View Article Online View Journal

ChemComm Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: O. Kitagawa, Y. Suzuki, M. Kageyama, R. Morisawa, Y. Dobashi, H. Hasegawa and S. Yokojima, Chem. Commun., 2015, DOI: 10.1039/C5CC03659C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

View Article Online

Journal  Name  

DOI: 10.1039/C5CC03659C

COMMUNICATION  

Published on 02 June 2015. Downloaded by UNIVERSITY OF NEW ORLEANS on 11/06/2015 19:05:46.

ChemComm Accepted Manuscript

Please  dChemComm o  not  adjust  margins  

Page 1 of 4

 

Synthesis  of  optically  active  N-­‐C  axially  chiral  tetrahydroquinoline   and  its  response  to  acid-­‐accelerated  molecular  rotor   Received  00th  January  20xx,   Accepted  00th  January  20xx   DOI:  10.1039/x0xx00000x  

a

a

a

b

b

Yuya  Suzuki,  Masato  Kageyama,  Ryuichi  Morisawa,  Yasuo  Dobashi,  Hiroshi  Hasegawa,  Satoshi   b a Yokojima,*  Osamu  Kitagawa*

www.rsc.org/  

Optically   active   atropisomeric   N-­‐(2,5-­‐di-­‐tert-­‐butylphenyl)-­‐1,2,3,4-­‐ tetrahydroquinoline   with   an   N-­‐C   chiral   axis   was   prepared   via   catalytic   enantioselective   reaction.       The   addition   of   methane   sulfonic   acid   to   this   axially   chiral   quinoline   dramatically   lowered   the  barrier  to  rotation  around  the  chiral  axis.       Atropisomeric   compounds,   owing   to   rotational   restriction   around   an   N-­‐C   single   bond   have   been   receiving   increased   attention   as   an   1 interesting  class  of  chiral  molecules.    Recent  noteworthy  topics  in   this   field   include   catalytic   enantioselective   syntheses.     Various   N-­‐C   axially   chiral   compounds   have   been   prepared   with   high   enantioselectivity  through  catalytic  asymmetric  reactions,  and  used   2,3 as  chiral  building  blocks  and  chiral  ligands.    In  addition,  N-­‐C  axially   chiral   compounds   have   been   found   useful   not   only   in   the   field   of   synthetic   organic   chemistry   but   also   in   molecular   devices   4   (molecular  rotors). Molecular  rotors,  whose  rate  of  rotation  around  a  bond  can  be   controlled  by  external  stimuli,  are  one  of  the  most  common  classes   5 of   molecular   devices.     Recently,   Shimizu   et   al   reported   an   interesting   molecular   rotor   in   which   free   rotation   around   an   N-­‐C   bond   is   significantly   accelerated   by   the   addition   of   a   protic   acid   4b     (Scheme   1). Their   molecular   rotor   is   based   on   a   rigid   atropisomeric   N-­‐(quinolin-­‐8-­‐yl)succinimide   framework   that   is   rotationally   restricted   due   to   the   repulsion   between   the   quinoline   nitrogen  and  imide  carbonyl  oxygen.    At  23  °C,  rotation  around  the   ≠ N-­‐C  bond  of  imide  I  is  slow  (ΔG  =  22.2  kcal/mol,  t1/2  =  26  min),  but   upon  addition  of  3.5  equivalents  of  MeSO3H  the  rotation  becomes   ≠ -­‐4   rapid   (ΔG   =   12.9   kcal/mol,   t1/2   =   2.0   x   10 s).     Mechanistic   considerations  show  that  this  acid-­‐mediated  significant  acceleration   is  due  to  stabilization  of  the  planar  transition  state  by  the  formation   of   an   intramolecular   hydrogen   bond   between   the   protonated   quinolone   nitrogen   and   an   imide   carbonyl   oxygen.     Shimizu   et   al.   called  the  acid  responsible  for  such  an  acceleration  of  a  molecular   a.

