Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Contents lists available at ScienceDirect

Ultramicroscopy journal homepage: www.elsevier.com/locate/ultramic

Review Article

The correction of electron lens aberrations P.W. Hawkes CEMES-CNRS, B.P. 94347, 31055 Toulouse cedex, France

art ic l e i nf o

a b s t r a c t

Article history: Received 10 December 2014 Received in revised form 7 March 2015 Accepted 12 March 2015

The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended.

Keywords: Electron lens aberration correction Quadrupoles Sextupoles Nion CEOS Transmission electron microscope (TEM) Scanning transmission electron microscope (STEM)

A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. & 2015 Elsevier B.V. All rights reserved.

Contents 1. 2. 3. 4.

Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Aberration correction, the first steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Subsequent progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1. Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2. CEOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3. Nion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.4. FEI, the Transmission Electron Aberration-corrected Microscope (TEAM) project and PICO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.5. JEOL, CREST R005 and CCC (Triple C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.6. Hitachi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.7. Carl Zeiss, Sub-Angstrom Transmission Electron Microscope (SATEM) and Sub-Angstrom Low-Voltage Electron Microscope (SALVE) . . 15 5. Fallout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6. Tailpiece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7. Concluding remarks and acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Note on Appendices A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Appendix A. List of publications on aberration correctors in chronological order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Appendix B. List of publications on aberration correctors in alphabetical order (Harvard convention) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

E-mail address: [email protected] http://dx.doi.org/10.1016/j.ultramic.2015.03.007 0304-3991/& 2015 Elsevier B.V. All rights reserved.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

2

1. Preamble This account of aberration correction in electron microscopy supplements a long article devoted largely to the early history of the subject, from the 1940s to the early years of the present century [62]. Although I believe that the description of the first successful attempts to correct spherical, and later chromatic, aberration was fair and balanced, the coverage of the corresponding literature was deliberately limited to the key publications; that article was inspired by a lecture at a Royal Society meeting on'New possibilities with aberration-corrected electron microscopy', which was followed by talks by the principal contributors to successful aberration correction. Their work was thus described at greater length in the papers by Haider et al. [50], Krivanek et al. [104] and Rose [158] than in mine. Aberration correctors alone now have a large literature and applications of electron microscopes equipped with such correctors naturally fill many pages of journals and conference proceedings. My purpose here is to provide some guidance to the main papers on the correctors themselves. Applications are not covered, with the exception of Patriarche et al. [138], included to show that aberration-corrected microscopy is not confined to graphene and other fashionable specimens. Electron energy-loss spectroscopy (EELS) is not strictly part of aberration correction but, in the case of STEM, it is at least as important an activity as the various imaging modes. I have not included any discussion of spectrometer design but high-performance spectrometers and some of the more spectacular results obtained with them are mentioned. Monochromators are not covered systematically, though publications in which they are intimately connected with correctors are present. Mirror correctors have had to be omitted as they would require a long section of their own. Rival techniques such as ptychography are likewise not included. Appendix A lists the many papers and conference abstracts on aberration correctors in chronological order (that is, by year of publication). There is much duplication in these publications, as authors frequently attend several conferences in the same year as well as publishing full papers. Appendix B lists the same references in alphabetical order as a bibliographic resource.

parasitic aberrations arising from misalignment. In a lengthy study of the feasibility of correcting the spherical and chromatic aberrations of high-voltage electron microscopes by means of octopoles and electrostatic and magnetic quadrupoles, Ronald Moses [126] found that chromatic correction becomes impractical beyond 500 kV. During the following decades, two determined efforts were made to build quadrupole–octopole correctors, by Scherzer in Darmstadt and by Albert Crewe in Chicago. The Darmstadt project was successful, in that the correction of both spherical and chromatic aberration was demonstrated. The corrector, which consisted of five combined electrostatic–magnetic multipoles (creating both quadrupole and octopole fields), was tested on a home-made column, the instabilities of which made any significant improvement in resolution impossible (Fig. 1). Very complete details with useful diagrams are given in the dissertation of Hans Hely (published as [65,66]). In practice, though, adjustment of the corrector on a good microscope would have been unacceptably slow in the absence of the fast feedback techniques that became available only in the 1990s. With Scherzer's death in 1982, the Darmstadt project was discontinued. In Chicago too, the disappointing failure to obtain any useful correction caused the project to be dropped. "Unfortunately, we could never make the corrector work", wrote Crewe later. "The reasons were varied, but the main reason was that the mechanical centre of the multipole lenses was very different from the magnetic centre and in addition, the magnetic centre moved around with the excitation so that we could never align the system and maintain this alignment.

2. Background The fact that the spherical and chromatic aberrations of electron lenses, unlike those of glass lenses, cannot be eliminated by ingenious lens design has been known since 1936, when Otto Scherzer published positive definite expressions for the corresponding coefficients. In 1947, Scherzer described several ways of correcting these aberrations by abandoning one or other of the assumptions on which his earlier proof reposed. During the following decades, attempts were made to put each of his suggestions into practice. Here, we are concerned with only one of these, the use of (transverse) cylindrical lenses (soon to be replaced by quadrupole lenses) and octopoles to cancel the spherical aberration of lenses with rotational symmetry about the optic axis. The early work of Robert Seeliger in Scherzer's laboratory in Darmstadt, continued by Gottfried Möllenstedt in Tübingen, and of Hans Deltrap in Cambridge confirmed that the principle of the method was sound. In 1961, Venyamin Kel'man and Stella Yavor pointed out that the chromatic aberration of a mixed quadrupole, that is, a quadrupole with four electrodes and four magnetic poles at 45° to the latter, can take either sign and is hence a potential Cc corrector [92]. In 1967, David Hardy demonstrated the correctness of this proposal, using a mixed-quadrupole multiplet (triplet and quadruplet); he also examined the influence of such a corrector on spherical aberration and briefly considered

Fig. 1. Longitudinal section sawn through the Darmstadt Cc–Cs corrector. At the top, the liner tube and the copper cooling coils of the objective lens are visible. Below the lower polepiece are the five multipole elements of the corrector; the central element is a long dodecapole with two coils on each pole. Beyond the corrector are deflectors for alignment of the beam before it enters the projectors (courtesy of M. Haider, who developed the dodecapole for his diploma thesis, see Haider et al. [43]).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

3

Full details of the work mentioned above with many references can be found in earlier accounts of aberrations and their correction [155,157,159,60–62].

3. Aberration correction, the first steps

Fig. 2. A system of sextupoles and round lenses with which third- and fourth-order axial aberrations can be corrected without introducing any second-order effects (after Rose [154]; courtesy of the author and Elsevier).

After many heartbreaking attempts, we were forced to admit defeat". Quadrupoles and octopoles are not, however, the only multipole elements that can provide correction. In 1965, I noted that a sextupole possesses an aberration of the same nature as the spherical aberration of a round lens but, owing to the second-order action of an isolated sextupole, I did not give it further thought [55]. In 1979, however, Vernon Beck in Crewe's laboratory realised that a suitable combination of sextupoles could provide correction of spherical aberration [5,6]. In Darmstadt, Harald Rose came to the same conclusion shortly after ([150]; see Fig. 2). That the principle was sound was shown by Chen and Mu [18]. Such a corrector would have the marked advantage over quadrupole– octopole systems that there would be no linear effect. This approach culminated in a paper by Rose outlining "a spherically corrected semi-aplanatic medium-voltage transmission electron microscope" [151], which is the starting point for one theme of the present article (Fig. 3).

By 1990 there was a general feeling that correctors had been given their chance in two major centres of electron optics and had failed to yield any benefit. There seemed little point in spending more time and money on them. This opinion was not, however, shared by the electron optics community and, as we shall see, three projects were launched, which have transformed the world of high-resolution electron microscopy. The European Molecular Biology Laboratory (EMBL) in Heidelberg had been involved in instrument development as well as molecular biology research (see, for example, Refs. [82–84]) so it is not surprising that an attempt to correct the aberrations of a lowvoltage scanning electron microscope (SEM) was made there, by Joachim Zach and Max Haider, the subject of whose dissertation was the design of an electron energy-loss spectrometer [41]. Haider had joined the EMBL in 1983 and in 1987, he succeeded in convincing the EMBL scientific committee that a SEM corrected for spherical and chromatic aberration would be of real value for biological studies. Zach and Harald Rose cooperated in the design of a suitable quadrupole–octopole corrector and in 1990, Haider, now Group Leader, was able to employ Zach to pursue this. The first intimations of such a project were given by Zach and Rose [209] and in particular, by Zach in 1989, the year in which he defended his dissertation on low-voltage electron microscope design [203,204]; progress was reported by Zach and Haider [206] and a year later, Zach and Haider [207,208] showed that a quadrupole–octopole corrector had succeeded in correcting both the spherical and the chromatic aberrations of their instrument. For this, a quadrupole quadruplet was used, in which the two inner quadrupoles were combined electrostatic–magnetic elements (Fig. 4), as in Hardy's proof-of-principle study [54]. The result was impressive: the resolution of the instrument was improved from about 5.6 to 1.8 nm. A less ambitious attempt to correct the spherical aberration of a probe-forming lens was made by Okayama [135,136; see Tamura et al. 182]. This SEM project had not needed external funding, unlike the bold venture to improve the resolution of a high-resolution transmission electron microscope (TEM) by means of the sextupole system proposed by Rose in 1990. A joint application for financial support was submitted to the Volkswagen-Stiftung in 1991 by Max Haider in Heidelberg, Harald Rose in Darmstadt and a newcomer to aberration correction, Knut Urban (then Director of the Institute of Microstructure Research at the Forschungszentrum Jülich) and was finally approved shortly before the end of the same year (after a long struggle, vividly recalled in a tribute to Harald Rose on his 80th birthday [193]). The project began formally on 1 January 1992. By 1995, Haider et al. [44] had shown that the principle of such a corrector was sound, using a 200 kV TEM with an LaB6 gun (Fig. 5). In this "feasibility study", Haider et al. showed that their sextupole corrector was capable of cancelling the spherical aberration of a microscope objective lens; they had not yet reached the point of producing micrographs. For the next stage, the corrector was installed in a new FEI CM200 instrument with a Schottky-emission gun and progress was reported at the European Conference on Electron Microscopy in Dublin in 1996 (published 1998). At that date, the point resolution was improved from 0.24 nm to 0.21 nm, "Not yet a major step", as Haider writes, "but it is the first time ever that the point resolution of a modern high resolution TEM could be improved by means of a multipole corrector" [42]. Uhlemann et al. [187] provided additional

