Hindawi Publishing Corporation ξ€ e Scientific World Journal Volume 2014, Article ID 623294, 4 pages http://dx.doi.org/10.1155/2014/623294

Research Article The S-Transform of Distributions Sunil Kumar Singh Department of Mathematics, Rajiv Gandhi University, Doimukh, Arunachal Pradesh 791112, India Correspondence should be addressed to Sunil Kumar Singh; sks [email protected] Received 30 August 2013; Accepted 10 October 2013; Published 2 January 2014 Academic Editors: B. Carpentieri and A. Ibeas Copyright Β© 2014 Sunil Kumar Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Parseval’s formula and inversion formula for the S-transform are given. A relation between the S-transform and pseudodifferential operators is obtained. The S-transform is studied on the spaces S(R𝑛 ) and SσΈ€  (R𝑛 ).

1. Introduction The S-transform was first used by Stockwell et al. [1] in 1996. If πœ”(𝑑, πœ‰) is a window function, then the continuous S-transform of πœ™(𝑑) with respect to πœ” is defined as [2] (Sπœ” πœ™) (𝜏, πœ‰) = ∫ πœ™ (𝑑) πœ” (𝜏 βˆ’ 𝑑, πœ‰) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑, R𝑛

(1)

for π‘₯, πœ‰ ∈ R𝑛 . In signal analysis, at least in dimension 𝑛 = 1, R2𝑛 is called the time-frequency plane, and in physics R2𝑛 is called the phase space. Equation (1) can be rewritten as a convolution as (Sπœ” πœ™) (𝜏, πœ‰) = (πœ™ (β‹…) π‘’βˆ’π‘–2πœ‹βŸ¨β‹…,πœ‰βŸ© βˆ— πœ” (β‹…, πœ‰)) (𝜏) .

(2)

Now, we recall the definitions of Fourier transform on R𝑛 . Definition 1. If πœ™(𝑑) is defined on R𝑛 , then the Fourier transform of πœ™ is given by βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ©

F [πœ™ (𝑑)] (πœ‰) = ∫ πœ™ (𝑑) 𝑒 R𝑛

where βŸ¨π‘‘, πœ‰βŸ© =

βˆ‘π‘›π‘—=1 𝑑𝑗 πœ‰π‘—

𝑑𝑑,

(3) 𝑛

is the usual inner product on R .

Definition 2. If πœ™(𝑑, π‘₯) is defined on R2𝑛 , then the partial Fourier transform of πœ™(𝑑, π‘₯) with respect to the first coordinate is given by F1 [πœ™ (𝑑, π‘₯)] (πœ‰, π‘₯) = ∫ πœ™ (𝑑, π‘₯) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑, R𝑛

(4)

and the partial Fourier transform of πœ™(𝑑, π‘₯) with respect to the second coordinate is given by F2 [πœ™ (𝑑, π‘₯)] (𝑑, πœ‚) = ∫ πœ™ (𝑑, π‘₯) π‘’βˆ’π‘–2πœ‹βŸ¨π‘₯,πœ‚βŸ© 𝑑π‘₯. R𝑛

(5)

Applying the convolution property for the Fourier transform in (2), we obtain (Sπœ” πœ™) (𝜏, πœ‰) = Fβˆ’1 1 [F1 (πœ™) (𝛼 + πœ‰) F1 (πœ”) (𝛼, πœ‰)] (𝜏, πœ‰) , (6) where Fβˆ’1 1 is the inverse Fourier transform. Now, we define the translation, modulation, and involution operators, respectively, by π‘‡πœ πœ™ (𝑑) = πœ™ (𝑑 βˆ’ 𝜏) π‘€πœ‰ πœ™ (𝑑) = 𝑒𝑖2πœ‹βŸ¨πœ‰,π‘‘βŸ© πœ™ (𝑑) Iπœ™ (𝑑) = πœ™ (βˆ’π‘‘)

(translation) (modulation)

(7)

(involution) ,

𝑛

where 𝑑, 𝜏, πœ‰ ∈ R . Definition 3 (the Dirac delta). The Dirac delta function is defined by ∬ πœ™ (𝑑, π‘₯) 𝛿 (𝑑, π‘₯) 𝑑𝑑 𝑑π‘₯ = πœ™ (0, 0) . R𝑛

(8)