Department  of  Applied  chemistry,  Shibaura  Institute  of  Technology,  3-­‐7-­‐5  Toyosu,   Kohto-­‐ku,  Tokyo,  135-­‐8458,  Japan.  E-­‐mail:  kitagawa@shibaura-­‐it.ac.jp     School  of  Pharmacy,  Tokyo  University  of  Pharmacy  and  Life  Sciences,  1432-­‐1,   Horinouchi,  Hachioji,  Tokyo,  192-­‐0392,  Japan.    E-­‐mail:  [email protected]   †  Electronic  Supplementary  Information  (ESI)  available:  [details  of  any   supplementary  information  available  should  be  included  here].  See   DOI:  10.1039/x0xx00000x   b.

rotor  “proton  grease”.     H H+   ON ON Me Me   N N   Me O Me O + H I-H+   I ! = 12.9 kcal/mol) ! = 22.2 kcal/mol) (!G (!G     ! H ! O O N   Me Me N N N   O Me O Me     Scheme   1 Acid-­‐accelerated   molecular   rotor   (proton   grease)   reported  by  Shimizu  et  al.            In   this   paper,   we   report   the   synthesis   of   optically   active   N-­‐C   axially  chiral  N-­‐(2,5-­‐di-­‐tert-­‐butylphenyl)-­‐1,2,3,4-­‐tetrahydroquinoline   (an  N-­‐C  axially  chiral  cyclic  amine)  and  its  response  to  a  new  type  of   acid-­‐accelerated  molecular  rotor  (Scheme  2).       N H H+ N   t-Bu t-Bu quick   rotational rotation restriction   t-Bu t-Bu   Scheme   2     N-­‐C  Axially  chiral  cyclic  amine  and  its  response  to  acid-­‐ accelerated  molecular  rotor.     As   mentioned   above,   catalytic   enantioselective   syntheses   of   various   N-­‐C   axially   chiral   compounds   have   been   reported   2,3 recently.    These  compounds  have  an  amide  skeleton  like  anilides,   imides,   lactams   and   urea,   or   a   nitrogen-­‐containing   aromatic   heterocyclic  framework  like  indole  and  4-­‐quinolinone,  but  there  has   been  no  report  on  the  catalytic  enantioselctive  synthesis  of  simple   N-­‐C  axially  chiral  amine.    Only  three  reports  have  appeared  on  the   preparation   of   optically   active   axially   chiral   amines   by   optical   6   resolution. In   2005,   we   succeeded   in   the   highly   enantioselective   synthesis   of   N-­‐(2,5-­‐di-­‐tert-­‐butylphenyl)-­‐3,4-­‐dihydroquinolin-­‐2-­‐one   2   by   the  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

J.  Name.,  2013,  00,  1-­‐3  |  1    

Please  do  not  adjust  margins  

Please  dChemComm o  not  adjust  margins  

Page 2 of 4 Journal  Name  

(R)-­‐BINAP-­‐Pd(OAc)2   catalyzed   intramolecular   Buchwald-­‐Hartwig   2c amination   of   NH-­‐anilide   1   (Scheme   3).     We   expected   that   the   reduction   of   the   amide   carbonyl   group   in   quinolinone   2   would   yield   optically   active   tetrahydroquinoline   3   (N-­‐C   axially   chiral   cyclic   amine).   After  a  survey  of  reaction  conditions,  it  was  found  that  the  use   of   Meerwein   reagent   and   NaBH4   gave   a   good   result.     