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

4

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

information about the performance of the new microscope. At the Dreiländertagung in 1997, Haider et al. announced that "the point resolution could be improved from 2.4 Å to 1.6 Å, which is also the current information limit set by incoherent aberrations (such as stray fields and instabilities). The information limit of the original microscope was measured to 1.5 Å. Due to the energy width of the electron source the theoretical limit of this particular microscope is about 1.2–1.3 Å" [45]. At the conference (six months after submission of this abstract), Haider showed that a resolution of 1.2– 1.4 Å had been achieved (Haider, personal communication). A paper describing this work was submitted to Nature in 1997 but was rejected; Science too refused it but in 1998, Nature did accept a shorter version of the paper, finally published in April 1998 [46]. Full acounts soon followed ([188,194,47,48]; see Figs. 6 and 7) and the state of the project was described in several papers at the International Congress on Electron Microscopy held in Cancún in 1998 and at the European Conference on Electron Microscopy held in Brno in 2000 (see Appendices A and B). The third of these projects was designed to correct the spherical aberration limiting the probe-size of a Vacuum Generators (VG) scanning transmission electron microscope (STEM), using a quadrupole–octopole corrector (see Wardell and Bovey [200] and von Harrach [199], for details of the VG STEMs). In early 1994, Ondrej Krivanek and L.M. (Mick) Brown in the Cavendish Laboratory, Cambridge, applied to the Paul Instrument Fund of the Royal Society for financial support for such a project. Krivanek was well qualified to undertake such an endeavour as he had experience of the use of sextupole and quadrupole fields for correction in his earlier work on electron energy-loss spectrometer design and on microscope autotuning (see Appendices A and B). Niklas Dellby, who had worked briefly with Krivanek before going on to gain a PhD in theoretical physics at MIT, graduated just before the Cambridge project began and joined it full time. In a STEM, it is necessary to correct only a probe, not an extended image, and for this the quadrupole—octopole combination seemed a good choice. This project too was presented at the Dublin Conference ([97]; Fig. 8). The design of the corrector is described in considerable detail and, a very significant point, the essential roles of the acquisition unit and associated computer control system are underlined. By 1997, Krivanek, Dellby and their team had obtained evidence that their corrector, an antisymmetric quadrupole

Fig. 4. Quadrupole–octopole corrector for a low-voltage scanning electron microscope (after Zach and Haider [208]; courtesy of the authors and Elsevier).

sextuplet with octopoles, was capable of reducing the probe size of the VG microscope on which the corrector was installed [98,99]. These "preliminary results" (the corrector had been operational for only three weeks when the EMAG paper was submitted on the first day of the meeting, 2 September 1997) are in the form of Ronchigrams and measurements generated by automated aberration diagnosis. The first of the three Ronchigrams shows the shadow image obtained when the quadrupoles are excited but the

Fig. 3. A semi-aplanatic corrector for a magnetic objective lens (after Rose [155]; courtesy of the author and Elsevier).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

5

Fig. 5. System of round lenses, quadrupoles and dodecapoles with which the correction of spherical aberration of a 200 kV TEM was first demonstrated (after Haider et al. [44]; courtesy of the authors and Elsevier).

Fig. 6. Early demonstration of the benefits of aberration correction in TEM. Three views of an epitaxial Si(111)/CoSi2 interface. Images (a) and (b) were taken in an uncorrected microscope at Scherzer focus (a) and in the plane of least confusion (b); here, spherical aberration has caused contrast delocalisation. No such delocalisation is seen in (c), taken at Scherzer focus in the corrected instrument with Cs ¼ 0.05 mm (after Haider et al. [48]; courtesy of the authors and Elsevier).

octopoles are not. In the second, the octopoles are excited to provide over-correction (negative Cs). In the third, the octopole excitation corresponds to vanishing overall spherical aberration and the objective is underfocused to create contrast. The aberration diagnosis gives the magnitudes of various aberration coefficients, notably Cs ¼0.12 mm, while the value before correction was Cs ¼ 3.5 mm. Krivanek et al. conclude that "The preliminary results described here show that thanks to the excellent flexibility and precision made possible by computer-controlled power supplies and to new methods of on-line aberration diagnosis, Cs correction in our STEM has been achieved. Its benefits in terms of improved resolution and greater current into a given-size probe promise to be considerable" (Fig. 9). A long paper described the results so far achieved and set out plans for an improved quadrupole–octopole STEM corrector ([100]; see Fig. 10). The impetus for the improved corrector came from Philip Batson at the IBM Watson Research Center, who approached Krivanek in summer 1997 with an offer of funding for the construction of such a corrector for the IBM VG STEM.

This led Krivanek and Dellby to bring their extended research visit to Cambridge to an end and move to Kirkland, near Seattle, where they founded a company for the further development of electron optical devices – Nion. Progress was reported at the Cancún and Brno congresses mentioned above. In a paper by Dellby et al. [25], the design and performance of the improved corrector were described: a point resolution of 1.23 Å was achieved in HAADF at 100 kV. The current in a 1.3 Å probe was some ten times greater than the currents that could be expected at that date without correction. The improved corrector was tested at the Nion works in the spring of 2000 and installed at IBM in June of the same year, where it was fitted into a VG HB501 STEM, modified by Batson to run at 120 kV. It was with this instrument that a resolution below 1 Å was achieved in 2001. A letter was submitted to Nature in 2002 but, like that of Haider in 1997, was initially rejected but accepted after resubmission: "We report here the implementation of a computer-controlled aberration correction system in a scanning transmission electron microscope, which is less sensitive to chromatic aberration. Using this approach, we achieve an electron

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

6

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Fig. 7. Correction of spherical aberration on a Philips CM200 FEG ST. Phase contrast transfer functions for the uncorrected instrument (dashed line: Cs ¼ 1.23 mm, Δf¼ 68 nm, Cc ¼1.3 mm) and the corrected microscope (solid line: Cs ¼ 0.05 mm, Δf¼ 14 nm, Cc ¼1.7 mm). The damping envelope corresponds to ΔE¼ 0.7 eV and a semi-convergence angle of 0.2 mrad (after Haider et al. [48]; courtesy of the authors and Elsevier).

probe smaller than 1 Å. This performance, about 20 times the electron wavelength at 120 keV energy, allows dynamic imaging of single atoms, clusters of a few atoms, and single atomic layer 'rafts' of atoms coexisting with Au islands on a carbon substrate" [4]. Although the evidence presented by Batson was not accepted uncritically, all such reservations were swept away in the paper by Nellist et al. [134], in which the pairs of silicon columns in a silicon crystal observed in the [112] orientation were imaged in a VG HB603U 300 kV STEM equipped with the Nion corrector. With a probe-size of the order of 60 pm, the columns 78 pm apart are clearly visible in the ADF image (Fig. 11).

Fig. 9. The central part of the corrector used by Krivanek et al. to correct the spherical aberration of a VG STEM in 1997 (courtesy of O.L. Krivanek).

4. Subsequent progress 4.1. Evolution Once the two types of correctors had demonstrated their ability to provide a real improvement of the resolution of electron microscopes, CEOS [Corrected Electron Optical Systems] GmbH, the company established by Max Haider and Joachim Zach in Heidelberg in 1996, began to supply sextupole correctors to the major manufacturers of transmission electron microscopes while Nion, the company launched by Ondrej Krivanek and Niklas Dellby in

Fig. 8. The quadrupole–octopole corrector employed by Krivanek et al. to correct the spherical aberration of the probe-forming lens of a VG STEM. (Left) paraxial trajectories in the x–z and y–z planes, where the optic axis coincides with the z-axis. (Right) the STEM column including the corrector (after Krivanek et al. [97]; courtesy of the authors).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Fig. 10. The principal optical elements of second-generation aberration-corrected STEM, showing paraxial trajectories. Q ¼quadrupole, O¼octopole, C ¼ condenser, OL¼ probe-forming lens (after Krivanek et al. [100]; courtesy of the authors and Elsevier).

Kirkland (WA) in 1997 furnished quadrupole–octopole correctors to be retrofitted to VG STEMs. During the next few years, these companies evolved along rather different lines, which we explore in the following sections. Firstly however, we make a general survey of the terrain. Since so many of the earlier attempts at correction had foundered as a result of parasitic aberrations, the defects that arise from imperfect alignment, inhomogeneity in the metal of the lens yokes and similar departures from the ideal design, control of these aberrations in the new correctors was an urgent need. The study of these aberrations goes back to the 1940s and 1950s (Glaser, 1942; Glaser and Schiske, 1953; Sturrock, 1951; Meyer, 1961a,b; see Appendices A and B) but, apart from astigmatism, for which a remedy, the stigmator, was soon found, they subsequently attracted little attention until the Darmstadt work was maturing [66]. Interest revived in the 1990s (Krivanek and Fan, 1992a,b; Krivanek and Leber, 1993, 1994; Krivanek, 1994; [169,97,188,100]; see Appendices A and B). Aberrations have been measured for the most part with the aid of the Zemlin tableau ([210] and Appendices A and B) but the alternative approach devised by Meyer et al. [123,124] has the double advantage that it usually succeeds when the Zemlin method cannot be used and it can be employed with crystalline specimens as well as amorphous layers. In a first step, a phase correlation function, defined by

⎡ c * c2 PCF (x) = FT −1 ⎢F (k) 1 ⎢ c1* c2 ⎣

⎤ ⎥ ⎥ ⎦

is introduced. The functions c1 and c2 are the Fourier transforms of the original images, C1 and C2; F(k) is a real, positive, rotationally symmetric weighting function, the role of which is to suppress the