Definition 4 (tempered distribution). A function πœ™ ∈ 𝐢∞ (R𝑛 ) is said to be rapidly decreasing if 󡄨 󡄨 𝛾𝛼,𝛽 (πœ™) = sup 󡄨󡄨󡄨󡄨π‘₯𝛼 𝐷𝛽 πœ™ (π‘₯)󡄨󡄨󡄨󡄨 < ∞, (9) 𝑛 π‘₯∈R

2

The Scientific World Journal

for all pairs of multi-indices 𝛼, 𝛽 ∈ N𝑛0 . The space of all rapidly decreasing functions on R𝑛 is denoted by S(R𝑛 ) or simply S. Elements in the dual space SσΈ€  of S are called tempered distribution.

2. Some Important Properties of S-Transform Some properties of S-transform can be found in [3–8] and certain properties of S-transform are obtained in this section. By definition, we have

This immediately implies the Plancherel formula σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©Sπœ” πœ™σ΅„©σ΅„©σ΅„©πΏ2 (R𝑛 Γ—R𝑛 ) = σ΅„©σ΅„©σ΅„©πœ™σ΅„©σ΅„©σ΅„©πΏ2 (R𝑛 ) . Proof. Consider ∬

R𝑛

(Sπœ”1 πœ™1 ) (𝜏, πœ‰) (Sπœ”2 πœ™2 )(𝜏, πœ‰) π‘‘πœ π‘‘πœ‰

=∬

R𝑛

(Sπœ” πœ™) (𝜏, πœ‰) = ∫ πœ” (𝜏 βˆ’ 𝑑, πœ‰) πœ™ (𝑑) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑

= ∭ πœ™1 (𝑑) πœ™2 (π‘₯) 𝑒𝑖2πœ‹βŸ¨(π‘₯βˆ’π‘‘),πœ‰βŸ© R𝑛

(10)

= ∫ πœ” (βˆ’π‘₯, πœ‰) π‘€βˆ’πœ‰ πœ™ (𝜏 + π‘₯) 𝑑π‘₯

R𝑛

= ∫ πœ” (βˆ’π‘₯, πœ‰) π‘‡βˆ’πœ π‘€βˆ’πœ‰ πœ™ (π‘₯) 𝑑π‘₯.

= ∭ πœ™1 (𝑑) πœ™2 (π‘₯) 𝑒𝑖2πœ‹βŸ¨(π‘₯βˆ’π‘‘),πœ‰βŸ© 𝛿 (π‘₯ βˆ’ 𝑑, 0) π‘‘πœ‰ 𝑑𝑑 𝑑π‘₯

R𝑛

R𝑛

Thus, the S-transform Sπœ” appears as a superposition of timefrequency shifts as follows:

R𝑛

= ∫ πœ™1 (𝑑) πœ™2 (𝑑)𝑑𝑑. R𝑛

(11)

Example 5. If πœ”(𝑑, πœ‰) = π‘š(πœ‰), that is, independent of 𝑑, then (Sπœ” πœ™) (𝜏, πœ‰) = ∫ π‘š (πœ‰) πœ™ (𝑑) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑

(12)

= π‘š (πœ‰) (Fπœ™) (πœ‰) .

Theorem 8 (inversion formula). If πœ™ ∈ 𝐿2 (R𝑛 ) and window function πœ” satisfy the condition (14) of the previous theorem, then πœ™ (𝑑) = ∬

R𝑛

(Sπœ” πœ™) (𝜏, πœ‰) πœ” (𝜏 βˆ’ 𝑑, πœ‰)𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‰βŸ© π‘‘πœ π‘‘πœ‰.

So Sπœ” is a multiplication operator. In particular, if πœ”(𝑑, πœ‰) = 1, then (Sπœ” πœ™)(𝜏, πœ‰) = (Fπœ™)(πœ‰).

Proof. By the previous theorem we can write

Example 6. If πœ”(𝑑, πœ‰) = π‘š(𝑑), then

βŸ¨πœ™1 , πœ™2 ⟩ = ∬

(Sπœ” πœ™) (𝜏, πœ‰) = ∫ π‘š (𝜏 βˆ’ 𝑑) πœ™ (𝑑) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑

=∬

R𝑛

= ∫ π‘‡βˆ’πœ π‘š (βˆ’π‘‘) πœ™ (𝑑) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑 R𝑛

(Sπœ” πœ™1 ) (𝜏, πœ‰)

R𝑛

Γ— (∫ πœ™2 (π‘₯) πœ” (𝜏 βˆ’ π‘₯, πœ‰) π‘’βˆ’π‘–2πœ‹βŸ¨π‘₯,πœ‰βŸ© 𝑑π‘₯) π‘‘πœ π‘‘πœ‰ R𝑛

= ∫ (∬

R𝑛

R𝑛

= F (πœ™π‘‡βˆ’πœ Iπ‘š) (πœ‰) .