That   is,   tetrahydroquinoline   3   was   obtained   in   69%   yield   through   NaBH4   reduction   of   iminium   ether   2A   prepared   by   the   reaction   of   2   with   7 BF4•OMe3  in  CH2Cl2    (Scheme  3).    However,  the  ee  of  the  obtained   3   (89%ee)   was   lower   than   that   of   2   (98%ee).     Prolongation   of   the   reaction  time  for  the  formation  of  3  from  iminium  ether  2A  (NaBH4   reduction)  yielded  an  even  lower  ee  for  3.    A  shorter  reaction  time   and   quick   purification   gave   3   with   a   higher   ee   (up   to   92%ee   and   81%  yield),  while  the  ee  of  3  was  not  changed  by  the  reaction  time   for  the  formation  of  2A  from  quinolinone  2.    These  results  indicate   that  the  decrease  in  the  ee  of  3  may  have  been  due  to  the  partial   racemization  of  3,  but  not  of  2A.    Indeed,  when  3  (89%ee)  in  CHCl3   was  stood  for  24  h  at  rt,  the  ee  decreased  to  55%.    The  rotational   barrier  around  the  chiral  axis  in  3  in  CHCl3 was  evaluated  to  be  25.1   kcal/mol  at  298  K.    Thus,  the  rotational  barrier  of   3  was  remarkably   lower  than  that  of  quinolinone  2   (33.1  kcal/mol).    In  contrast,  3  in   the   solid   state   can   be   stored   for   several   months   at   rt   without   any   decrease  in  ee.     O 5.0 mol% (R)-BINAP   3.3 mol% Pd(OAc)2 NH   N O 1.4 eq. Cs2CO3 t-Bu t-Bu   Br toluene 80 °C, 20 h   (97%) t-Bu t-Bu   1 2 (98%ee)   (!G≠ = 33.1 kcal/mol)     BF4•OMe3 N OMe NaBH4   N BF4 t-Bu t-Bu EtOH CH2Cl2   rt, 15 min rt, 23 h   t-Bu t-Bu   3 (69%, 89%ee) 2A   (!G≠ = 25.1 kcal/mol   in CHCl3) 3 (55%ee)   CHCl3, rt 24 h     Scheme  3 Synthetic  route  to  optically  active  N-­‐C  axially  chiral  cyclic   amine  3  and  its  rotational  barrier.     As   a   new   structural   property   of   N-­‐C   axially   chiral   amine,   we   found  that  the  rotational  barrier  in  quinoline  3  is  decreased  by  the   addition   of   a   protic   acid.     That   is,   when   3   (92%ee)   in   CHCl3   was   stood   for   10   min   or   1   h   at   25   °C,   the   ee   remained   essentially   constant   (91%ee,   90%ee,   Table   1,   entry   1).     In   contrast,   in   the   presence  of  1  equivalent  of  methanesulfonic  acid  (MeSO3H,  pKa  =  -­‐ 1.8),  the  ee  of  3  decreased  to  25%  and  7%,  respectively  after  10  min   and  1  h  at  25  °C  (entry  2).    The  addition  of  2  equivalent  of  MeSO3H   further   increased   the   racemization   rate   decreasing   the   ee   to   4%   after   10   min   (entry   3).     Although   a   similar   increase   in   the   racemization   rate   was   also   observed   following   the   addition   of   a   substoichiometric   amount   (0.5   or   0.2   eq)   of   MeSO3H,   the  

