View Article Online View Journal

PCCP Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. J. Fernée, C. Sinito, P. Mulvaney, P. Tamarat and B. Lounis, Phys. Chem. Chem. Phys., 2014, DOI: 10.1039/C4CP02022G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Physical Chemistry Chemical Physics

View Article Online The  optical  phonon  spectrum  in  CdSe  colloidal  quantum  dots.  DOI: 10.1039/C4CP02022G

  Mark  J.  Fernée1,2,  Chiara  Sinito1,2,  Paul  Mulvaney3,  Philippe  Tamarat1,2,  Brahim   Lounis1,2  *.    

1Univ  Bordeaux,  LP2N,  F-­‐33405  Talence,  France.   2Institut  d’Optique  &  CNRS,  LP2N,  F-­‐33405  Talence,  France.  

Published on 03 July 2014. Downloaded by Kansas State University on 08/07/2014 17:19:04.

3School  of  Chemistry,  The  University  of  Melbourne,  Parkville,  Victoria,  3010,  

Australia.       Absract:   The   direct   coupling   of   excited   electronic   states   to   optical   phonons   in   single   CdSe   colloidal  quantum  dots  is  explored  using  both  photoluminescence  emission  and   excitation   spectroscopies.   We   find   a   broad   optical   phonon   spectrum   associated   with  a  single  fine  structure  state.  Multiple  peaks  in  the  optical  phonon  sideband   are   ascribed   to   different   optical   phonon   types   emanating   from   both   the   core   and   shell  layers.  A  mixed  emission  process  that  involves  the  simultaneous  generation   of  two  different  types  of  optical  phonon  is  also  observed.  In  general,  rather  than   a  single  mode,  each  designated  phonon  type  is  associated  with  a  dispersed  family   of   modes.   Narrow   optical   phonon   sidebands,   consistent   with   the   dominant   LO   mode   are   observed   in   some   nanocrystals.   A   linewidth   analysis   indicates   that   optical   phonon   lifetimes   are   in   the   10   picosecond   range.   We   demonstrate   the   ability  to  selectively  excite  a  specific  band-­‐edge  state  by  directly  exciting  it’s  LO   phonon  sideband.       Introduction:     Optical   phonons   are   responsible   for   the   relaxation   of   highly   excited   carriers   in   bulk   semiconductors.   However   their   role   in   carrier   relaxation   in   quantum   confined  semiconductors,  or  quantum  dots,  is  less  well  known.  A  key  factor  that   distinguishes   quantum   dots   from   their   bulk   counterpart   is   that   discrete   electronic  levels  in  quantum  dots  replace  the  bulk  band-­‐structure,  hence  they  are   often   referred   to   as   artificial   atoms.   In   this   regime,   it   was   proposed   that   if   the   separation   between   the   energy   levels   didn’t   match   the   optical   phonon   energy,   energy  relaxation  would  be  inhibited  due  to  a  phonon  bottleneck1,  2.  The  search   for  a  phonon  bottleneck  has  been  widely  conducted  with  colloidal  nanocrystals   (NCs)   due   to   the   large   degree   of   quantum   confinement   and   hence   wide   energy   level  separations  that  can  be  achieved3-­‐5.  It  was  found  that  there  were  sufficient   additional  relaxation  pathways6,  7  in  these  materials  to  preclude  the  observation   of  a  phonon  bottleneck4.  In  fact,  it  required  significant  NC  engineering  to  finally   observe   this   effect8,   which   highlighted   the   many   possible   relaxation   pathways   in   these   materials.   Therefore   it   is   not   clear   what   role   optical   phonons   play   in   the   relaxation  pathway  following  excitation  to  energies  far  above  the  band-­‐edge.       Optical   phonon   coupling   to   NCs   has   been   studied   using   a   variety   of   different   techniques   both   in   the   time   domain   and   frequency   domain.   The   time   domain   techniques   encompass   coherent   photon   echo9,   10   and   transient   grating11  

 