7

very high spatial frequencies that are usually noise. The phase correlation function is similar to the cross-correlation function but the moduli of the Fourier transforms of the individual images being correlated are now set to unity. It is calculated for the members of a focal series. The resulting data are sufficient to calculate the "symmetric" quantities (defocus, astigmatism and spherical aberration coefficient) accurately. In a second step, an additional variable is added, by tilting the beam. The resulting asymmetry makes it possible to extract all the aberration coefficients, including those characterising the parasitic aberrations. By increasing the number of tilts, higher order aberration coefficients could be obtained in this way, though the values would be increasingly sensitive to noise. Yet another procedure has been described by Saxton [169,170], which has the real attraction that expressions for the various coefficients are obtained in closed form, but only up to third order. The procedure is based on measurements of image displacement or change of diffractogram shape caused by beam tilt. Explicit expressions are given for primary and parasitic aberration coefficients. With the successful correction of spherical aberration, attention focused on the next level of aberrations: the remaining thirdorder geometrical aberrations, notably isotropic and anisotropic coma, the fifth-order geometrical aberrations, the chromatic aberrations and the remaining parasitic aberrations. One feature of Rose's design of 1990 was the absence of isotropic coma – the term "semi-aplanatic" indicated that both spherical aberration and isotropic coma (an aberration that depends linearly on distance from the optic axis) would be absent, the spherical aberration thanks to the corrector and the coma by exploitation of the comafree point in the lens to be corrected ([64], Equation 24.134; [159], Equation 8.79). The anisotropic coma could not be avoided with the two-sextupole arrangement but, by increasing the number of elements, a true aplanat can be designed (Fig. 12). A very full discussion is given by Haider et al. [49]. In order to correct the other geometrical aberrations of third order and some of those of fifth order, a much more complicated scheme was required. In reality, it is often sufficient to correct the fifth-order spherical aberration and sixfold astigmatism and the basic sextupole arrangement can be adjusted to cancel these [129]. Without major redesign, the sextupole corrector could cancel the lower-order parasitic aberrations and the same is true of the quadrupole–octopole corrector. Later, Rose described plans for two new correctors, capable of correcting a wide spectrum of aberrations. The Superaplanator, for use with a TEM, consists of two symmetrical quadrupole quintuplets and at least three octopoles. Symmetry and antisymmetry are omnipresent, without which is it is inconceivable that the device could be made to work. When the correction afforded by the Superaplanator is still not sufficient, Rose's Ultracorrector could take over. This is based on two identical multipole multiplets, each consisting of seven quadrupoles and seven octopoles, themselves symmetric about the central plane of the multiplet; the second such multiplet is antisymmetric with respect to the first and midway between the two is an extra octopole [153,154,159]. For their aplanatic corrector, Haider and colleagues adopted a different configuration, described in Section 4.2. The other aberrations that limit the resolution or, more exactly, impose a limit on the capacity of the microscope to transmit information about the specimen to the image are the chromatic aberrations. As we have seen, Zach and Haider included mixed electrostatic–magnetic quadrupoles in their SEM corrector to provide axial chromatic correction but in order to avoid this complication, microscope manufacturers understandably preferred to reduce the energy spread of the illuminating beam by incorporating a monochromator in the column. By reducing the

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

8

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Fig. 11. (a) Atomic resolution image of a gold island on an amorphous carbon substrate. Rafts of single atomic layers of gold surround the gold island and small clusters and single atoms of gold are also visible. (b) Studies of a germanium–selenium alloy with and without correction. Top: Ronchigrams for uncorrected (left) and corrected (right) imaging. Centre: Images of the [111] projection corresponding to the Ronchigrams. Bottom: Fourier power spectra of these images (after [4]; courtesy of the Nature Publishing Group) (c). Annular dark-field image of Si112 recorded with an aberration-corrected STEM. Image B has been low-pass filtered and the effects of image drift have been eliminated. C shows the modulus of the Fourier transform and the profile along the box indicated. The 444 spacing, 78 pm, corresponds to the smallest atomic column spacing. Information is transferred down to the 713 spacing (71 pm) and weakly down to 814 (61 pm). D is an intensity profile through two column pairs in A, formed by summing over a width of 10 pixels (upper curve), together with a simulated profile (lower curve) (after Nellist et al. [134]; courtesy of the authors and Science).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

9

4.2. CEOS

Fig. 12. The sequence of optical elements in an aplanatic corrector (that is, a corrector capable of correcting anisotropic coma as well as the isotropic component) that does not introduce fourth-order axial aberrations. The large rectangles represent strong sextupoles and the small rectangles, locally antisymmetric pairs of weak sextupoles. The upper figure shows paraxial rays and the rays associated with the primary aberrations. The lower figure shows the values of the anisotropic coma, the fourth-order "three-lobe" aberration and the spherical aberration along the axis (after Haider et al. [49]; courtesy of the authors and Elsevier).

energy spread, ΔE, the product of the chromatic aberration coefficient Cc and ΔE is smaller and hence so is the effect of chromatic aberration. This is of course not correction of the chromatic aberration of the lens, just a realistic attempt to curb its effect. It is for this reason that monochromators are not examined closely here and appear in the Appendices A and B only when they are intimately linked to corrector design. Chromatic aberration correctors of the mixed quadrupole type could of course be incorporated in the Nion corrector, already based on quadrupoles, though in fact the Nion team preferred to design a powerful monochromator. For the TEM, however, CEOS were obliged to abandon their sextupole device and revert to quadrupoles, with all the attendant problems of providing correction over an area, not just around a point (the probe). This was imperative as they were engaged in corrector design for the TEAM project, described below. Chromatic correction was also called for in the SALVE design. The PICO Microscope, an FEI Titan installed at the Ernst-Ruska Centre in Jülich, is likewise fitted with a CEOS Cc corrector. Clear accounts of the optics of the various correctors are given by Krivanek et al. [103,104] and Rose [156].

Research and development at CEOS has been divided between collaboration with the principal microscope manufacturers, who have installed correctors in their TEMs and TEM/STEMs, and various high-resolution projects, notably the the American TEAM and the German SALVE and PICO. Since FEI, JEOL and Hitachi have their own design groups, many in-house modifications and extensions of the basic types of correctors are to be found in the literature. We say a few words about each of these in a later paragraph. CEOS also participated in the Sub-eV Sub-Angstrom Microscope (SESAM) and Sub-Angstrom Transmission Electron Microscope (SATEM) projects funded by the Deutsche Forschungsgemeinschaft (DFG), both based on Zeiss microscopes.. The former did not include aberration correction [12,95]. The SATEM microscope is mentioned briefly in Section 4.7. The basic CEOS corrector (CETCOR) consists of a transfer lens doublet to "extract" the coma-free plane of the objective lens, since this plane is usually immersed in the lens field, followed by the two sextupole elements, themselves separated by a transfer doublet. An "adaptor" lens completes the sequence. A similar configuration for STEM operation (CESCOR) was also developed and was first installed in a JEOL 2010F upstream from the objective as well as a standard corrector downstream. This was the first double-corrected TEM/STEM, about which more information is given in Section 4.5. The design of sextupole correctors for the STEM is examined at considerable length by Müller et al. [129], where strategies for eliminating the fifth order spherical aberration and the six-fold axial astigmatism, a geometrical aberration of sextupole systems, are described critically (Fig. 13). For the needs of TEAM, many improvements were made to the basic corrector, notably correction of fifth-order spherical aberration and six-fold astigmatism; the new version is referred to as the D-COR. However, these correctors are still semi-aplanats – the anisotropic coma is ever present and this has the serious consequence that the field of view in corrected conditions is limited. CEOS therefore designed a true aplanat, named B-CORR. Three sextupoles separated by transfer doublets form the skeleton of the corrector. In addition, two weak sextupole doublets are inserted within the transfer doublets (this is clearly shown in Figs. 2 and 3 of Müller et al. [130]). These weak sextupoles are rotated relative to the main "strong" sextupoles. Writing OL ¼ objective lens, SS¼strong sextupole, WS¼ weak sextupole and TL¼(round) transfer lens, the sequence is thus: OL–TL–TL–SS–TL–WS–WS–TL–SS–TL–WS–WS–TL–SS–TL. This device has been tested on a Hitachi HF-3300 microscope, designed for analytical electron microscopy. For very full details of the degree of correction achieved, we refer to Müller et al. [130]. The sixfold aberration (an intrinsic aberration) is "almost zero" and the "off-axial" [anisotropic] coma "has been reduced by nearly one order of magnitude". A list of the correctors available from CEOS is to be found in [131]. 4.3. Nion The announcement that the Nion aberration corrector had succeeded in improving the resolution of a dedicated STEM and in particular, the key paper by Batson et al. [4], led many owners of VG STEMs to have correctors retrofitted to their instruments. At EMAG-1997, at which Krivanek et al. presented the results of their first tests on the Cambridge instrument, a paper was given on 'A synchrotron in a microscope' in which the author, L.M. Brown, invited his hearers to "suppose that one tenth of the proposed cost of DIAMOND [a synchrotron] and its beam lines could be invested in a national centre for STEM, perhaps sited at the Central

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

10

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Fig. 13. Design of a sextupole corrector for STEM. (Left) Sequence of optical elements; TL ¼transfer lens, ADL ¼ adaptor lens, HP ¼sextupole, DP ¼deflector for alignment, BTlt and BSh ¼beam tilt and shift coils, QPol and Hpol ¼stigmators. (Right): Structure of a sextupole. The outer diameter of the yoke is 152 mm. The liner tube inside the bore is not present in this picture (after Müller et al. [132]; courtesy of the authors and Cambridge University Press).

Laboratory of the Research Councils [in Daresbury] to capitalise on the resources already deployed there. With d15 M capital, and a staff of 30, one could imagine commissioning an array of specialised instruments including dedicated STEM with a performance far superior to any existing instrument: it would deploy multipole lenses according to Krivanek's design…, which would remove spherical aberration and chromatic aberration; single-atom field emitters with brightnesses still higher than any currently in use …; and dedicated detectors to overcome the phase problem…. Now one does not want to get carried away, but it is very reasonable to expect half-Angstrom spatial resolution and 0.25 eV energy-loss resolution in a dedicated machine, operating at 200 kV, achieved within say three years of commencement of work to build it…. What is of great importance is that the community of electron microscopists should agree to such a program" [15]. Four years later, the British Engineering and Physical Sciences Research Council provided funding for what was named the SuperSTEM project, under the direction of Andrew Bleloch with Peter Goodhew as Principal Investigator. Several universities participated directly or indirectly in the scheme, notably Liverpool (where Albert Crewe had been an undergraduate and acquired his PhD), Cambridge and Leeds1. By spring 2002, a second-generation Nion corrector had been installed in the VG HB501UX STEM that 1 We note that the consortium responsible for the SuperSTEM facility currently consists of the Universities of Leeds, Glasgow, Liverpool, Manchester and Oxford; Rik Brydson is Chairman of the Executive Committee and Quentin Ramasse is Director of Research.

subsequently became SuperSTEM1 at Daresbury. Its resolution was improved by the corrector from about 2 Å to below 1 Å. A corrected STEM was thus available to microscopists who had no such instrument in their own laboratories (for a survey, see Ramasse and Brydson [143]). Among the earliest customers for the Nion corrector was Stephen Pennycook at the Oak Ridge National Laboratory (ORNL), where a first corrector was installed on their VG HB501UX in March 2001; in all, three Nion correctors and two Nion microscopes were ordered by him for ORNL. The performance of their 100 kV instrument thus became as good as that of the 300 kV HB603U. In 2002, the latter was fitted with a second-generation Nion corrector and was used intensively. Pennycook's early enthusiasm for STEM and especially for aberration-corrected STEM has catalysed the adoption of the STEM modes, and these are now challenging the TEM in many areas. An important landmark was the paper by Nellist et al. [134] already cited. In the surveys by Pennycook et al. [140] and the books edited by Pennycook and Nellist [139] and by Tanaka [183], the attractions of the scanning modes are spelled out very clearly. Meanwhile, it had become clear to Nion that considerable improvement in performance and convenience of use could be achieved by rethinking the STEM column, with a newly designed (third generation) corrector as an integral part from the outset. Krivanek observed that "The continued use of aging design elements has resulted in a situation where today's highest performance microscopes are so sensitive that the designers of the microscopes' foundations need to be concerned about the pounding of ocean waves on a shore 30 miles distant… Even with these