ChemComm Accepted Manuscript

Published on 02 June 2015. Downloaded by UNIVERSITY OF NEW ORLEANS on 11/06/2015 19:05:46.

COMMUNICATION  

magnitude   of   the   increase   was   lower   than   View that  Article from   a   Online DOI: 10.1039/C5CC03659C stoichiometric  quantity  of  MeSO3H  (entries  4  and  5).    These  results   indicate   that   the   rotation   rate   around   an   N-­‐C   chiral   axis   can   be   controlled   by   MeSO3H,   and   establish   the   existence   of   a   new   type   of   acid-­‐accelerated  molecular  rotor.   The  acidity  of  the  protic  acid  is  also  important  in  this  molecular   rotor.     The   use   of   trifluoroacetic   acid   (pKa   =   0.5)   increased   the   racemization   rate,   but   to   a   lesser   degree   than   MeSO3H   (entries   2   and   6).     In   the   presence   of   acetic   acid   (pKa   =   4.8),   no   detectable   increase   in   racemization   rate   was   observed   (entry   7).     Also,   no   rotational   acceleration   was   observed   in   dihydroquinolinone   2   following   the   addition   of   MeSO3H.     In   the   case   of   quinolinone   (lactam)   2   and   the   use   of   a   weak   acid   such   as   acetic   acid,   the   protonation  of  the  nitrogen  atom  may  not  be  extensive.    Thus,  it  is   +   obvious  that  the  formation  of  a  protonated  amine  3-­‐H is  the  driving   force  for  the  acceleration  of  the  bond  rotation,  and  that  increasing   the   acidity   and/or   the   quantity   of   the   added   acid   increases   the   + proportion  of  3-­‐H ,  thus  facilitating  rotation  about  the  N-­‐C  bond.     a,  b   Table  1.  Ee  change  of  3  in  the  presence  of  several  protic  acids.