1  

Physical Chemistry Chemical Physics Accepted Manuscript

Page 1 of 9

Page 2 of 9

View Article Online 12 techniqies   as   well   as   state-­‐resolved   differential   absorption   pump-­‐probe   DOI: 10.1039/C4CP02022G techniques.   In   general   these   techniques   resolve   a   single   LO   phonon   mode   from   an  ensemble  of  NCs.  Frequency  domain  techniques  include  photoluminescence13-­‐ 17  and  Raman  spectroscopies18-­‐24.  Of  all  the  techniques  used  to  study  the  optical   phonon  coupling,  only  the  Raman  spectra  indicate  that  the  optical  phonon  region   of   CdSe   core/shell   NCs   contains   other   optical   phonon   modes,   even   though   the   spectra   are   significantly   broadened.   Recent   studies   of   CdSe/CdS   core   shell   NCs   reveal   a   rich   optical   phonon   spectrum   with   modes   associated   with   the   dominant   longitudinal  optical  (LO)  phonon  of  both  the  CdSe  core  and  CdS  shell  as  well  as   so-­‐called  surface  optical  (SO)  and  CdSe/CdS  interface  (IF)  modes21.  Interestingly,   another   recent   study   that   included   detailed   atomistic   modeling   of   the   Raman   response  suggests  that  the  so  called  SO  modes  do  not  actually  involve  the  surface   of   the   NC   and   are   still   predominantly   associated   with   the   CdSe   core22.   This   same   study   also   predicted   a   dispersed   phonon   mode   spectrum   at   the   single   NC   level   that   combined   to   give   the   ensemble   Raman   response.   This   mode   dispersion   is   likely  to  be  a  fundamental  consequence  of  the  nano-­‐scale  material  and  deserves   further  investigation.     In   general,   techniques   that   study   NC   ensembles   mask   the   effects   of   sample   inhomogeneity.   Thus   single   NC   techniques   can   provide   complementary   information   that   is   not   available   to   ensemble   techniques.   The   optical   phonon   replica   has   been   detected   with   single   NC   spectroscopy14-­‐17.   Individual   spectra   exhibit   a   range   of   apparent   weights   of   the   LO   phonon   replica,   indicating   an   inhomogeneity  in  the  exciton-­‐phonon  coupling  strength  between  different  NCs14.   However,   in   general   single   NC   photoluminescence   (PL)   spectroscopy   of   the   LO   phonon   replica   is   complicated   by   low   signal   to   noise   ratios   as   well   as   spectral   diffusion,   both   of   which   have   precluded   high   resolution   spectroscopy   of   the   phonon  replica.       In  this  letter  we  study  the  optical  phonon  spectrum  in  single  NCs.  Low  resolution   measurements   are   conducted   using   PL   spectroscopy.   Increased   resolution   is   obtained   using   resonant   photoluminescence   excitation   (RPLE)   spectroscopy   of   the   optical   phonon   sideband.   Selective   excitation   of   the   observed   sideband   features   are   used   to   identify   the   optical   phonon   spectrum   associated   with   a   single  band-­‐edge  exciton  state.     Our   experimental   setup   has   been   described   elsewhere26,   27.   Briefly,   we   use   commercial  NCs  with  a  wurtzite  crystal  structure  emitting  at  655  nm  embedded   in   a   polyvinyl   alcohol   matrix   or   a   CdSe/4CdS/1ZnS   core/shell/shell   NCs   with   a   zincblende   crystal   structure   embedded   in   a   polymethylmethacrylate   substrate   and   deposited   on   to   clean   glass   coverslips.   The   sample   is   mounted   in   a   liquid   helium  bath  cryostat  where  the  low-­‐pressure  helium  exchange  gas  medium  can   maintain   a   temperature   of   2   Kelvin.   The   experiment   uses   an   epifluorescence   microsope   geometry   with   a   high   numerical   aperture   microscope   objective   contained  inside  the  cryostat  and  operated  in  a  scanning  confocal  mode  so  that   individual  NCs  can  be  isolated  and  studied.       The   resonant   PL   excitation   scans   are   conducted   using   circularly   polarized   excitation  from  a  cw  dye  laser  operated  in  multimode  configuration  with  a  ~10  

 

2  

Physical Chemistry Chemical Physics Accepted Manuscript

Published on 03 July 2014. Downloaded by Kansas State University on 08/07/2014 17:19:04.