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

precautions, they remain sensitive to adventitious disturbances such as pressure changes due to doors opening and closing, and the low frequency magnetic fields due to passing trucks". Krivanek and Dellby decided that a new and very stable electron microscope was needed. Their project proceeded in two stages. In the first, they joined forces with John Silcox of Cornell University; with a grant from the NSF to Cornell University, John Silcox acting as Principal Investigator, and supplemented by internal funding from Nion, a STEM column incorporating an ultra-stable specimen stage and a new (third-generation) C3/C5 aberration corrector was developed. This instrument, which used a VG 100 kV cold-fieldemission gun, was designated the UltraSTEM100. In the second stage, financed by a grant from the US DoE, support from the Université Paris-Sud (Orsay) obtained by Christian Colliex of the Laboratoire de Physique des Solides and again, Nion internal funding, a new 200 kV cold-field-emission gun was developed and replaced the VG gun in an upgraded model of the Nion column and electronics. This was known as the UltraSTEM200. Details of their plans for the STEM column were presented in conferences during 2006 and 2007 (see Appendices A and B), culminating in a full paper a year later [102]. The first two models of the UltraSTEM100 were delivered in 2007. One was installed at Daresbury in March and became SuperSTEM 2. The other was delivered to Cornell University in October. This microscope has yielded many

11

very impressive results, among which the paper by Muller et al. [128] on atomic-scale chemical imaging of composition and bonding is a striking example. A review by David Muller [127] places the vocation of aberration-corrected STEM and, in particular, of the new Nion instruments in context. A noteworthy achievement was reported by Ramasse et al. [144], who combined high-angle and medium-angle annular dark-field imaging and EELS to investigate the bonding and electronic structure of singleatom dopants in graphene. The first two all-Nion STEMs were delivered to the Laboratoire de Physique des Solides in Orsay and to ORNL, both in 2011; they have since achieved a resolution of 0.57 Å at 200 kV. The Daresbury facility received their second UltraSTEM (a 100MC Hermes) in February 2015, SuperSTEM III. The third generation Nion corrector consists of sixteen rotatable quadrupoles (i.e. four quadruplets) as well as three quadrupole–octopole elements, the role of which is of course to correct third-order aberrations. The final quadrupole–octopole is imaged onto the coma-free plane of the probe-forming lens by an additional quadrupole triplet situated between the corrector and the lens (Fig. 14). Very complete details can be found in Dellby et al. [26] and Krivanek et al. [102]. Progress with the first and second generation correctors is reviewed by Krivanek et al. [101] and Batson [3]. The next important step is the advent of "Gentle STEM", the formation of annular dark-field images and EELS at

Fig. 14. Axial and field trajectories in a corrector of third- and fifth-order spherical aberration (a symmetric and an asymmetric configuration). The large rectangles represent quadrupole–octopole elements. The four quadrupole quadruplets (not shown explicitly here) are placed at each end of the corrector and between the quadrupole–octopoles (after Dellby et al. [25]; courtesy of the authors).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

12

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

accelerating voltages of 60 kV or less: "In order to attain a probe size not much bigger than 1 Å at 60 keV, a large number of parameters besides the gun brightness needs to be optimised. These include the stability of the microscope high voltage and current power supplies, accuracy of tuning, stabilities of the microscope's environment and of its sample stage, the efficiency of its detection system, and the quality of its vacuum. Not optimising the parameters results in the resolution becoming worse, the data becoming noisier, the atomic images becoming'squiggly', or the sample being destroyed prematurely. The experimental results shown below demonstrate that this multi-faceted task can now be accomplished" [105]. In their conclusions, the authors observe that "Maintaining close to 1 Å resolution at energies significantly lower than 60 kV will require additional instrumental developments, such as STEM chromatic aberration correction, or the development of more mono-energetic electron sources, possibly using monochromation". In the same year, Krivanek et al. [106] showed that "atom-by-atom structural and chemical analysis" was now possible by ADF imaging at 60 kV. In 2011, a STEM capable of functioning at any voltage between 200 kV and 40 kV came into operation. "It can operate at energies from 200 keV down to 40 keV and lower, reach a probe size o60 pm at 200 keV and 123 pm at 40 keV, deliver 1 nA of current into a 200 keV probe o 144 pm in size, and an energy resolution  0.3 eV" [27]. The optics of the various components of this microscope are fully described in this article. Despite the large number of quadrupoles present, chromatic correction by means of combined electrostatic–magnetic quadrupoles is not adopted in Nion instruments. Instead, a new monochromator has been designed, described in [107], which enables the effect of chromatic aberration to be kept within acceptable limits (Fig. 15). An important feature of this α-type monochromator is the presence of sextupoles, which not only permit fine-tuning of the device but also offer the possibility of chromatic correction [104,107]. The electron energy-loss spectrometer used in earlier models was a Gatan Enfina, which was capable only of second-order EELS correction. A three-element quadrupole–octopole coupling module was therefore introduced by Nion in front of the spectrometer;

this amounted to a simple aberration corrector upstream from the EELS and also provided flexible coupling into the dark-field and bright-field STEM detectors and the Ronchigram camera. The Enfina was later replaced by the Gatan Enfinium. The unification of the microscope and spectrometer, essentially by redesign of the post-specimen optics, combined with aberration-corrected probeforming lenses has opened up new areas of analytical electron microscopy. Beam currents in the probe as high as hundreds of picoampères are attainable. Atomic resolution element mapping is a reality. Subsequent development at Nion has concentrated on the analytical performance of their instruments [108,96] but aberration-corrector design is not neglected. Dellby et al. [28] explain how fourth- and higher order parasitic aberrations can be eliminated by adding sextupoles and a dodecapole to the basic quadrupole–octopole corrector; enough degrees of freedom are provided to correct the more serious parasitic aberrations independently. 4.4. FEI, the Transmission Electron Aberration-corrected Microscope (TEAM) project and PICO All the main electron microscope manufacturers have incorporated aberration correction into their most advanced instruments; we examine these in turn in the following sections. In the early 2000s, FEI explored the possibility of designing an inhouse TEM corrector. This consisted of crossed electrostatic and magnetic dipole fields (the Wien filter arrangement) on which a quadrupole field was superimposed, situated between two sextupole units. The latter corrected Cs while the inner part corrected Cc [121,122,176]. Subsequently, however, FEI adopted the CEOS model together with a monochromator. These were installed on a Tecnai F20ST and resolution better than 1 Å was reported [197,35,36]: "This is the first time that an information limit better than 0.1 nm on a 200 kV TEM has been obtained and it is the first experimental proof that the combination of Cs correction and monochromator gives spatial resolution beyond what is achievable on a standard TEM and beyond what is achievable with only Cs correction". A full account of the aberration-corrected Tecnai

Fig. 15. The Nion monochromator. (a). The sequence of elements and rays through the system. Q ¼ quadrupole, S ¼sextupole, VOA ¼virtual objective aperture, MOA ¼monochromator aperture. (b). Correction of unwanted chromatic effects by means of sextupoles (after Krivanek et al. [104 and 107]; courtesy of the authors, the Royal Society and Oxford University Press).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

microscope (SACTEM) installed in the CEMES-CNRS laboratory in Toulouse is to be found in Houdellier et al. [70]; this microscope occupies the site of the 3 MV microscope of the Laboratoire d'Optique Electronique and benefits from the excellent environment created for its predecessor. The Microscopy Society of America has organised several workshops on aberration correction in electron microscopy since 2000. A full account of the first of these is available at www.ipd. anl.gov/anlpubs/2001/08/40555.pdf and is essential reading for anyone interested in the background to the TEAM endeavour. These meetings gave rise to an application for funding to the US Department of Energy for the design and construction of a very high resolution instrument. The partners in the application were the National Center for Electron Microscopy at Lawrence Berkeley Laboratory (now merged with the Molecular Foundry), the Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and the Frederick Seitz Materials Research Laboratory at the University of Illinois in Urbana as well as two industrial firms, FEI as a constructor of electron microscopes and CEOS for the design of aberration correctors. The objective was an electron microscope capable of 0.5 Å spatial resolution in both the TEM and STEM modes; it was recognised that this would eventually require both Cs and Cc correction but a first instrument has Cs correction only. Several microscopes were involved in the development phase. An FEI Titan at ORNL was equipped with a CEOS sextupole corrector capable of correcting third-order spherical aberration but only imperfectly correcting fifth-order spherical aberration. An improved probe-corrector was therefore designed and installed. A

13

brighter Schottky-emission gun was also tested on this instrument (3–6  109 A/cm2 sr at 300 kV). These efforts culminated in the first corrected microscope, TEAM 0.5, delivered to Berkeley in November 2007 and available as a user facility from October 2008. Meanwhile, attention was given to the specimen stage design, detectors and associated software, using a development column at NCEM. The remarkable performance of the microscope is well illustrated in a paper by Erni et al. [30], in which "the 47 pm spacing of a Ge (114) crystal [was] imaged with 11–18% contrast at a 60– 90% confidence level, providing the first direct evidence for sub50 pm resolution in annular dark-field scanning transmission electron microscopy" (Fig. 16). In the next phase, TEAM 0.5 was to be joined by TEAM 1, an FEI Titan 80-300 electron microscope including a Cc corrector as well as Cs correction with a gun brightness between 3 and 6  109 A/cm2 sr capable of 0.5 Å spatial resolution and 0.1 eV energy resolution. After development at CEOS, this microscope was delivered to NCEM Berkeley in June 2009; it was the first functional TEM with Cc correction [51]. It was, however, found that in practice the Cc corrector did not yield the improvement in microscope performance predicted by theory. After lengthy detective work by Stefan Uhlemann, it emerged that the "magnetic field noise caused by thermally driven currents in the conductive material of the focussing elements like lenses and multipoles and in the always present vacuum tubes of the instrument" was the source of the problem [189–192]. This was confirmed by cooling the system and hence reducing the noise, which attenuated this parasitic effect. Stochastic beam deflection caused by the

Fig. 16. Annular dark-field micrograph of germanium in 〈114〉 zone-axis orientation, in which the atom columns are 47 pm apart, obtained with the TEAM microscope (a). Raw data with a model as overlay (left) and the same image after attenuation of high-frequency noise by means of a smooth low-pass filter (40 pm) (right). (b). Line profiles across region 1, raw data in grey, filtered data in black (after Erni et al. [30]; courtesy of the authors and Phys. Rev.).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