H+

N

3

Na2CO3 aq

H

3 (decrease in ee)

t-Bu

(90-92%ee) t-Bu

 

3-H+

En try  

Acid  

1  h  

2  h  

3  h  

24  h  

%ee  

%ee  

%ee  

%ee  

%ee  

10   min   %ee  

0   min  

1  

none  

92  

91  

90  

89  

85  

54  

2  

MeSO3H    

92  

25  

   7  

-­‐  

-­‐  

-­‐  

3    

MeSO3H   (2  eq)  

92  

   4  

-­‐  

-­‐  

-­‐  

-­‐  

4    

MeSO3H   (0.5  eq)  

90  

51  

   5  

-­‐  

-­‐  

-­‐  

5  

MeSO3H   (0.2  eq)  

90  

77  

46  

43  

42  

13  

6  

CF3CO2H  

92  

83  

49  

24  

15  

   7  

7  

MeCO2H  

92  

91  

90  

88  

83  

53  

a

  1   Equivalent   of   a   protic   acid   was   added   to   3   (15   mg)   in   CHCl3   (0.3   mL),   and   b the  mixture  was  stood  at  25  °C.      The  ee  was  determined  by  HPLC  analysis   + using  a  chiral  OJ-­‐H  column  after  neutralization  of  3-­‐H .  

An   X-­‐ray   crystal   structure   analysis   and   DFT   calculation   were   undertaken   to   elucidate   the   facilitation   of   rotation   about   the   N-­‐C   bond  by  the  protonation  of  the  amine.    In  the  crystal  structure  of  3   8 (Fig   1),   it   was   found   that   bond   N1-­‐C8a   is   notably   shorter   than   bonds   N1-­‐C1’   and   N1-­‐C2,   and   the   2,5-­‐di-­‐tert-­‐butylphenyl   group   is   almost  perpendicular  to  the  quinolone  ring.    This  suggests  that  the  

2  |  J.  Name.,  2012,  00,  1-­‐3  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Please  dChemComm o  not  adjust  margins  

Page 3 of 4

 COMMUNICATION  

Published on 02 June 2015. Downloaded by UNIVERSITY OF NEW ORLEANS on 11/06/2015 19:05:46.

lone  electron  pair  on  the  nitrogen  atom  mainly  resonates  with  the   benzene  ring  of  tetrahydroquinoline,  and  very  little  with  the  2,5-­‐di-­‐ tert-­‐butylphenyl  group.   Although  the  X-­‐ray  crystal  structure  analysis  of  protonated  amine   + 3-­‐H  was  also  attempted,  unfortunately,  no  adequate  single  crystal   + was   obtained.     Therefore,   we   estimated   the   structure   of   3-­‐H   by   DFT  calculation  (The  structure  of  hydrochloride  of  3  was  estimated   9,10 + by   DFT   method).     Most   stable   conformers   of   3-­‐H   calculated   at   + the  B3LYP/6-­‐31G(d)  level  are  shown  in  Fig  2.    In   3-­‐H ,  the  three  N-­‐C   bonds   were   found   to   be   longer   than   in   the   un-­‐protonated   compound  3.    Furthermore,  although  the  nitrogen  atom  of  amine  3   2 3 is   the   hybridization   between   sp   and   sp   characters   (Fig   1,   total   of   + three  bond  angles  around  the  nitrogen  atom  =  347.2  °),  that  of  3-­‐H   3 has   an   almost   complete   sp   character   (Fig   2,   total   of   three   bond   angles   around   the   nitrogen   atom   =   337.4   °).     Such   change   on   hybridization   of   the   nitrogen   atom   may   bring   about   significant   difference  in  the  transition  states  during  the  N-­‐C  bond  rotation  in  3   + and  3-­‐H .    

5 6

4

4a

7 8

pseudo   equatorial   position,   and   the   N-­‐C   bond   rotation   proceeds   via   View Article Online 10.1039/C5CC03659C the   rotation   of   the   ortho-­‐tert-­‐butyl   group  DOI: toward   C2   side   but   not   9 toward   C8   side   (Fig   3).     In   amine   3,   the   steric   repulsion   with   C8-­‐ 11 hydrogen  may  be  stronger  than  that  with  C2-­‐hydrogen.  

5 6 7 8

8a N

1 2 8a N

t-Bu !G≠

= 26.4 kcal/mol at 298 K

5'

4'

3-TS

N1-C2 = 1.479 Å, N1-C1' = 1.419 Å, N1-C8a = 1.437 Å < C2-N1-C1' = 123.7 °, < C2-N1-C8a = 107.2 ° < C8a-N1-C1' = 124.1 ° < C2-N1-C1'-C2' = 28.1 °, < C1'-N1-C8a-C8 = -44.0 °

5 6 7

t-Bu

4

7 8

2

8a N

H

6' 5'

t-Bu

1'