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics

View Article Online GHz  mode  envelope,  which  sets  the  resolution  of  the  technique.  The  tuning   f  the   DOI:o10.1039/C4CP02022G laser  is  conducted  using  a  computer-­‐controlled  stepper  motor  driving  an  intra-­‐ cavity  lyot  filter  using  a  ~16  GHz  step  size.  The  output  power  of  the  dye  laser  is   actively   stabilized   using   a   noise   eater,   resulting   in   a   constant   power   at   the   sample   over   the   entire   scan   range.   The   red-­‐shifted   emission   using   a   low   pass   filter   with   OD   7   rejection   of   the   laser   scatter   resulting   in   background-­‐free   detection  for  the  low  excitation  power  of  200  nW  used  in  this  experiment.  RPLE   of   the   band   edge   exciton   is   conducted   by  excitation   of   the   NCs   zero   phonon   lines   with   a   tunable   cw   laser   and   the   detection   of   red   shifted   luminescence   emitted   at   the   optical   phonon   replica.   The   phonon   replica   is   at   a   fixed   energy   transition   (~26meV)  relative  to  the  zero  phonon  lines.  For  the  optical  phonon  absorption   region,   the   RPLE   signal   is   collected   via   the   integrated   ZPL   PL,   which   is     >20   meV   red-­‐shifted   from   the   optical   phonon   sideband   absprption.   The   low   pass   filter   transition   region   occurs   over   ~10   meV   and   the   filter   cutoff     wavelength   is   adjusted   to   each   NC   by   changing     the   incidence   angle   of   the   filter   and   so   is   suitable  for  both  RPLE  variants  described  above.     For  this  study,  NCs  with  multiple  epitaxial  shells  are  necessary  in  order  to  obtain   bright   and   spectrally   stable   emission   at   cryogenic   temperatures.     In   particular   we  have  found  that  an  outer  ZnS  layer  is  necessary  for  both  bright  emission  and   to   inhibit   excessive   dynamics   involving   photo-­‐generated   charges   and   surface   states28,   which   can   result   in   low   photoluminescence   efficiency   and   spectral   stability.    In  Fig.  1  we  show  the  photoluminescence  (PL)  spectrum  obtained  from   a   single   NC   at   2   K.   In   this   case,   there   is   a   single   zero   phonon   line   (ZPL),   characteristic  of  emission  from  the  trion  state28-­‐30.  Importantly,  we  find  that  both   the  optical  phonon  energy  and  coupling  to  the  excited  state  exhibit  no  noticeable   change  between  the  neutral17  and  trion  states  of  the  NC.  Although  we  note  that   the   trion   created   by   photocharging   has   an   external   counter-­‐charge   and   so   the   overall  NC  charge  remains  unchanged.  The  single  ZPL  of  the  trion  state  enables  a   detailed   examination   of   the   optical   phonon   side   bands   associated   with   a   single   spectral   line   using   an   integration   time   of   14   minutes,   enabling   the   detection   of   both  the  first  and  second  phonon  replicas.  We  plot  the  spectrum  intensity  with   both   linear   and   logarithmic   intensity   axes.   The   logarithmic   data   clearly   reveals   the   structure   in   the   weak   phonon   bands   from   which   we   identify   both   the   contributions  from  the  CdSe  core  optical  phonons  as  well  as  those  from  the  CdS   shell.   In   addition   to   the   features   generally   attributed   to   the   LO   phonon   is   the   appearance   of   a   clear   shoulder   at   energies   above   the   CdSe   LO   peak,   corresponding   to   emission   of   phonons   with   lower   energy   than   that   of   the   LO   phonon.   This   shoulder   is   also   clearly   repeated   in   the   second   replica.   The   appearance   of   such   a   feature   is   consistent   with   the   interaction   with   SO   and   interface  phonons  that  have  been  observed  in  Raman  spectroscopy  of  CdSe  NCs21.   We   also   note   that   the   second   replica   is   a   compound   spectrum   of   a   (1+1)   type,   where  one  of  the  optical  phonons  is  the  CdSe  LO  phonon.  Thus  the  second  replica   is  approximately  a  factor  of  0.1  smaller  than  the  previous  replica  but  is  otherwise   reproduced  over  the  same  energy  scale.      

 

3  

Physical Chemistry Chemical Physics Accepted Manuscript

Published on 03 July 2014. Downloaded by Kansas State University on 08/07/2014 17:19:04.