14

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Fig. 17. Elements of the delta corrector as installed in (a) a STEM and (b) a TEM. CM ¼ condenser minilens, OM¼ objective minilens, TL ¼ transfer lens (after Sawada et al. [172]; courtesy of the authors and Elsevier).

transverse components of these noise fields is therefore a fundamental limitation on the performance of Cc-corrected instruments. At the time of writing it is not clear whether the very highest performance can be achieved by use of the monochromator or by employing a Cc–Cs corrector. See Dahmen et al. [19], Denes [29], Tiemeijer et al. [184,185], Kisielowski et al. [93] and especially Kisielowski et al. [94]. Stability of the specimen is likewise a preoccupation, see for example Van Dyck et al. [198] and Calderon et al. [16]. The images that showed that the first CEOS sextupole correctors were capable of improving the resolution of a high-performance TEM were obtained at the EMBL in Heidelberg on FEI electron microscopes (the second of these, a CM200, was later transferred to Jülich). Since then, other FEI Titan microscopes have been installed in the Ernst-Ruska Centre in Jülich and in 2011, the PICO instrument was put into service. This is again an FEI electron microscope, equipped with both Cs and Cc correction, as in the TEAM 1 instrument mentioned above. The column includes a monochromator. The corrector is of the achro-aplanatic type. The resolution (TEM and STEM) is 50 pm at 300 kV; at 200 kV, it is 50 pm in TEM and 80 pm in STEM. The TEM resolution at 80 kV is 80 pm. The ability of the instrument to achieve atomic resolution in EFTEM is shown by Urban et al. [196]. Scientists at Jülich and its partner, the Rheinisch-Westfälische Technische Hochschule (RWTH) at Aachen, have drawn attention to a practical hazard. They find that the PICO corrector remains stable for a surprisingly short time [1b,2]. Similar warnings have been emitted by Schramm et al. [171] and Tromp and Schramm [186] but these may be unduly pessimistic.

80 pm; the 300 kV version, the "Grand-ARM" (2014), can achieve 63 pm. By 2014, some 120 such instruments had been installed worldwide. In 2004, a national project was launched by CREST (Competitive Funding for Team-based Basic Researches) in Japan, the objective being a microscope with a resolution of 0.5 Å or better, the R005 (resolution 0.05 nm). The microscope was constructed by JEOL and equipped with double Cs correctors slightly different from the standard CEOS design; with a cold-field-emission gun at 300 kV, it achieved a resolution of 47 pm [164]. Two years later, a new project was launched with a view to achieving high resolution at accelerating voltages as low as 30 kV. This is the Triple C project (Cs correction, Cc correction, Carbon materials). Here too, the microscope was constructed by JEOL Several important modifications to the basic double-sextupole corrector have been introduced by JEOL [167]. Firstly, an asymmetric corrector was constructed, to reduce the effect of higher order parasitic aberrations. This was composed of short and long sextupoles separated by an asymmetric transfer doublet for the STEM mode [164,68]. This is not, however, sufficient for correction of an intrinsic fifthorder axial aberration having six-fold symmetry. Müller et al. [129] described a means of compensating for this in the usual twosextupole device. At JEOL, however, a new corrector employing three dodecapoles was devised – the delta corrector [163,165,166]. Only the chromatic aberration remained uncorrected. For this, an antisymmetric quadrupole doublet is used, each member of the doublet being of the combined electrostatic–magnetic type. The quadrupoles are separated by a transfer doublet of round lenses, between which is an "adjuster" lens for fine tuning. The excitations are chosen in such a way that the focal length of the quadrupole

4.5. JEOL, CREST R005 and CCC (Triple C) JEOL soon incorporated CEOS correctors in their instruments and in particular, pioneered the use of twin correctors, one upstream from the objective for STEM operation, the other downstream for TEM imaging [162]. Early experience with such a microscope installed in the University of Oxford in 2004 is described at length by Hutchison et al. [71]. A second such instrument was delivered to the University of Nagoya in the same year. The performance of the later Atomic Resolution Microscope [ARM] series [168] is described by Ricolleau et al. [145,146] and Mayoral et al. [119]. The 200 kV ARM-200 was launched in 2009 and reaches

Fig. 18. Antisymmetric quadrupole doublet with negative focal length, used for correction of chromatic aberration. Each quadrupole is on the mixed electrostatic– magnetic type (after Sawada et al. [172]; courtesy of the authors and Elsevier).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

15

Fig. 19. Tandem optical system in which the Cc-corrector and the delta corrector are united (after Sawada et al. [167]; courtesy of the authors and Elsevier).

doublet is negative (the focal lengths in the two symmetry planes of antisymmetric quadrupole multiplets, such as the Russian quadruplet, are automatically equal). Hosokawa et al. [69] therefore refer to it as a concave lens (Figs. 17–19). Very recently, the performance of an aberration-corrected TEM/ STEM at a voltage as low as 15 kV has been assessed by Sasaki et al. [160]. "Atomic-resolution imaging was reached with small chromatic aberration and a large uniform phase". This work is a continuation of that of Suenaga et al. [177,178]. 4.6. Hitachi The first aberration-corrected electron microscope from Hitachi is the HD-2700 STEM, described briefly at IMC-16 (Sapporo) in 2006 (Nakamura et al.) and at Microscopy and Microanalysis in 2008 [73] and at length by Nakamura et al. [133] and Inada et al. [74]. This instrument incorporates a CEOS corrector. Its performance is assessed by Inada et al. [74], and Zhu and Wall2 [211]. In recent models, self-alignment of the corrector is provided: "The corrector controller continuously analyses itself from studying its Ronchigram pattern in relation to applied parameters, and learns about itself more and more with time. This results in the unique ability to achieve full Cs corrector optics alignment upon the push of a button within minutes" (Hitachi website). We recall that the CEOS B-CORR corrector has been introduced into the Hitachi analytical electron microsope HF-3300 [161] as mentioned in Section 4.1. A great deal more information about the JEOL and Hitachi designs is available in conference abstracts and in JEOL News and Hitachi Review. The appendices list most of these secondary sources including papers in Kenbikyo [Microscopy], formerly Denshi Kenbikyo [Electron Microscopy]. 4.7. Carl Zeiss, Sub-Angstrom Transmission Electron Microscope (SATEM) and Sub-Angstrom Low-Voltage Electron Microscope (SALVE) Carl Zeiss has been less extensively involved in aberration correction than FEI and JEOL, though the Libra electron microscope is employed in SATEM and SALVE, as mentioned in Section 4.2. An aberration-corrected Libra microscope was used by Bell et al. [7,8] in their attempt to visualise the sequence of base pairs in intact DNA molecules and in their demonstration of atomic resolution at 40 kV [9]. The SATEM microscope, based on a Zeiss Libra, had a Schottkyemission gun followed by an electrostatic Ω monochromator, an 2 This article, published several years ago, has the unusual merit that aberration-corrected instruments from three microscope manufacturers (FEI, Hitachi and JEOL) are described at length and much practical information, concerning the necessary environmental precautions, for example, is included.

accelerator (200 kV), condenser lenses and the objective, a CEOS sextupole doublet Cs corrector, projector lenses, an in-column Ω filter and a second rotation-free projector unit [10]. Benner et al. [11] reported a resolution of 0.9 Å at the 2004 Microscopy and Microanalysis meeting. Soon after this, the original SATEM project was discontinued but in 2007, a Zeiss Libra microscope with aberration correction and a monochromator was installed in the CAESAR Institute in Bonn. The advantage of studying radiation-sensitive specimens at relatively low accelerating voltages is well known, but the effect of chromatic aberration inevitably worsens the resolution: for a fixed value of ΔE, the ratio ΔE/E increases as E is reduced. The SALVE project was therefore launched at the University of Ulm in September 2008, led by Ute Kaiser, to produce an aberration-corrected electron microscope operating in the low-voltage range, 20–80 kV. The instrument should have a resolution of 1 Å at 60 kV and be capable of transferring scattering angles up to 50 mrad with little or no loss of contrast; it should provide 2000 or more equally well resolved image points and permit achromatic imaging over reasonably large energy bands. For this, a prototype instrument constructed by Carl Zeiss NTS (based on their Libra microscope) was equipped with an electrostatic monochromator, an imaging energy filter and a CEOS sextupole Cs corrector. The performance of the instrument showed that these objectives could not be reached without Cc correction, which required abandoning sextupoles in favour of quadrupoles. The design chosen was inspired by but not identical with a configuration that had been discussed by Rose [152]. It is symmetrical about its mid-plane, each half comprising two quadrupole–octopole elements, a combined electrostatic–magnetic quadrupole and an octopole ([85]; Fig. 20). For more information, see Kaiser et al. [88–90] and Kaiser [86,87]. In 2014, Carl Zeiss withdrew from the project but without imperilling its future; the new industrial partner is FEI. We note that several other low-voltage projects are in progress, notably the "Gentle STEM" of Nion and the very low-voltage TEM/STEM imaging (15 kV) in an aberration-corrected JEOL instrument described by Sasaki et al. [160]. A prime objective of the Japanese Triple C project (see Section 4.5) was to achieve atomic resolution at 30 kV.