3-H+-TS1 !G≠ = 16.1 kcal/mol at 298 K

N1-C2 = 1.543 Å, N1-C1' = 1.524 Å, N1-C8a = 1.501 Å < C2-N1-C1' = 115.0 ° < C2-N1-C8a = 109.8 ° < C8a-N1-C1' = 113.0 ° < C2-N1-C1'-C2' = -151.6 ° < C1'-N1-C8a-C8 = -98.5 °

Cl

1' t-Bu 2'

3-H+-TS2



3

1 2 8a N

Cl H

6' 5' 4'

t-Bu

3-H+-TS

!G≠ = 16.3 kcal/mol at 298 K

N1-C2 = 1.541 Å, N1-C1' = 1.533 Å, N1-C8a = 1.483 Å < C2-N1-C1' = 111.5 ° < C2-N1-C8a = 103.3 ° < C8a-N1-C1' = 124.7 ° < C2-N1-C1'-C2' = 129.6 ° < C1'-N1-C8a-C8 = -107.0 °

 

Fig  4.    The  transition  state  structure  and  the  rotational  barrier  of  3-­‐ + H  calculated  at  the  B3LYP/6-­‐31G(d)  level.  

3'

4'

3-H+

3-H+A

4

3'

3

1

8

4a

2'

4'

Fig  1    X-­‐Ray  crystal  structure  of  axially  chiral  quinoline  3.  

4a

 

Fig  3    The  transition  state  structure  and  the  rotational  barrier  of  3   calculated  at  the  B3LYP/6-­‐31G(d)  level.  

2

N1-C2 = 1.473 Å, N1-C1' = 1.452 Å, N1-C8a = 1.409 Å < C2-N1-C1' = 111.8 °, < C2-N1-C8a = 116.9 ° < C8a-N1-C1' = 118.5 ° < C2-N1-C1'-C2' = -103.4 °, < C1'-N1-C8a-C8 = -26.1 °  

5

t-Bu 2' 3'

3

6



3

1'

3'

t-Bu

4

6'

1' t-Bu 2'

6' 5'

4a

3

1

ChemComm Accepted Manuscript

Journal  Name  

N1-C2 = 1.535 Å, N1-C1' = 1.506 Å, N1-C8a = 1.498 Å < C2-N1-C1' = 111.6 °, < C2-N1-C8a = 113.3 ° < C8a-N1-C1' = 112.4 ° < C2-N1-C1'-C2' = -93.5 °, < C1'-N1-C8a-C8 = -64.2 °   +

Fig   2     Most   stable   conformer   of   3-­‐H   calculated   at   the   B3LYP/6-­‐ 31G(d)  level.   +

Indeed,   in   the   transition   state   structures   of   3   and   3-­‐H   calculated   by  DFT  method  (the  effect  of  CHCl3  solvent  was  taken  into  account   by  polarizable  continuum  model),  the  significant  differences  on  the   orientation   of   a   chiral   axis   (N1-­‐C1’   bond)   and   the   direction   of   the   + bond  rotation  were  found  (3-­‐TS  in  Fig  3  and  3-­‐H -­‐TS  in  Fig  4).    That   is,   DFT   calculation   shows   that   the   N1-­‐C1’   bond   in   3-­‐TS   occupies  

On  the  other  hand,  in  the  N-­‐C  bond  rotation  of  protonated  amine   + 3-­‐H ,   two   possible   transition   states   were   found   (Fig   4).     In   both   + + transition   state   structures   3-­‐H -­‐TS1   and   3-­‐H -­‐TS2,   the   N-­‐C1’   bond   occupies   pseudo   axial   position.     Such   pseudo-­‐axial   orientation   of   the   N-­‐C1’   bond   should   significantly   alleviate   the   steric   repulsion   between   C8-­‐hydrogen   and   tert-­‐butyphenyl   group   to   lead   to   the   + remarkable  decrease  in  the  rotational  barrier  of  3-­‐H .    At  the  same   +   time,   the   N-­‐C   bond   rotation   of   3-­‐H occurs   via   the   rotation   of   the   12 ortho-­‐tert-­‐butyl   group   toward   C8   side   but   not   toward   C2   side.   Protic  acid  may  promote  the  axial  orientation  of  the  N1-­‐C1’bond  in   the  transition  state.    Also,  in  comparison  with  3,  the  elongated  N-­‐C   + bonds   in   3-­‐H   should   reduce   the   steric   repulsion   from   C8-­‐   and   C2-­‐   hydrogens   (Figures   1-­‐4),   thus   lowering   the   energetic   barrier   to   +   rotation.    Indeed,  the  calculated  rotational  barrier  of  3-­‐H at  298  K   ≠ (ΔG   =   16.1   and   16.3   kcal/mol)   was   8.8-­‐9.0   kcal/mol   lower   in   ≠ comparison   with   the   experimental   value   of   3   (ΔG   value   =   25.1   ≠   13 kcal/mol,  the  calculated  ΔG =  26.4  kcal/mol).  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