Page 3 of 9

Page 4 of 9

View Article Online

Published on 03 July 2014. Downloaded by Kansas State University on 08/07/2014 17:19:04.

DOI: 10.1039/C4CP02022G

 

Figure  1.  PL  spectrum  of  a  single  charged  NC  at  2  K  obtained  with  an  excitation  irradiance   of  25  Wcm-­‐2  and  an  integration  time  of  14  minutes.  The  lower  spectrum  is  plotted  with  a   logarithmic  vertical  axis  to  enhance  the  optical  phonon  replicas.  

  The   use   of   PL   spectroscopy   to   study   the   optical   phonon   interaction   with   single   NCs   is   not   straightforward,   as   it   requires   long   integration   times   and   NCs   exhibiting   exceptional   spectral   stability.   For   example   the   data   in   Fig.   1   were   obtained   with   the   lowest   spectral   resolution   to   enhance   the   signal   to   noise   ratio.   In   order   to   simultaneously   increase   the   signal   to   noise   ratio   as   well   as   the   spectral   resolution   we   use   RPLE,   which   enables   the   study   of   optical   phonon   sideband  absorption31  that  exists  on  the  high  energy  side  of  the  ZPL,  shifted  by   one  optical  phonon  energy.  Optical  phonon  sideband  absorption  corresponds  to   the  absorption  of  a  photon,  which  simultaneously  creates  an  exciton  state  as  well   as   an   optical   phonon.   In   theory,   the   absorption   sideband   should   be   the   mirror   image   of   the   red-­‐shifted   optical   phonon   sideband   observed   in   emission   in   the   adiabatic   limit.   However,   it   has   been   shown   that   optical   phonon   interaction   is   actually   non-­‐adiabatic31,   which   may   affect   the   naïve   symmetry   expectation   between  the  optical  phonon  sideband  observed  in  emission  and  absorption.  The   optical   phonon   absorption   band   can   be   extremely   important   for   quantum   technologies,  as  specific  phonon  sidebands  can  enable  off-­‐resonant  excitation  of   a  specific  exciton  state32-­‐34.       In  Fig.  2  we  use  two  RPLE  scans  to  reveal  the  spectral  region  close  to  the  band-­‐ edge.   The   low   energy   RPLE   scan   obtains   its   signal   from   the   red-­‐shifted   optical   phonon   band   (as   shown   in   Fig.   1)   in   order   to   reveal   the   band-­‐edge   detail   fine   structure   states.   Here   we   have   identified   spectral   lines   corresponding   to   the   optically   allowed   transitions   (bright   exciton   states).   The   second   part   of   the   spectrum  consists  of  an  RPLE  scan  that  obtains  its  signal  from  the  ZPL  emission   in  order  to  enhance  the  sensitivity  to  the  optical  phonon  sideband.  Here  we  see   what   appear   to   be   two   regions   associated   with   optical   phonons   in   the   CdSe   core35-­‐37  and  CdS  shell  regions.  Arrows  indicate  the  LO  phonon  energies  relative   to  the  0U  state,  which  has  a  large  oscillator  strength.  Of  particular  interest  is  the  

 

4  

Physical Chemistry Chemical Physics Accepted Manuscript

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics

Published on 03 July 2014. Downloaded by Kansas State University on 08/07/2014 17:19:04.

View Article Online appearance   of   a   narrow   peak   at   the   LO   phonon   energy   as   well   as   other   structure   DOI: 10.1039/C4CP02022G at  lower  energies  which  we  will  discuss  in  more  detail  below.    

 

Figure  2.  RPLE  spectra  of  a  single  NC  where  the  band-­‐edge  fine  structure  signal  is  obtained   by  monitoring  the  LO  phonon  replica,  while  the  signal  from  higher  energy  optical  phonon   sideband  scan  is  derived  from  the  band-­‐edge  PL.  LO  phonon  energies  for  both  the  CdSe  core   and  CdS  shell  are  indicated.  

