleic Acids Res. 39 (2011) D945–D950. O. Shakhova, C. Leung, S. Marino, Bmi1 in development and tumorigenesis of the central nervous system, J. Mol. Med. (Berl) 83 (2005) 596–600. R.J. Kim, J.S. Nam, OCT4 expression enhances features of cancer stem cells in a mouse model of breast cancer, Lab Anim. Res. 27 (2011) 147–152. M. Maugeri-Saccà, M. Bartucci, R. De Maria, DNA damage repair pathways in cancer stem cells, Mol. Cancer Ther. 11 (2012) 1627–1636. F. Yang, S. Nam, C.E. Brown, R. Zhao, R. Starr, Y. Ma, J. Xie, D.A. Horne, L.H. Malkas, R. Jove, R.J. Hickey, A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling, PLoS One 9 (2014) e94443. D. Kumar, S. Shankar, R.K. Srivastava, Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms, Mol. Cancer 12 (2013) 171.

Please cite this article as: F. Islam, et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment, Exp Cell Res (2015), http://dx.doi.org/10.1016/j.yexcr.2015.04.018

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment.

Cancer stem cells (CSCs) are a subpopulation of cancer cells with many clinical implications in most cancer types. One important clinical implication ...
818KB Sizes 0 Downloads 9 Views