J.  Name.,  2013,  00,  1-­‐3  |  3  

Please  do  not  adjust  margins  

Please  dChemComm o  not  adjust  margins  

Journal  Name  

Conclusions  

Published on 02 June 2015. Downloaded by UNIVERSITY OF NEW ORLEANS on 11/06/2015 19:05:46.

  We   performed   the   synthesis   of   an   optically   active   N-­‐C   axially   chiral   amine   (N-­‐C   axially   chiral   tetrahydroquinoline)   via   catalytic   enantioselective   reaction   and   demonstrated   its   response   to   a   new   type   of   acid-­‐accelerated   molecular   rotor.     The   protonation   of   the   amine   nitrogen   by   a   protic   acid   facilitated  the  rotation  about  the  N-­‐C  chiral  bond  by  elongating   the  N-­‐C  bonds  and  changing  the  transition  state  structure.  

3 4

Acknowledgement   This  work  was  partly  supported  by  a  Grant-­‐in-­‐Aid  for  Scientific   Research  (C26460014).      

5

Notes  and  references     1

2

Typical   examples   of   atropisomeric   compounds   with   an   N-­‐C   chiral  axis:  (a)  L.  H.  Bock,  R.  Adams,  J.  Am.  Chem.  Soc.,  1931,   53,  374;  (b)  C.  Kashima,  A.  Katoh,  J.  Chem.  Soc.  Perkin  Trans   1980,   1599;   (c)   A.   Mannschreck,   H.   Koller,   G.   Stühler,   M.   A.   Davis,   J.   Traber,   Eur.   J.   Med.   Chem.   Chim.   Ther.,   1984,   19,   381;   (d)   C.   Roussel,   M.   Adjimi,   A.   Chemlal,   A.   Djafri,   J.   Org.   Chem.,  1988,  53,  5076;  (e)  M.  Mintas,  V.  Mihaljevic,  H.  Koller,     D.  Schuster,  A.  Mannschreck,  J.  Chem.  Perkin  Trans  2,  1990,   619;   (f)   T.   Kawamoto,   M.   Tomishima,   F.   Yoneda,   J.   Hayami,   Tetrahedron  Lett.,  1992,  33,  3169;  (g)  D.  P.  Curran,  H.  Qi,    S.  J.   Geib,  N.  C.  DeMello,  J.  Am.  Chem.  Soc.  1994,  116,  3131;  (h)  X.   Dai,   A.   Wong,   S.   C.   Virgil,   J.   Org.   Chem.,   1998,   63,   2597;   (i)   O.   Kitagawa,  H.  Izawa,  K.  Sato,  A.  Dobashi,  T.  Taguchi,  M.  Shiro,   J.  Org.  Chem.,  1998,  63,  2634;  (j)  A.  D.  Hughes,  D.  A.  Price,    N.   S.  Simpkins,  J.  Chem.  Soc.,  Perkin  Trans.  1,  1999,  1295;  (k)  T.   Hata,  H.  Koide,  N.  Taniguchi,  M.  Uemura,  Org.  Lett.,  2000,  2,   1907;  (l)  K.  Kondo,  T.  Iida,  H.  Fujita,  T.  Suzuki,  K.  Yamaguchi,     Y.  Murakami,  Tetrahedron,  2000,  56,  8883;  (m)  M.  Sakamoto,   N.  Utsumi,  M.  Ando,  M.  Seki,  T.  Mino,  T.  Fujita,  A.  Katoh,  T.   Nishino,  C.  Kashima,  Angew.  Chem.  Int.  Ed.,  2003,  42,  4360;   (n)  Tetrahedron  Symposium-­‐in-­‐print  on  Axially  Chiral  Amides   (Atropisomerism),   J.   Clayden,   Ed.,   Tetrahedron,   2004,   60,   4325-­‐4558;  (o)  T.  Tokitoh,  T.  Kobayashi,  E.  Nakada,  T.  Inoue,   S.  Yokoshima,  H.  Takahashi,  H.  Natsugari,  Heterocycles,  2006,   70,   93;   (p)   K.   Kamikawa,   S.   Kinoshita,   M.   Furusyo,   S.   Takemoto,   H.   Matsuzaka,   M.   Uemura,   J.   Org.   Chem.,   2007,   72,  3394;  (q)  E.  M.  Yilmaz,  I.  Dogan,  Tetrahedron:  Asymmetry,   2008,   19,   2184;   (r)   T.   Kawabata,   C.   Jiang,   K.   Hayashi,   K.   Tsubaki,  T.  Yoshimura,  S.  Majumdar,  T.  Sasamori,  N.  Tokitoh,   J.  Am.  Chem.  Soc.,  2009,  131,  54;  (s)  I.  Alkorta,  J.  Elguero,  C.   Roussel,   N.   Vanthuyne,   P.   Piras,   Adv.   Hetero.   Chem.,   2012,   105,  1.   Typical   papers   on   catalytic   asymmetric   synthesis   of   N-­‐C   axially  chiral  compounds:    (a)  O.  Kitagawa,  M.  Kohriyama,  T.   Taguchi,  J.  Org.  Chem.,  2002,  67,  8682;  (b)  J.  Terauchi,  D.  P.   Curran,   Tetrahedron:   Asymmetry,   2003,   14,   587;   (c)   O.   Kitagawa,   M.   Yoshikawa,  H.   Tanabe,   T.   Morita,   M.   Takahashi,   Y.  Dobashi,  T.  Taguchi,  J.  Am.  Chem.  Soc.,  2006,  128,  12923;   (d)   S.   Brandes,   M.   Bella,   A.   Kjoersgaard,   K.   A.   Jørgensen,   Angew.   Chem.   Int.   Ed.,   2006,   45,   1147;   (e)   K.   Tanaka,   K.   Takeishi,   K.   Noguchi,   J.   Am.   Chem.   Soc.   2006,   128,   4586;   (f)   W.   Duan,   Y.   Imazaki,   R.   Shintani,   T.   Hayashi,   Tetrahedron,   2007,   63,   8529;   (g)   J.   Oppenheimer,  R.  P.   Hsung,  R.  Figueroa,   W.   L.   Johnson,   Org.   Lett.,   2007,   9,   3969;   (h)   J.   Clayden,   H.  