  The  RPLE  signal  around  the  LO  phonon  energy  associated  with  the  CdSe  core,  is   expanded   in   Fig.   3a,b.   In   Fig.   3a,   we   show   the   optical   phonon   sideband   region   obtained   from   four   different   NCs.   Each   of   these   NCs   has   a   rod-­‐like   band-­‐edge   spectrum  with  a  dominant  0U  line  observed  in  RPLE  of  the  band  edge.  Thus  the   optical   phonon   sideband   should   be   dominated   by   modes   coupled   to   the   0U   state.   This   then   explains   the   emergence   of   a   similar   three-­‐peaked   structure   observed   across   these   NCs.   We   tentatively   associate   the   three   peaks   to   different   optical   phonon   modes,   nominally   associated   with   the   SO   branch,   and   interface   mode   (IF)  associated  with  the  CdSe/CdS  core  shell  interface  and  an  LO  phonon  mode21.   However   we   see   in   Fig.   3b   that   these   modes   actually   have   significant   structure   associated  with  each  peak.  The  series  of  four  RPLE  scans  of  the  same  NC  shown   in   Fig.   3b   is   used   to   show   the   repeatability   of   the   structure   between   scans.   Multiple   scans   of   the   optical   phonon   sideband   are   necessary   as   for   such   broad   features,   the   RPLE   scan   is   more   susceptible   to   spectral   diffusion,   which   is   responsible   for   the   differences   between   scans.   Addition   scans   (not   shown)   show   the  peaks  are  very  sensitive  to  spectral  diffusion,  which  tends  to  blur  or  remove   the   structure,   thus   ensuring   that   they   are   not   experimental   artefacts.   The   observed   richly   structured   mode   families   have   been   predicted   using   atomistic   calculations   for   small   CdSe   NCs22.   One   might   expect   an   enhancement   of   this   effect  in  core/shell  structures  due  to  interfacial  strain  introducing  variations  in   the   crystal   lattice.   We   also   notice   that   in   some   NCs   there   appears   a   dominant   sharp  LO  mode,  although  shifted  to  higher  energy  than  the  LO  phonon  associated   with   bulk   CdSe.   Such   a   blue   shift   is   expected   from   NCs   as   the   CdS   shell   thickness   increases21.      

 

5  

Physical Chemistry Chemical Physics Accepted Manuscript

Page 5 of 9

Page 6 of 9

View Article Online

Published on 03 July 2014. Downloaded by Kansas State University on 08/07/2014 17:19:04.

DOI: 10.1039/C4CP02022G

 

 

Figure   3.   RPLE   scans   of   the   CdSe   optical   phonon   sideband.   (a)   RPLE   scans   from   four   different  NCs  indication  the  presence  of  thee  dominant  phonon  modes.  (b)  Successive  RPLE   scans  from  a  single  NC  revealing  underlying  structure  in  each  of  the  modes.  

  We   note   that   the   different   optical   phonon   modes   are   relatively   sharp,   of   order   100 µeV   full   width   at   half   maximum   (fwhm),   indicative   of   optical   phonon   lifetimes   of   approximately   10   picoseconds.   This   lifetime   is   comparable   to   the   5   ps  decoherence  lifetime  found  in  pure  CdSe  NCs  using  a  pump/probe  technique12   and  is  also  compatible  with  the  slowest  intraband  relaxation  rates  reported  for   CdSe  NCs38  and  similar  to  lifetimes  observed  in  other  materials39.       We   test   the   association   of   the   optical   phonon   spectrum   to   the   different   band-­‐ edge   states   by   directly   exciting   different   energies   along   the   optical   phonon   region   and   recording   the   band-­‐edge   exciton   PL   spectrum.   In   Fig   4a   we   show   RPLE   scans   of   the   band-­‐edge   states   and   the   optical   phonon   spectrum   with   different   excitation   points   are   indicated.   This   NC   exhibits   zero   field   splitting   of   the   1L   state   that   has   been   associated   with   NC   anisotropy   that   breaks   the   cylindrical   symmetry42,   43.   The   resultant   PL   observed   with   this   optical   phonon   sideband   excitation   are   shown   in   Fig.   4b   and   compared   to   the   standard   PL   spectrum   obtained   by   exciting   far   above   the   band-­‐edge.   We   first   excite   at   precisely  1  LO  phonon  energy  from  the  highest  0U  state  (P1  excitation)  and  see   that   compared   with   the   non-­‐resonant   excitation   PL   case,   emission   from   the   0  U   state   is   strongly   enhanced,   indicating   the   LO   phonon   peak   is   associated   with   this   state33,   34,   44-­‐46.   This   spectrum   remains   unchanged   as   we   lower   the   excitation   energy  to  the  position,  P2,  indicating  that  the  entire  optical  phonon  spectrum  is   associated   with   the   0U   state,   which   has   the   largest   oscillator   strength   of   the   band-­‐edge  states  in  this  rod-­‐like  region.  Finally  at  the  lowest  energy  position,  P3,   we   find   that   the   lower   energy   states   are   predominantly   excited,   marking   the   edge   of   the   optical   phonon   region   associated   with   the   0U   state.   Whilst   clearly   demarking   the   optical   phonon   spectrum   associated   with   a   single   state,   our   results   also   show   that   it   is   possible   to   use   optical   phonon   sidebands   to   selectively  excite  different  band-­‐edge  states.      