R𝑛

Let πœ™1 , πœ™2 ∈ 𝐿2 (R𝑛 ) and let (Sπœ”1 πœ™1 ) and (Sπœ”2 πœ™2 ) be the Stransforms of πœ™1 and πœ™2 , respectively. Then ∬

R𝑛

(Sπœ”1 πœ™1 ) (𝜏, πœ‰) (Sπœ”2 πœ™2 ) (𝜏, πœ‰)π‘‘πœ π‘‘πœ‰ (15)

= ∫ πœ™1 (𝑑) πœ™2 (𝑑) 𝑑𝑑. R𝑛

R𝑛

(Sπœ” πœ™1 ) (𝜏, πœ‰) Γ— πœ” (𝜏 βˆ’ π‘₯, πœ‰)𝑒𝑖2πœ‹βŸ¨π‘₯,πœ‰βŸ© π‘‘πœ π‘‘πœ‰) πœ™2 (π‘₯) 𝑑π‘₯.

Theorem 7 (Parseval’s formula). Let πœ”1 and πœ”2 be the window functions such that (14)

(18)

(Sπœ” πœ™1 ) (𝜏, πœ‰) (Sπœ” πœ™2 ) (𝜏, πœ‰) π‘‘πœ π‘‘πœ‰

R𝑛

(13)

= ∫ π‘‡βˆ’πœ Iπ‘š (𝑑) πœ™ (𝑑) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑

∫ πœ”1 (𝜏 βˆ’ 𝑑, πœ‰) πœ”2 (𝜏 βˆ’ π‘₯, πœ‚) π‘‘πœ = 𝛿 (π‘₯ βˆ’ 𝑑, πœ‰ βˆ’ πœ‚) .

(17)

Γ— (∫ πœ”1 (𝜏 βˆ’ 𝑑, πœ‰) πœ”2 (𝜏 βˆ’ π‘₯, πœ‰)π‘‘πœ) π‘‘πœ‰ 𝑑𝑑 𝑑π‘₯

R𝑛

R𝑛

R𝑛

R𝑛

= ∫ πœ” (βˆ’π‘₯, πœ‰) πœ™ (𝜏 + π‘₯) π‘’βˆ’π‘–2πœ‹βŸ¨πœ+π‘₯,πœ‰βŸ© 𝑑π‘₯

Sπœ” := ∫ πœ” (βˆ’π‘₯, πœ‰) π‘‡βˆ’πœ π‘€βˆ’πœ‰ 𝑑π‘₯.

(∫ πœ™1 (𝑑) πœ”1 (𝜏 βˆ’ 𝑑, πœ‰) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑) Γ— (∫ πœ™2 (π‘₯)πœ”2 (𝜏 βˆ’ π‘₯, πœ‰)π‘’βˆ’π‘–2πœ‹βŸ¨π‘₯,πœ‰βŸ© 𝑑π‘₯) π‘‘πœ π‘‘πœ‰

R𝑛

R𝑛

(16)

(19) Hence πœ™1 (𝑑) = ∬

R𝑛

(Sπœ” πœ™1 ) (𝜏, πœ‰) πœ” (𝜏 βˆ’ 𝑑, πœ‰)𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‰βŸ© π‘‘πœ π‘‘πœ‰.