5. Fallout The instrumental developments at Nion and CEOS and in the Research and Development units of the major microscope manufacturers have given rise to related work of very different kinds. The fifth and even higher order geometrical aberrations and the chromatic aberrations of third order were analysed and a full list of formulae for the fifth order aberration coefficients of round lenses in reasonably usable form at last became available (Liu [113]; but see Hawkes [61], in which these expressions are reproduced with corrections furnished by the author). The two leading software

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

16

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Fig. 20. The multipoles of the SALVE corrector, showing the axial and field rays (after Kahl et al. [85]; courtesy of the authors and the Deutsche Gesellschaft für Elektronenmikroskopie).

companies in electron optics, Bohumila Lencová's "Software for Particle Optics Calculations" (SPOC) and Eric Munro's "Munro's Electron Beam Software" (MEBS), extended their programme suites to cover the new requirements of aberration-corrected instruments, Lencová preferring exact ray tracing for higher order aberrations, while Munro used differential algebra (www.lencova. com, www.mebs.co.uk). See Liu et al. [114], Munro et al. [132] and Lencová and Zlámal [112]. New or little-used imaging modes are being explored, such as annular bright-field imaging in the STEM, about which Rose had speculated many years earlier [148], see for example [111,137,32– 34,77,78]. The merits of over-correction are considered in [195]. Ishikawa et al. [79] are hoping to perform three-dimensional atom-by-atom imaging by means of large-angle illumination STEM, for which the depth of field could be as small as a few ångströms. Electron energy-loss spectroscopy reached new records: with the Nion monochromator [107]. Krivanek et al. have succeeded in performing vibrational spectroscopy in the electron microscope [108]. There are atoms for which ADF imaging is not efficient and others to which EELS is not very sensitive; here, energy-dispersive x-ray spectroscopy (EDXS), which is potentially capable of identifying single atoms of nearly all the elements, can offer a solution. In 2012, two papers examined EDXS carefully and critically and provided information about its strengths and requirements. Lovejoy et al. [115], working with the Nion UltraSTEM100 equipped with a Bruker x-ray detector (at the SuperSTEM facility), studied silicon atoms embedded in monolayer graphene and platinum atoms in graphene. Single atoms of each element were detected by EDXS and EELS, usually simultaneously. The authors conclude that "elemental mapping with single atom sensitivity using EDXS should be possible if per atom dwell times of the order of 5 s can be accommodated with a beam current of 0.2 nA in a beam of roughly 1 Å2 without the atom jumping away, and probably some 10 times faster in the future". At the same date, Suenaga et al. [179] succeeded in detecting characteristic x-ray signals from single erbium atoms by EDXS, using a JEOL ARM 200F with a CEOS CECOR corrector at 60 kV; the probe angle was 40 mrad, beam current 200 pA and the probe size was 0.15 nm. Their paper gives an excellent assessment of the value and hazards of the technique. Electron holography continues to benefit from aberration correction (for which Dennis Gabor originally invented it) and the realisation that an aberration corrector can be thought of as a phase plate [40] is having repercussions on, for example, electron vortex beam studies. Zhu et al. [212] and Inada et al. [75] have succeeded in obtaining high-resolution secondary electron images in a corrected STEM equipped with a suitable detector; the

latter paper includes a very clear diagram of the microscope column (see too Inada and Zhu [72]). The benefits of the annular bright-field mode have been challenged by Yang et al. [201], who claim that pixellated detectors may outperform it. This is one consequence of the upsurge of interest in less common detector configurations in STEM. The possibility of creating differential phase contrast by means of semicircular detectors was pointed out many years ago by Dekkers and de Lang [21–23], Dekkers et al. [24] and Dekkers [20] and tested, notably by Chapman et al. [17]; a number of papers on the choice of detector configuration followed (e.g., Rose [149], quadrants; Hawkes [56,57]). This generated a substantial literature in the 1970s and 1980s, summarised in Section 67.3 of Hawkes and Kasper [64]. With the advent of aberration-corrected STEM, interest in these detectors has been revived ([173–175,120]). The 16segment detector described by Shibata et al. [173] has been used to image the electric field at the surface of the ferroelectric BaTiO3 with atomic resolution. Using an 8-segment detector fitted to a JEOL ARM-200 FCS TEM/STEM with a cold-field-emission gun and a Cs probe corrector, a resolution better than 1 nm has been achieved with a magnetic specimen in field-free space by McGrouther et al. A very careful study by Majert and Kohl [116] shows what can be expected from segmented detectors. We note in passing that the early work on ptychography by John Rodenburg (surveyed in [147]) may be understood by regarding the far-field diffraction pattern from each object-element as an image captured on a pixellated detector (a template in the language of image algebra, [58]). For a recent proposal, see Pennycook et al. [141] and Yang et al. [202]. A related variant on the basic STEM imaging modes is being investigated by Joanne Etheridge and colleagues in Monash University [109,110,31] using an FEI Titan 300 kV microscope with double correction. In STEM, the source is conjugate to the specimen plane and the information used to form an image is retrieved in the far field. In this new arrangement, a lens beyond the probeforming lens focuses the specimen plane onto an image plane, conjugate to the specimen (and hence to the source), where the current distribution is collected by a disc-shaped or annular detector. These "Real-STEM" ("R-STEM") images are "observed to be relatively insensitive to parameters such as thickness, defocus and detector diameter". Aberration-corrected electron microscopy has been extended to a new area, environmental electron microscopy. For this, Pratibha Gai and Edward Boyes have redesigned their double-corrected JEOL 2200FS microscope, the necessary modifications are fully described in their publications [13,14,37–39]. Aberration

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

correction is an optional feature of the Titan environmental transmission electron microscope ETEM G2 from FEI. See also Hansen and Wagner [52] and Hansen et al. [53]. A critical account of this topic is given by Takeda et al. [181], which includes a full bibliography. How can aberration correction be incorporated in the miniature columns encountered in multicolumn devices? A possible answer is being investigated by Roland Janzen, who has designed a column in which the fields required for correction are created by non-circular apertures. His SPANOCH (Sophisticated Pile of Apertures with NOn-Circular Holes) is still at an early test stage [80,81].

1997 (EMAG, Cambridge): 1997 (Dreiländertagung, Regensburg): 1998:

6. Tailpiece For the reader whose head is spinning under the onslaught of so many complicated devices, I include some thoughts of Joachim Zach [205] who has, as we have seen, been involved in aberration correction and in particular, chromatic correction for twenty years or more. He asks whether we still need all the elaborate ironmongery of modern electron microscopes now that aberration correction is a reality for both TEM and STEM. He describes three simple microscope designs, all capable of 1 Å resolution. The third of them "represents the most extreme deviation from the present high-resolution development:

1999:

2001:

2002:

(1) only 100 kV, (2) a LaB6 gun, and (3) a cheap and simple objective lens. Nevertheless, this strange microscope concept can provide atomic resolution. Of course, there are some drawbacks. If such proposals are adopted by the microscope and corrector manufacturers [which include the firm of which Zach is a partner], we may have atomic resolution for everyone in the near future".

2003:

2004: 7. Concluding remarks and acknowledgments This attempt to chart the currents in aberration correction during the past 25 year leans heavily on the publications of Max Haider and colleagues at CEOS, of Ondrej Krivanek and his team at Nion, and of the research divisions of FEI, Hitachi, JEOL, and Zeiss. The main text cites only those that are essential reading for a general understanding of the story; incremental progress is recorded chronologically in Appendix A, where some related material is also to be found. Appendix B contains exactly the same references as Appendix A, in alphabetical order. With so many threads to the story, it can be difficult to keep trace of the plot. I have therefore isolated some key moments in the following list: 1990:

Rose proposes a design for an electron semi-aplanat, a sextupole corrector with which Cs can be corrected and isotropic coma avoided 1995: Zach and Haider succeed in correcting the spherical and chromatic aberrations of a LVSEM, using combined magnetic and electrostatic quadrupoles and octopoles 1996: Zach and Haider create the firm CEOS 1996 (EUREM, Dublin): Haider et al. report that the resolution of an FEI CM200 microscope has been slightly improved by means of a

2004:

2004:

2004:

2006:

2007:

17

sextupole corrector. At the same congress, Krivanek presents the Cambridge project for correcting the spherical aberration of a STEM by means of quadrupoles and octopoles Krivanek et al. show that a quadrupole-octopole corrector is capable of reducing the probe size of a VG STEM Haider et al. report a real improvement in TEM resolution obtained with the sextupole device, from 2.4 Å to 1.6 Å In Nature and elsewhere, the results of Haider's work are published. Krivanek and Dellby move to Kirkland (WA, USA) and create the Nion Company Krivanek et al. describe the present state of their project and their future plans Details of a significantly improved Nion corrector are published by Dellby et al. A resolution of 1.23 Å is attained in HAADF imaging at 100 kV Publication in Nature of a letter by Batson, Dellby and Krivanek who demonstrate that a resolution better than 1 Å has been achieved with a VG STEM modified for 120 kV operation and fitted with the first Nion corrector to be delivered to a customer. The SuperSTEM laboratory in Daresbury, Cheshire, receives its first corrected VG STEM, fitted with the Nion device Pennycook has a Nion corrector retrofitted to a 300 kV VG HB603U STEM at Oak Ridge National Laboratory and obtains resolutions well below 1 Å Nellist et al. obtain images of the silicon columns 78 pm apart in a silicon crystal, using a STEM equipped with a Nion corrector Freitag et al. achieve a resolution below 1 Å with an FEI Tecnai F20ST transmission electron microscope equipped with the basic CEOS sextupole corrector (CETCOR) and an FEI monochromator; without the monochromator, the resolution is a little above 1 Å, typically 1.1 Å A resolution of 0.9 Å is attained with the Zeiss SATEM instrument, equipped with a monochromator and a CEOS corrector JEOL TEM/STEMs equipped with CEOS aberration correctors upstream and downstream from the objective are delivered to the Oxford University Department of Materials and to Nagoya University; a resolution of about 1 Å or better was reached in both TEM and STEM modes A very detailed analysis of sextupole correctors for STEM is published by Müller et al. The TEAM 0.5 microscope fitted with an improved CEOS spherical aberration corrector (D-COR) is delivered to the

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

18

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

2009:

2009-10:

2010:

2011:

2011:

2013:

2013: 2014: 2014:

Fig. 21. Dr. Maximilian Haider (right) next to Dr. Joachim Zach (courtesy of M. Haider).

2007:

2009:

2009:

2009:

NCEM at Berkeley and opened as a user facility the following year; fifth-order spherical aberration and six-fold astigmatism are corrected The first two models of the Nion STEM, the UltraSTEM100, are delivered, to the SuperSTEM laboratory and to Cornell University Erni et al. publish the first direct evidence for sub-50 pm resolution in annular dark-field scanning transmission electron microscopy The TEAM 1 microscope, fitted with a CEOS chromatic and spherical aberration corrector (C-COR) is delivered to the NCEM at Berkeley. This is the first operational TEM with chromatic correction Zach offers "atomic resolution for everyone"

Resolution of 47 pm achieved with a corrected JEOL microscope in the R0005 project Delta corrector employing three dodecapoles developed as part of the Japanese Triple C project, used in conjunction with a mixed quadrupole Cc corrector Krivanek et al. describe Gentle STEM, in which aberration correction is extended to low voltage (60 kV or less) in order to limit radiation damage, and describe atom-by-atom structural and chemical analysis by ADF imaging at 60 kV CEOS present the first electron aplanat (B-CORR), a device that permits correction of anisotropic coma as well as fourth- and fifth-order correction Details of the Nion UltraSTEM 200 are published by Dellby et al.; the first Nion STEM with a Nion field-emission gun is installed in Orsay Magnetic thermal noise is identified by Uhlemann as the source of unexpected blurring of the image Nion introduce a new α-type monochromator Sasaki et al. (JEOL) perform aberrationcorrected TEM/STEM at 15 kV Krivanek et al. succeed in performing vibrational spectroscopy in the STEM thanks to the energy resolution of 10 meV provided by their monochromator