 

6  

Physical Chemistry Chemical Physics Accepted Manuscript

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics

View Article Online

Published on 03 July 2014. Downloaded by Kansas State University on 08/07/2014 17:19:04.

DOI: 10.1039/C4CP02022G

 

Figure  4.  Direct  excitation  of  the  optical  phonon  sideband  at  2  K.  (a)  An  RPLE  scans  of  a   single  NC  revealing  the  band-­‐edge  and  optical  phonon  sideband  structures.  The  LO  phonon   energy   relative   to   the   0U   state   is   indicated.   The   labeled   points   represent   the   different   excitation  energies  employed.  (b)  The  band-­‐edge  emission  spectra  obtained  using  standard   non-­‐resonant   pumping   (PL)   and   those   obtained   by   exciting   the   various   labeled   optical   phonon  sideband  modes  (P1-­‐P3).  

  In   conclusion,   we   have   probed   the   coupling   of   the   excited   state   of   a   NC   to   optical   phonons  at  the  single  NC  level,  revealing  a  complex  optical  phonon  structure  that   have  previously  been  assigned  as  LO,  SO  and  IF  modes.  The  apparent  dispersion   in  the  mode  energies  could  have  detrimental  implications  for  energy  dissipation   models   that   assume   a   single   LO   phonon   frequency.   In   fact   the   relatively   long   optical   phonon   lifetimes   indicate   that   single   NCs   are   relatively   high-­‐Q   phonon   resonators   and   that   optical   phonons   are   only   weakly   coupled   to   the   local   environment.   Finally   we   have   demonstrated   for   the   first   time   the   possibility   to   use  optical  phonon  sideband  excitation  to  directly  excite  specific  band-­‐edge  fine   structure   states.   Such   new   excitation   schemes   have   the   potential   for   selective   quantum  state  preparation,  which  can  be  used  to  tailor  the  emission  properties   single   NCs.   Precise   control   of   the   band-­‐edge   state   populations   can   have   important   implications   for   novel   quantum   applications33,   34,   44-­‐46   and   advanced   light  sources.           References:     1.   H.  Benisty,  C.  M.  Sotomayor-­‐Torres  and  C.  Weisbuch,  Physical  Review  B,   1991,  44,  10945–10948.   2.   U.  Bockelmann  and  G.  Bastard,  Physical  Review  B,  1990,  42,  8947–8951.   3.   S.  Xu,  A.  A.  Mikhailovsky,  J.  A.  Hollingsworth  and  V.  I.  Klimov,  Physical   Review  B,  2002,  65,  045319.   4.   R.  R.  Cooney,  S.  L.  Sewall,  K.  E.  H.  Anderson,  E.  A.  Dias  and  P.  Kambhampati,   Physical  Review  Letters,  2007,  98,  177403.  

 

7  

Physical Chemistry Chemical Physics Accepted Manuscript

Page 7 of 9

5.   6.   7.   8.   9.   10.   Published on 03 July 2014. Downloaded by Kansas State University on 08/07/2014 17:19:04.

11.   12.   13.   14.   15.   16.   17.   18.   19.   20.   21.   22.   23.   24.   25.   26.   27.   28.   29.  