(20)

Definition 9. Let πœ” be a window function and Sπœ” is the Stransform. Then the transform Sβˆ—πœ” defined by ⟨Sπœ” πœ™, πœ“βŸ© = βŸ¨πœ™, Sβˆ—πœ” πœ“βŸ©

(21)

The Scientific World Journal

3

is called the adjoint of Sπœ” . If πœ™ ∈ 𝐿2 (R𝑛 ) and πœ“ ∈ 𝐿2 (R𝑛 Γ— R𝑛 ), then (21) implies that (Sβˆ—πœ” πœ“) (𝑑) = ∬ πœ“ (𝜏, πœ‰) πœ” (𝜏 βˆ’ 𝑑, πœ‰)𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‰βŸ© π‘‘πœ π‘‘πœ‰, R𝑛

(22)

where 𝑑, 𝜏, πœ‰ ∈ R𝑛 . Theorem 10 (Parseval’s formula for Sβˆ—πœ” ). Let πœ”1 and πœ”2 be the window functions that satisfy the condition (14). If πœ“1 , πœ“2 ∈ 𝐿2 (R𝑛 Γ— R𝑛 ), then

(23) = ∬ πœ“1 (𝜏, πœ‰) πœ“2 (𝜏, πœ‰) π‘‘πœ π‘‘πœ‰, R𝑛

and the Plancherel formula is σ΅„© σ΅„© σ΅„©σ΅„© βˆ— σ΅„©σ΅„© σ΅„©σ΅„©Sπœ” πœ“σ΅„©σ΅„©πΏ2 (R𝑛 ) = σ΅„©σ΅„©σ΅„©πœ“σ΅„©σ΅„©σ΅„©πΏ2 (R𝑛 Γ—R𝑛 ) .

(24)

Proof. Consider ∫ (Sβˆ—πœ”1 πœ“1 ) (𝑑) (Sβˆ—πœ”2 πœ“2 ) (𝑑) 𝑑𝑑 R𝑛

= ∫ (∬ πœ“1 (𝜏, πœ‰) πœ”1 (𝜏 βˆ’ 𝑑, πœ‰)𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‰βŸ© π‘‘πœ π‘‘πœ‰) R𝑛

R𝑛

Γ— (∬ πœ“2 (𝛼, πœ‚) πœ”2 (𝛼 βˆ’ R𝑛

Sβˆ—πœ” = Sβˆ’1 πœ” . This proves the theorem.

Definition 12 (pseudodifferential operator). Let 𝜎 be a (measurable) function or a tempered distribution on R𝑛 . Then the operator 𝐾𝜎 πœ™ (𝑑) = ∫ 𝜎 (𝑑, πœ‰) πœ™Μ‚ (πœ‰) 𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‰βŸ© π‘‘πœ‰ R𝑛

(29)

The pseudodifferential operator plays an important role in the theory of partial differential equations. The pseudodifferential operator has been studied on function and distribution spaces by many authors. Details of the concept can be found in [9, 10]. 2.1. Relation between the S-Transform and Pseudodifferential Operator. Here we give a direct relation between S-transform and pseudodifferential operator which will may be very useful in the study of S-transform of distribution spaces. The continuous S-transform of a function πœ™ with respect to a window function πœ” is given by (Sπœ” πœ™) (𝜏, πœ‰) = ∫ πœ™ (𝑑) πœ” (𝜏 βˆ’ 𝑑, πœ‰) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑 R𝑛

𝑑, πœ‚)𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‚βŸ© 𝑑𝛼 π‘‘πœ‚) 𝑑𝑑

= ∫ πœ™ (𝜏 βˆ’ π‘₯) πœ” (π‘₯, πœ‰) π‘’βˆ’π‘–2πœ‹βŸ¨(πœβˆ’π‘₯),πœ‰βŸ© 𝑑π‘₯ R𝑛

= ∫∭ πœ“1 (𝜏, πœ‰) πœ“2 (𝛼, πœ‚)𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‰βˆ’πœ‚βŸ©

= π‘’βˆ’π‘–2πœ‹βŸ¨πœ,πœ‰βŸ© ∫ π‘‡βˆ’πœ πœ™ (βˆ’π‘₯) πœ” (π‘₯, πœ‰) 𝑒𝑖2πœ‹βŸ¨π‘₯,πœ‰βŸ© 𝑑π‘₯

R𝑛

Γ— (∫ πœ”1 (𝜏 βˆ’ 𝑑, πœ‰)πœ”2 (𝛼 βˆ’ 𝑑, πœ‚) 𝑑𝑑) π‘‘πœ π‘‘πœ‰ 𝑑𝛼 π‘‘πœ‚ R𝑛

R𝑛

= π‘’βˆ’π‘–2πœ‹βŸ¨πœ,πœ‰βŸ© ∫ F [F (π‘‡βˆ’πœ πœ™)] (π‘₯) R𝑛

= ∫∭ πœ“1 (𝜏, πœ‰) πœ“2 (𝛼, πœ‚)𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‰βˆ’πœ‚βŸ©