Preparation of this Timeline incites me to say a few words about the importance and relevance of the early papers on successful aberration correction. The expression "proof of principle" is often encountered but, for the quadrupole projects at least, the validity of the principle was abundantly proved by Seeliger and Möllenstedt, Deltrap and Hardy, and the Darmstadt and Chicago groups long ago. What was lacking was the means of overcoming all the ancillary obstacles to any real improvement. The significant dates in the history of successful aberration correction are not those on which it was shown that the correctors could work – for quadrupoles, this had been known for several decades – but those on which the resolution of a microscope capable of the very highest performance was improved by a corrector and it is these that I hope to have identified above. Another point complicates the issue: impressive though the achievements of the first correctors are, it must be remembered that the new generation of high-voltage electron microscopes was providing resolutions around 1 Å in the 1990s [117,118,125,142,172,180,67,76]. Certainly, correction at lower accelerating voltages can be desirable to reduce radiation damage – high-voltage and medium-voltage electron microscopes are complementary – but 1 Å was reached at high voltage well before it was attained at lower voltages. Nor has the high-voltage electron microscope conceded defeat to the aberration-corrected instruments. A resolution of 40 pm was anticipated for the 1.2 MV microscope of the FIRST Tonomura project [91] and in 2015, Akashi et al. [1a] achieved a resolution of 43 pm at 1.2 MV. This instrument has a cold-field-emission gun with magnetic confinement and a CEOS sextupole corrector of third-order aberrations as well as many other attractive features. Many members of the electron microscope community have kindly furnished information and copies of publications. I cannot

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

19

irrespective of the date of publication. From 2005 onwards, the proceedings appeared in the (open-access) Journal of Physics: Conference Series, for which the date of publication is a year later than that of the EMAG conference but for consistency I have continued to class EMAG articles under the year of the conference, adding "EMAG date, venue" at the end of the reference. For the European Congresses on Electron Microscopy, there is one anomaly: the proceedings of EUREM-11 (Dublin, 1996) were not published until 1998; the papers are nevertheless listed under 1996. I have attempted to reproduce titles exactly, resisting the temptation to insert missing hyphens in "aberration-corrected", for example; I have, however, systematically replaced Cc and Cs by Cc and Cs. Full bibliographic details of the many conference proceedings cited here are to be found in [63] or for older meetings, in [59]. All too many congresses no longer generate printed proceedings, only a CD-ROM of uncertain lifetime or just a USB key; occasionally, the proceedings are made available on internet as open-access documents. These variants are indicated in [59] and [63].

Appendix A. List of publications on aberration correctors in chronological order 1936 O. Scherzer (1936). Über einige Fehler von Elektronenlinsen. Z. Physik 101, 593–603. 1942 W. Glaser (1942). Über elektronenoptische Abbildung bei gestörter Rotationssymmetrie. Z. Physik 120, 1–15. 1947 O. Scherzer (1947). Sphärische und chromatische Korrektur von Elektronen-Linsen. Optik 2, 114–132. 1949 Fig. 22. Dr. Ondrej Krivanek (below) and Dr. Niklas Dellby with the first Nion STEM, installed at Daresbury in 2007 (courtesy of O.L. Krivanek).

thank them all individually here but I must thank Professor Shinicho Ohno and Dr Shin Fujita of the Japanese Society of Microscopy who enabled me to include papers and, in particular, conference abstracts from Kenbikyo in the Appendices A and B. Dr Max Haider and Dr Ondrej Krivanek FRS have found time in their busy lives to make many suggestions, which have greatly improved the accuracy of the text (Figs. 21 and 22).

Note on Appendices A and B These lists are essentially concerned with the years from 1989 to the present day. However, a few key earlier papers are included for convenience as are the references cited above that are not specifically concerned with aberration correctors. Conference papers: whenever possible, I have given a journal reference. In the case of the Microscopy and Microanalysis meetings, the date of publication is the same as the date of the conference. Up to 2003, the EMAG proceedings were mostly published as volumes of the Institute of Physics Conference Series, sometimes in the same year as the meeting, otherwise in the following year. Here, papers in these volumes are listed as EMAG-year, venue, page numbers,

P.A. Sturrock (1949). The aberrations of magnetic electron lenses due to asymmetries. ICEM-1, Delft. 89–93. 1951 P.A. Sturrock (1951). The aberrations of magnetic electron lenses due to asymmetries. Phil.. Trans. Roy. Soc. London A 243, 387–429. 1953 W. Glaser and P. Schiske (1953). Bildstörungen durch Polschuhasymmetrien bei Elektronenlinsen. Z. Angew. Phys. 5, 329– 339. 1961 V.M. Kel'man and S. Ya. Yavor (1961). Achromatic quadrupole electron lenses. Zh. Tekh. Fiz. 31, 1439–1442; Sov. Phys. Tech. Phys. 6, 1052–1054. W. E. Meyer (1961). Das Auflösungsvermögen sphärisch korrigierter elektrostatischer Elektronenmikroskope. Optik 18, 69–91. W.E. Meyer (1961). Das praktische Auflösungsvermögen von Elektronenmikroskopen. Optik 18,101–114.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

20

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

1965

Optik 53, 241–255.

P.W. Hawkes (1965). The geometrical aberrations of general optical systems. Phil. Trans. Roy. Soc. London A 257, 479–552.

N.H. Dekkers (1979). Object wave reconstruction in STEM. Optik 53, 131–142.

1967

F. Zemlin (1979). A practical procedure for alignment of a high resolution electron microscope. Ultramicroscopy 4, 241–245

D.F. Hardy (1967). Combined magnetic and electrostatic quadrupole lenses. Thesis, Cambridge

1980

1974

G. Bouwhuis and N.H. Dekkers (1980). Ultramicroscopy in scanning microscopes. Optik 56, 233–242.

N.H. Dekkers and H. de Lang (1974). Differential phase contrast in a STEM. Optik 41, 452–456. R.W. Moses (1974). Aberration correction for high-voltage electron microscopy. Proc. Roy. Soc. London A 339, 483–512. H. Rose (1974). Phase contrast in scanning transmission electron microscopy. Optik 39, 416–436. 1976 J.M. Cowley (1976). Scanning transmission electron microscopy of thin specimens. Ultramicroscopy 2, 3–16.

A.V. Crewe (1980). Studies on sextupole correctors. Optik 57, 313–327. A.V. Crewe (1980). The sextupole as corrector. EUREM-7, The Hague 1, 36–37. A.V. Crewe (1980). A new possibility for correcting Cs. EMSA 38, San Francisco, 274–277. A.V. Crewe and D. Kopf (1980). A sextupole system for the correction of spherical aberration. Optik 55, 1–10. A.V. Crewe and D. Kopf (1980). Limitations of sextupole correctors. Optik 56, 391–399.

N. H. Dekkers, H. de Lang and K. D. van der Mast (1976). Field emission STEM on a Philips EM 400 with a new detection system for phase and amplitude contrast. J. Microsc. Spectrosc. Electron. 1, 511–512.

P.W. Hawkes (1980). Improvements in STEM imaging by special probe and detector shaping techniques. Scanning Electron Microsc. 93–98.

1977

1981

N. H. Dekkers and H. de Lang (1977). A detection method for producing phase and amplitude images simultaneously in a scanning transmission electron microscope. Philips Tech. Rev. 37, 1–9.

H. Rose (1981). Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl. Instrum. Meth. 187, 187–199.

H. Rose (1977). Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251–267.

CPO-1, Giessen, 1980. 1982

1978

A.V. Crewe (1982). A system for the correction of axial aperture aberrations in electron lenses. Optik 60, 271–281.

J. N. Chapman, P. E. Batson, E. M. Waddell and R. P. Ferrier (1978). The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3, 203–214.

M. Haider, W. Bernhardt and H. Rose (1982). Design and test of an electric and magnetic dodecapole lens. Optik 63, 9–23.

N. H. Dekkers and H. de Lang (1978). A calculation of bright field single-atom images in STEM with half plane detectors. Optik 51, 83–92. N.H. Dekkers and H. de Lang (1978). Comment on "Scanning transmission electron microscopy of thin specimens" by J.M. Cowley. Ultramicroscopy 3, 101–102. P. W. Hawkes (1978). Half-plane apertures in TEM, split detectors in STEM and ptychography. J. Optics (Paris) 9, 235–241. O.L. Krivanek (1978). EM contrast transfer functions for tilted illumination imaging. ICEM-9, Toronto. 1, 168–169. F. Zemlin, K. Weiss, P. Schiske, W. Kunath and K.-H. Herrmann (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 49–60. 1979 V.D. Beck (1979). A hexapole spherical aberration corrector.

H. Hely (1982). Technologische Voraussetzungen für die Verbesserung der Korrektur von Elektronenlinsen. Optik 60, 307– 326. H. Hely (1982). Messungen an einem verbesserten korrigierten Elektronenmikroskop. Optik 60, 353–370. A.V. Jones and B.M. Unitt (1982). An integrated approach to scanning microscope data acquisition. J. Microscopy 127, 61– 68. 1983 J.-y. Ximen (1983). The aberration theory of a combined magnetic round lens and sextupoles system. Optik 65, 295–309. 1984 A.V. Crewe (1984). The sextupole corrector. 1. Algebraic calculations. Optik 69, 24–29. J.-y. Ximen (1984). The aberration theory of a combined magnetic round lens and sextupoles system. Acta Phys. Sinica 33, 629–638.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

21

1985

J. Zach (1989). Entwurf und Berechnung eines hochauflösenden Niederspannungs-Rasterelektronenmikroskops. Dissertation, Darmstadt.

A.V. Jones, J.-C. Homo, B.M. Unitt and N. Webster (1985). The CryoSTEM: a STEM with superconducting objective lens. J. Microsc. Spectrosc. Electron. 10, 361–370.