 

Page 8 of 9

View Article Online B.  L.  Wehrenberg,  C.  Wang  and  P.  Guyot-­‐Sionnest,  The  Journal  of  Physical   DOI: 10.1039/C4CP02022G Chemistry  B,  2002,  106,  10634-­‐10640.   P.  Kambhampati,  Accounts  of  Chemical  Research,  2010,  44,  1-­‐13.   P.  Kambhampati,  The  Journal  of  Physical  Chemistry  C,  2011,  115,  22089-­‐ 22109.   A.  Pandey  and  P.  Guyot-­‐Sionnest,  Science,  2008,  322,  929-­‐932.   R.  W.  Schoenlein,  D.  M.  Mittleman,  J.  J.  Shiang,  A.  P.  Alivisatos  and  C.  V.   Shank,  Physical  Review  Letters,  1993,  70,  1014-­‐1017.   M.  R.  Salvador,  M.  W.  Graham  and  G.  D.  Scholes,  The  Journal  of  Chemical   Physics,  2006,  125,  184709.   V.  M.  Huxter,  A.  Lee,  S.  S.  Lo  and  G.  D.  Scholes,  Nano  Letters,  2009,  9,  405– 409.   D.  M.  Sagar,  R.  R.  Cooney,  S.  L.  Sewall,  E.  A.  Dias,  M.  M.  Barsan,  I.  S.  Butler   and  P.  Kambhampati,  Physical  Review  B,  2008,  77,  235321.   M.  Nirmal,  C.  B.  Murray  and  M.  G.  Bawendi,  Physical  Review  B,  1994,  50,   2293-­‐2300.   S.  A.  Empedocles,  D.  J.  Norris  and  M.  G.  Bawendi,  Physical  Review  Letters,   1996,  77,  3873-­‐3876.   N.  Le  Thomas,  E.  Herz,  O.  Schops,  U.  Woggon  and  M.  V.  Artemyev,  Phys  Rev   Lett,  2005,  94,  016803.   M.  J.  Fernee,  B.  N.  Littleton,  S.  Cooper,  H.  Rubinsztein-­‐Dunlop,  D.  E.  Gomez   and  P.  Mulvaney,  Journal  of  Physical  Chemistry  C,  2008,  112,  1878-­‐1884.   L.  Biadala,  Y.  Louyer,  P.  Tamarat  and  B.  Lounis,  Physical  Review  Letters,   2009,  103,  037404.   A.  V.  Baranov,  Y.  P.  Rakovich,  J.  F.  Donegan,  T.  S.  Prenova,  R.  A.  Moore,  D.  V.   Talapin,  A.  L.  Rogach,  Y.  Masumoto  and  I.  Nabiev,  Physical  Review  B,  2003,   68,  165306.   V.  M.  Dzhagan,  M.  Y.  Valakh,  A.  E.  Raevskaya,  A.  L.  Stroyuk,  S.  Y.  Kuchmiy   and  D.  R.  T.  Zahn,  Nanotechnology,  2007,  18,  285701.   L.  Liu,  X.  Xiao-­‐Liang,  L.  Wen-­‐Tao  and  L.  Hai-­‐Fei,  Journal  of  Physics:   Condensed  Matter,  2007,  19,  406221.   N.  Tschirner,  H.  Lange,  A.  Schliwa,  A.  Biermann,  C.  Thomsen,  K.  Lambert,  R.   Gomes  and  Z.  Hens,  Chemistry  of  Materials,  2011,  24,  311-­‐318.   C.  Lin,  D.  F.  Kelley,  M.  Rico  and  A.  M.  Kelley,  ACS  nano,  2014,  8,  3928-­‐3938.   H.  Lange,  M.  Artemyev,  U.  Woggon,  T.  Niermann  and  C.  Thomsen,  Physical   Review  B,  2008,  77.   S.  V.  Kershaw,  A.  S.  Susha  and  A.  L.  Rogach,  Chemical  Society  Reviews,  2013,   42,  3033-­‐3087.   D.  M.  Sagar,  R.  R.  Cooney,  S.  L.  Sewall  and  P.  Kambhampati,  The  Journal  of   Physical  Chemistry  C,  2008,  112,  9124-­‐9127.   M.  J.  Fernée,  P.  Tamarat  and  B.  Lounis,  Journal  of  Physical  Chemistry   Letters,  2013,  4,  609-­‐618.   Y.  Louyer,  L.  Biadala,  J.  B.  Trebbia,  M.  J.  Fernee,  P.  Tamarat  and  B.  Lounis,   Nano  Letters,  2011,  11,  4370-­‐4375.   M.  J.  Fernée,  C.  Sinito,  Y.  Louyer,  C.  Potzner,  T.-­‐L.  Nguyen,  P.  Mulvaney,  P.   Tamarat  and  B.  Lounis,  Nature  Communications,  2012,  3,  1287.   M.  J.  Fernée,  B.  N.  Littleton  and  H.  Rubinsztein-­‐Dunlop,  ACS  Nano,  2009,  3,   3762-­‐3768.  