6

7

8

9 10

11 12

13

               

ChemComm Accepted Manuscript

COMMUNICATION  

Page 4 of 4

Turner,   Tetrahedron   Lett.,   2009,   50,   3216;   (i)   N.   Ototake,   Y.   View Article Online Morimoto,   A.   Mokuya,   H.   Fukaya,   Y.   O.   Kitagawa,   DOI:Shida,   10.1039/C5CC03659C Chem.  Eur.  J.,  2010,  16,  6752;  (j)  H.  Liu,  W.  Feng,  C.  W.  Kee,  D.   Leow,   W-­‐T.   Loh,   C-­‐H.   Tan,   Adv.   Synth.   Catal.,   2010,   352,   3373;   (k)   S.   Shirakawa,   K.   Liu,   K.   Maruoka,   K.   J.   Am.   Chem.   Soc.,   2012,   134,   916;   (l)   R.  Guo,  K-­‐N.   Li,  H-­‐J.   Zhu,  Y-­‐M.   Fan,   L-­‐ Z.   Gong,   Chem.   Comm.,   2014,   50,   5451;   (m)   N.   D.   Iorio,   P.   Righi,   A.   Mazzanti,   M.   Mancinelli,   A.   Ciogli,   G.   Bencivenni,   J.   Am.  Chem.  Soc.,  2014,  136,  916;  (n)  K.  Kamikawa,  S.  Arae,  W-­‐ Y  Wu,  C.  Nakamura,  T.  Takahashi,  M.  Ogasawara,  Chem.  Eur.   J.,  2015,  21,  4954.   I.   Takahashi,   Y.   Suzuki,   O.   Kitagawa,   Org.   Prep.   Proc.   Int.,   2014,  46,  1.   (a)  B.  E.  Dial,  R.  D.  Rasberry,  B.  N.  Bullock,  M.  D.  Smith,  P.  J.   Pellechia,   S.   Profeta,   Jr,   K.   D.   Shimizu,   Org.   Lett.,   2011,   13,   244;  (b)  B.  E.  Dial,  P.  J.  Pellechia,  M.  D.  Smith,  K.  D.;  Shimizu,  J.   Am.  Chem.  Soc.,  2012,  134,  3675.   (a)  T.  R.  Kelly,  H.  D.  Silva,  R.  A.  Silva,  Nature,  1999,  400,  150;   (b)   P.   V.   Jog,   R.   E.   Brown,   D.   K   Bates,   J.   Org.   Chem.,   2003,   63,   8240;   (c)   I.   Alfonso,   M.   I.   Burguete,   S.   V.   Luis,   J.   Org.   Chem.   2006,  71,  2242;  (d)  T-­‐A.  V.  Khuong,  J.  E.  Nunez,  C.  E.  Godinez,   M.   A.   Garcia-­‐Garibay,   Acc.   Chem.   Res.,   2006,   39,   413;   (e)   D.   Zhang,   Q.   Zhang,   J.   H.   Sua,   H.   Tian,   Chem.   Commun.,   2009,   1700;   (f)   M.   C.   Basheer,   Y.   Oka,   M.   Mathews,   N.   Tamaoki,   Chem.  Eur.  J.,  2010,  16,  3489.   (a)   T.   Mino,   Y.   Tanaka,   T.   Yabusaki,   D.   Okumura,   M.   Sakamoto,   T.   Fujita,   Tetrahedron:   Asymmetry,   2003,   14,   2503;   (b)   T.   Mino,   H.   Yamada,   S.   Komatsu,   M.   Kasai,   M.   Sakamoto,  T.  Fujita,  Eur.  J.  Org.  Chem.,  2011,  24,  4540;  (c)  T.   Mino,   M.   Asakawa,   Y.   Shima,   H.   Yamada,   F.   Yagishita,   M.   Sakamoto,   Tetrahedron,   http://dx.doi.org/10.1016/j.tet.2015.01.027.   (a)  H.  Meerwein,  P.  Borner,  O.  Fuchs,  H.  J.  Sasse,  H.  Schrodt,  J.   Spille,   Chem.   Ber.,   1956,   89,   2060;   (b)   F.   M.   F.   Chen,   N.   L.     Benoiton,  Can.  J.  Chem.,  1977,  5,  1433;  (c)  Y.  Tsuda,  T.  Sano,   H.  Watanabe,  Synthesis,  1977,  652.   CCDC-­‐999231   (3)   contains   the   supplementary   crystallographic   data   for   this   paper.     These   data   can   be   obtained  free  of  charge  from  The  Cambridge  Crystallographic   Data   Centre   via   www.ccdc.com.ac.uk/data_request/cif     (see   Supporting  Information).     See  Supplementary  Material.         The   most   stable   conformer   of   un-­‐protonated   amine   3   was   also   evaluated   by   DFT   method.     The   calculated   structure   reproduced   well   the   crystal   structure   shown   in   Figure   1.     See   Supporting  Information.   N.   Suzumura,   M.   Kageyama,   D.   Kamimura,   T.   Inagaki,   Y.   Dobashi,   H.   Hasegawa,   H.   Fukaya,   O.   Kitagawa,   Tetrahedron   Lett.,  2012,  53,  4332.   DFT   calculation   indicates   that   the   rotational   barrier   (23.7   kcal/mol)   via   the   rotation   of   ortho-­‐tert-­‐butyl   group   toward   C2  side  is  7.1  kcal/mol  higher  in  comparison  with  that  toward   + C8  side.    See  Supporting    Information  (3-­‐H -­‐TS3).   We   could   not   evaluate   the   exact   rotational   barrier   + (experimental   value)   of   the   protonated   amine   3-­‐H   because   + of   the   quick   racemization   of   3-­‐H .     On   the   other   hand,   it   is   + certain   that   the   rotational   barrier   of   3-­‐H   is   less   than   20   kcal/mol   because   in   the   presence   of   3   eq   of   MeSO3H,   optically  active  3  (87%ee)  was  almost  completely  racemized   within  1  min  at  25  °C.  

4  |  J.  Name.,  2012,  00,  1-­‐3  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

The synthesis of optically active N-C axially chiral tetrahydroquinoline and its response to an acid-accelerated molecular rotor.

Optically active atropisomeric N-(2,5-di-tert-butylphenyl)-1,2,3,4-tetrahydroquinoline with an N-C chiral axis was prepared via a catalytic enantiosel...
1MB Sizes 3 Downloads 10 Views