Γ— πœ” (π‘₯, πœ‰) 𝑒𝑖2πœ‹βŸ¨π‘₯,πœ‰βŸ© 𝑑π‘₯

R𝑛

Γ— 𝛿 (𝜏 βˆ’ 𝛼, πœ‰ βˆ’ πœ‚) π‘‘πœ π‘‘πœ‰ 𝑑𝛼 π‘‘πœ‚

= π‘’βˆ’π‘–2πœ‹βŸ¨πœ,πœ‰βŸ© 𝐾𝜎 [F (π‘‡βˆ’πœ πœ™)] (πœ‰) , (30)

= ∬ πœ“1 (𝜏, πœ‰) πœ“2 (𝜏, πœ‰) π‘‘πœ π‘‘πœ‰. R𝑛

(28)

is called the pseudodifferential operator.

∫ (Sβˆ—πœ”1 πœ“1 ) (𝑑) (Sβˆ—πœ”2 πœ“2 ) (𝑑) 𝑑𝑑 R𝑛

Thus

(25)

where 𝜎(πœ‰, π‘₯) = πœ”(π‘₯, πœ‰).

This proves the theorem.

3. The S-Transform of Distributions

Theorem 11. If the window function πœ” satisfies the condition (14), then

In this section we will investigate the S-transform of tempered distribution by means of the Fourier transform.

Sπœ” Sβˆ—πœ” = 𝐼 = Sβˆ—πœ” Sπœ” ,

Theorem 13. If πœ” ∈ S(R2𝑛 ), then Sπœ” maps S(R𝑛 ) into S(R2𝑛 ).

(26)

where 𝐼 is the identity operator.

Proof. By (6) we have (Sπœ” πœ™) (𝜏, πœ‰) = Fβˆ’1 1 [F1 (πœ™) (𝛼 + πœ‰) F1 (πœ”) (𝛼, πœ‰)] (𝜏, πœ‰) . (31)

Proof. By definition Sβˆ—πœ” [Sπœ”1 πœ“] (𝑑) = ∬

R𝑛

(Sπœ”1 πœ“) (𝜏, πœ‰) πœ” (𝜏 βˆ’ 𝑑, πœ‰)e𝑖2πœ‹βŸ¨π‘‘,πœ‰βŸ© π‘‘πœ π‘‘πœ‰

= Sβˆ’1 πœ” [Sπœ”1 πœ“] (𝑑) . (27)

Thus, (Sπœ” πœ™) ∈ S(R2𝑛 ), since the Fourier transform is continuous isomorphism from S(R𝑛 ) to S(R𝑛 ), and its inverse is also a continuous isomorphism from S(R𝑛 ) to S(R𝑛 ) (see [11], page 66-67).

4

The Scientific World Journal

Theorem 14. If πœ” ∈ S(R2𝑛 ), then Sπœ” maps SσΈ€  (R𝑛 ) into SσΈ€  (R2𝑛 ). Proof. For any 𝑓 ∈ SσΈ€  (R𝑛 ) and πœ“ ∈ S(R2𝑛 ), we have ⟨(Sπœ” 𝑓) (𝜏, πœ‰) , πœ“ (𝜏, πœ‰)⟩ =∬

R𝑛

(∫ 𝑓 (𝑑) πœ” (𝜏 βˆ’ 𝑑, πœ‰) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© 𝑑𝑑) πœ“(𝜏, πœ‰) π‘‘πœ π‘‘πœ‰ R𝑛

(in fact πœ“ = πœ“, since πœ“ ∈ S) = ∫ 𝑓 (𝑑) (∬ πœ“(𝜏, πœ‰)πœ” (𝜏 βˆ’ 𝑑, πœ‰) π‘’βˆ’π‘–2πœ‹βŸ¨π‘‘,πœ‰βŸ© π‘‘πœ π‘‘πœ‰) 𝑑𝑑 R𝑛

R𝑛

= βŸ¨π‘“, πœ™βŸ© , (32) where πœ™ (𝑑) = ∬ πœ“ (𝜏, πœ‰) πœ” (𝜏 βˆ’ 𝑑, πœ‰)𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‰βŸ© π‘‘πœ π‘‘πœ‰ R𝑛

= ∫ (πœ“ βˆ— (Iπœ”)) (𝑑, πœ‰) 𝑒𝑖2πœ‹βŸ¨π‘‘,πœ‰βŸ© π‘‘πœ‰

(33)

R𝑛

𝑛 = Fβˆ’1 2 (πœ“ βˆ— (Iπœ”)) (𝑑) ∈ S (R ) .