8  

Physical Chemistry Chemical Physics Accepted Manuscript

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics

30.   31.   32.   33.  

Published on 03 July 2014. Downloaded by Kansas State University on 08/07/2014 17:19:04.

34.   35.   36.   37.   38.   39.   40.   41.   42.   43.   44.   45.   46.  

View Article Online Y.  Louyer,  L.  Biadala,  P.  Tamarat  and  B.  Lounis,  Applied  Physics  Letters,   DOI: 10.1039/C4CP02022G 2010,  96,  203111.   V.  M.  Fomin,  V.  N.  Gladilin,  J.  T.  Devreese,  E.  P.  Pokatilov,  S.  N.  Balaban  and   S.  N.  Klimin,  Physical  Review  B,  1998,  57,  2415-­‐2425.   B.  D.  Gerardot,  D.  Brunner,  P.  A.  Dalgarno,  P.  Ohberg,  S.  Seidl,  M.  Kroner,  K.   Karrai,  N.  G.  Stoltz,  P.  M.  Petroff  and  R.  J.  Warburton,  Nature,  2008,  451,   441-­‐444.   I.  A.  Akimov,  D.  H.  Feng  and  F.  Henneberger,  Physical  Review  Letters,  2006,   97,  056602.   M.  A.  Pooley,  D.  J.  P.  Ellis,  R.  B.  Patel,  A.  J.  Bennett,  K.  H.  A.  Chan,  I.  Farrer,  D.   A.  Ritchie  and  A.  J.  Shields,  Applied  Physics  Letters,  2012,  100,  211103.   H.  Htoon,  P.  J.  Cox  and  V.  I.  Klimov,  Physical  Review  Letters,  2004,  93.   A.  Hundt,  T.  Flissikowski,  M.  Lowisch,  M.  Rabe  and  F.  Henneberger,   physica  status  solidi  (b),  2001,  224,  159–163.   F.  Gindele,  K.  Hild,  W.  Langbein  and  U.  Woggon,  Physical  Review  B,  1999,   60,  R2157-­‐R2160.   P.  Guyot-­‐Sionnest,  B.  Wehrenberg  and  D.  Yu,  The  Journal  of  Chemical   Physics,  2005,  123,  074709.   X.-­‐Q.  Li  and  Y.  Arakawa,  Physical  Review  B,  1998,  57,  12285-­‐12290.   V.  I.  Klimov,  The  Journal  of  Physical  Chemistry  B,  2000,  104,  6112-­‐6123.   S.  L.  Sewall,  R.  R.  Cooney,  K.  E.  H.  Anderson,  E.  A.  Dias  and  P.  Kambhampati,   Physical  Review  B,  2006,  74,  235328.   S.  V.  Goupalov,  Physical  Review  B,  2006,  74,  113305.   S.  V.  Goupalov,  Physical  Review  B,  2009,  79,  233301.   K.  Kowalik,  O.  Krebs,  A.  Lemaitre,  J.  A.  Gaj  and  P.  Voisin,  Physical  Review  B,   2008,  77,  161305.   H.  Kumano,  H.  Kobayashi,  S.  Ekuni,  Y.  Hayashi,  M.  Jo,  H.  Sasakura,  S.  Adachi,   S.  Muto  and  I.  Suemune,  Physical  Review  B,  2008,  78,  081306.   T.  Flissikowski,  A.  Hundt,  M.  Lowisch,  M.  Rabe  and  F.  Henneberger,   Physical  Review  Letters,  2001,  86,  3172-­‐3175.  

   

 

9  

Physical Chemistry Chemical Physics Accepted Manuscript

Page 9 of 9

The optical phonon spectrum of CdSe colloidal quantum dots.

The direct coupling of excited electronic states to optical phonons in single CdSe colloidal quantum dots is explored using both photoluminescence emi...
1MB Sizes 3 Downloads 3 Views