Thus, (Sπœ” 𝑓)(𝜏, πœ‰) ∈ SσΈ€  (R2𝑛 ). Theorem 15. If πœ” ∈ SσΈ€  (R2𝑛 ), then Sπœ” maps S(R𝑛 ) into SσΈ€  (R2𝑛 ). Proof. If πœ™ ∈ S(R𝑛 ) and πœ“ ∈ S(R2𝑛 ), then π‘ˆπœ™,πœ“ (𝜏, πœ‰) := F (πœ™) (𝛼 + πœ‰)πœ“ (𝛼, πœ‰) ∈ S (R2𝑛 ) .

(34)

Thus for any πœ” ∈ SσΈ€  (R2𝑛 ), we have ⟨(F1 πœ”) (𝛼, πœ‰) , π‘ˆπœ™,πœ“ (𝛼, πœ‰)⟩ =∬ =∬

R𝑛

R𝑛

(F1 πœ”) (𝛼, πœ‰) (Fπœ™) (𝛼 + πœ‰) πœ“ (𝛼, πœ‰) 𝑑𝛼 π‘‘πœ‰ (35) (F1 (Sπœ” πœ™)) (𝛼, πœ‰) πœ“ (𝛼, πœ‰) 𝑑𝛼 π‘‘πœ‰

= ⟨(F1 (Sπœ” πœ™)) (𝛼, πœ‰) , πœ“ (𝛼, πœ‰)⟩ . Thus F1 (Sπœ” πœ™) ∈ SσΈ€  (R2𝑛 ) and hence (Sπœ” πœ™) ∈ SσΈ€  (R2𝑛 ).

Conflict of Interests The authors declare that there is no conflict of interests.

Acknowledgment The author expresses his sincere thanks to Professor R. S. Pathak for his help and encouragement.

References [1] R. G. Stockwell, L. Mansinha, and R. P. Lowe, β€œLocalization of the complex spectrum: the S transform,” IEEE Transactions on Signal Processing, vol. 44, no. 4, pp. 998–1001, 1996.

[2] S. Ventosa, C. Simon, M. Schimmel, J. J. Danobeitia, and A. Manuel, β€œThe S-transform from a wavelet point of view,” IEEE Transactions on Signal Processing, vol. 56, no. 7, pp. 2771–2780, 2008. [3] S. K. Singh, β€œThe S-Transform on spaces of type S,” Integral Transforms and Special Functions, vol. 23, no. 7, pp. 481–494, 2012. [4] S. K. Singh, β€œThe S-Transform on spaces of type W,” Integral Transforms and Special Functions, vol. 23, no. 12, pp. 891–899, 2012. [5] S. K. Singh, β€œThe fractional S-Transform of tempered ultradistibutions,” Investigations in Mathematical Sciences, vol. 2, no. 2, pp. 315–325, 2012. [6] S. K. Singh, β€œThe fractional S-Transform on spaces of type S,” Journal of Mathematics, vol. 2013, Article ID 105848, 9 pages, 2013. [7] S. K. Singh, β€œThe fractional S-Transform on spaces of type W,” Journal of Pseudo-Differential Operators and Applications, vol. 4, no. 2, pp. 251–265, 2013. [8] S. K. Singh, β€œA new integral transform: theory part,” Investigations in Mathematical Sciences, vol. 3, no. 1, pp. 135–139, 2013. [9] K. Grochenig, Foundations of Time-Frequency Analysis, BirkhΒ¨aauser, Boston, Mass, USA, 2001. [10] S. Zaidman, Distributions and Pseudo-Differential Operators, Logman, Essex, UK, 1991. [11] R. S. Pathak, A Course in Distribution Theory and Applications, Narosa Publishing House, New Delhi, India, 2009.

The S-transform of distributions.

Parseval's formula and inversion formula for the S-transform are given. A relation between the S-transform and pseudodifferential operators is obtaine...
497KB Sizes 1 Downloads 3 Views