1990

J.-y. Ximen and A.V. Crewe (1985). Correction of spherical and coma aberrations with a sextupole–round lens–sextupole system. Optik 69, 141–146 J.-y. Ximen, Z.-f. Shao and A.V. Crewe (1985). The wave electron optical properties of a magnetic round lens corrected with sextupoles. Optik 70, 37–42. 1986 H. Hashimoto (1986). 400 kV analytical atom resolution electron microscopes. Denshi Kenbikyo 20 (3), 173–180. 1987 M. Haider (1987). Entwurf, Bau und Erprobung eines korrigierten Elektronen-Energieverlust-Spektromters mit großer Dispersion und großem Akzeptanzwinkel. Dissertation, Darmstadt. Z. Shao and A.V. Crewe (1987). Spherical aberration of multipoles. J. Appl. Phys. 62, 1149–1153. J. Zach and H. Rose (1987). Entwurf einer korrigierten Elektronensonde für die Niederspannungs-Rasterelektronenmikroskopie. Optik 77 (Suppl. 3), 63. 1988 Z. Shao (1988). On the fifth order aberration in a sextupole corrected probe forming system. Rev. Sci. Instrum. 59, 2429–2437. Z. Shao (1988). Correction of spherical aberation in the transmission electron microscope. Optik 80, 61–75. Z. Shao, V. Beck and A.V. Crewe (1988). A study of octupoles as correctors. J. Appl. Phys. 64, 1646–1651. 1989 M. Haider (1989). State of STEM-microscopy. Optik 83 (Suppl. 4), 33. P.W. Hawkes and E. Kasper (1989). Principles of Electron Optics Vols 1 and 2 (Academic Press, London). H. Ichinose and Y. Ishida (1989). High-resolution in situ observation of moving grain boundaries in gold by high-resolution electron microscopy. Phil. Mag. A 60, 555–562. A. V. Jones and M. Haider (1989). Modular detector system for scanning transmission electron microscope. Scanning Microscopy 3 (1), 33–42. S. Lanio and M. Haider (1989). A multipole corrector for a high resolution low voltage scanning electron microscope. Optik 83 (Suppl. 4), 54. J. Zach (1989). Design of a high-resolution low-voltage scanning electron microscope. Optik 83, 30–40. J. Zach (1989). Niederspannungs-Elektronenmikroskopie. Optik 83 (Suppl. 4), 108.

H. Rose (1990). Outline of a spherically corrected semi-aplanatic medium-voltage transmission electron microscope. Optik 85, 19–24. 1991 E. Chen and C. Mu (1991). New development in correction of spherical aberration of electromagnetic round lens. In Proceedings International Symposium on Electron Microscopy (K. Kuo and J. Yao, Eds) 28–35 (World Scientific, Singapore). G. Hoffstätter and H. Rose (1991). Theoretische Auflösungsgrenze sphärisch korrigierter Elektronenmikroskope. Optik 88 (Suppl. 4), 54. S. Horiuchi and T. Matsui (1991). Theory and practice of 1 Å ultra-high resolution HVEM. J. Electron Microsc. 40, 203. S. Isoda, S. Moriguchi, H. Kurata, T. Kobayashi and N. Uyeda (1991). A new 1000 kV HREM for organic crystal study. Ultramicroscopy 39, 247–253. Y. Matsui, S. Horiguchi, Y. Bando, Y. Kitami, M. Yokoyama and S. Suehara (1991). Ultra-high-resolution HVEM (H–1500) newly constructed at NIRIM. Ultramicroscopy, 39 8–20. Y. Matsui, S. Horiuchi, Y. Bando, Y. Kitami, M. Yokoyama, S. Suehara, I. Matsui and T. Katsuta (1991). Development of ultra-high-resolution 1300 kV electron microscope (H-1500) and its characteristic features. J. Electron Microsc. 40, 274. S. Moriguchi, H. Kurata, S. Isoda and T. Kobayashi (1991). Resolution power of 1 MV electron microscope in Kyoto. J. Electron Microsc. 40, 277. S. Okayama (1991). Correction of aperture aberration of a probe-forming quadrupole triplet. J. Electron Microsc. 40, 256. J. Zach and M. Haider (1991). Status of the EMBL high-resolution low-voltage SEM project. Optik 88 (Suppl. 4), 95. 1992 O.L. Krivanek (1992). Practical high-resolution electron microscopy. In High-resolution Transmission Electron Microscopy and Associated Techniques (P.R. Buseck, J.M. Cowley and L. Eyring, Eds), 519–567 (Oxford University Press, Oxford). O.L. Krivanek and G.Y. Fan (1992). Complete HREM autotuning using automated diffractogram analysis. EMSA 50, Boston, part 1, 96–97. O.L. Krivanek and G.Y. Fan (1992). Application of slow-scan charge-coupled device (CCD) cameras to on-line microscope control. Scanning Microscopy (Suppl. 6) 105–114. S. Okayama (1992). Correction of aperture aberration by means of 4-stage quadrupole correction-lens. J. Electron Microsc. 41, 287. H. Rose (1992). Correction of aberrations, a promising method for improving the performance of electron microscopes. EUREM-10, Granada.1, 47–48. Z. Shao (1992). Canonical theory of multipoles: a critical reanalysis. J. Appl. Phys. 71, 1588–1593.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

22

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

J. Zach and M. Haider (1992). A high-resolution low voltage scanning electron microscope. EUREM-10, Granada. 1, 49–53. 1993 A.V. Crewe (1993). The aberration problem in electron optics. Proc. SPIE 2014, 77–84. M. Haider, G. Braunshausen and E. Schwan (1993). Correction of the spherical aberration of a 200 kV TEM by means of hexapoles. Optik 94 (Suppl. 5), 18. O.L. Krivanek and M. L. Leber (1993). Three-fold astigmatism: an important TEM aberration. MSA 51, Cincinnati, 972–973. O.L. Krivanek and P.E. Mooney (1993). Applications of slow-scan CCD cameras in transmission electron microscopy. Ultramicroscopy 49, 95–108 H. Rose (1993). Entwicklungstendenzen in der hochauflösenden Elektronenmikroskopie und Energieanalyse. Optik 94 (Suppl. 5), 16. E. Schwan and M. Haider (1993). Set up of a computer-controlled electron-optical test-bench for multipole elements. Optik 94 (Suppl. 5), 101. J. Zach (1993). Magnetic or electrostatic systems for the correction of spherical and chromatic aberration? Optik 94 (Suppl. 5), 102. 1994 M. Haider, G. Braunshausen and E. Schwan (1994). State of the development of a Cs corrected high resolution 200 kV TEM. ICEM-13, Paris. 1, 195–196.

1995 M. Haider, G. Braunshausen and E. Schwan (1995). Correction of the spherical aberration of a 200 kV TEM by means of a hexapole corrector. Optik 99, 167–179. M. Haider, G. Braunshausen and E. Schwan (1995). State of the development of a spherically corrected 200 kV TEM. Optik 100 (Suppl. 6), 4. P. W. Hawkes (1995). The STEM forms templates. Optik 98, 81– 84. O.L. Krivanek and P. A. Stadelmann (1995). Effect of three-fold astigmatism on high-resolution electron micrographs. Ultramicroscopy 60, 103–113. W.O. Saxton (1995). Simple prescriptions for measuring threefold astigmatism. Ultramicroscopy 58, 239–243. W.O. Saxton (1995). Observation of lens aberations for very high-resolution electron microscopy. I. Theory. J. Microscopy 179, 201–213. E. Schwan and M. Haider (1995). Achtpolelement zur Korrektur des dreizähligen Astigmatismus. Optik 100 (Suppl. 6), 4. S. Uhlemann and H. Rose (1995). Wie schwer ist die Korrektur eines Mittelspannungs-Elektronenmikroskops? Optik 100 (Suppl. 6), 8. J. Zach (1995). Recent progress in the correction of spherical and chromatic aberrations in a low voltage SEM. Optik 100 (Suppl. 6), 3.

P.W. Hawkes and E. Kasper (1994). Principles of Electron Optics Vol. 3 (Academic Press, London).

J. Zach and M. Haider (1995). Aberration correction in a low voltage SEM by a multipole corrector. Nucl. Instrum. Methods Phys. Res. A 363, 316–325. CPO-4, Tsukuba, 1994.

K. Ishizuka (1994). Coma-free alignment of a high-resolution electron microscope with three-fold astigmatism. Ultramicroscopy 55, 407–418.

J. Zach and M. Haider (1995). Correction of spherical and chromatic aberration in a low voltage SEM. Optik 93, 112–118.

O. Krivanek (1994). Three-fold astigmatism in high-resolution transmission electron microscopy. Ultramicroscopy 55, 419– 433.

1996

O.L. Krivanek and M.L. Leber (1994). Autotuning for 1 Å resolution. ICEM-13, Paris. 1, 157–158. F. Phillipp, R. Höschen, M. Osaki, G. Möbus and M. Rühle (1994). New high-voltage atomic resolution microscope approaching 1 Å point resolution installed in Stuttgart. Ultramicroscopy 56, 1–10. F. Phillipp, R. Höschen, M. Osaki and M. Rühle (1994). A new high-voltage atomic resolution microscope approaching 1 Ångström resolution. ICEM-13, Paris. 1, 231–232. W.O. Saxton, G. Chand and A.I. Kirkland (1994). Accurate determination and compensation of lens aberrations in high resolution TEM. ICEM-13, Paris. 1, 203–204.

M. Haider (1996). Correctors for electron microscopes: tools or toys for scientists? EUREM-11, Dublin. 1, I350–I351. K. Ishizuka and K. Shirota (1996). Voltage-center and coma-free alignment for high-resolution electron microscopy. Ultramicroscopy 62, 9–13. K. Ishizuka and K. Shirota (1996). Lens-field center alignment for high resolution electron microscopy. Ultramicroscopy 65, 71–79. O. L. Krivanek, N. Dellby and L. M. Brown (1996). Spherical aberration corrector for a dedicated STEM. EUREM-11, Dublin. 1, I352–I353. F. Lenz (1996). Towards atomic resolution. Adv. Imaging Electron Phys. 96, 791–803.

S. Uhlemann, M. Haider and H. Rose (1994). Procedures for adjusting and controlling the alignment of a spherically corrected electron microscope. ICEM-13, Paris. 1, 193–194.

M. H. F. Overwijk, A. J. Bleeker and A. Thust (1996). Correction of three-fold astigmatism for ultra-high-resolution TEM. EUREM-11, Dublin. 1, I404–I405.

J. Zach and M. Haider (1994). Correction of spherical and chromatic aberrations in a LVSEM. ICEM-13, Paris. 1, 199–200.

S. Uhlemann, M. Haider, E. Schwan and H. Rose (1996). Towards a resolution enhancement in the corrected TEM. EUREM-11, Dublin. 1, I365–I361.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

R. Wepf, M. Haider, M. Kroug, D. Mills and J. Zach (1996). Application of a corrected LVSEM in biology: art- & facts in imaging of uncoated biological materials. EUREM-11, Dublin. 1, I95–I96. 1997 L. M. Brown (1997). A synchrotron in a microscope. EMAG 1997, Cambridge. pp. 17–30. M. Haider and S. Uhlemann (1997). Seeing is not believing: reduction of artefacts by an improved point resolution with a spherical aberration corrected 200 kV transmission electron microscope. Microsc. & Microanal. 3 (Suppl. 2), 1179–1180. M. Haider, S. Uhlemann, E. Schwan and B. Kabius (1997). Development of a spherical corrected 200 kV TEM: current state of the project and results obtained so far. Optik 106 (Suppl. 7), 7.

23

corrected transmission electron microscope in materials science. ICEM-14, Cancun. 1, 609–610. O. L. Krivanek, N. Dellby, A. J. Spence and L. M. Brown (1998). Spherical aberration correction in dedicated STEM. ICEM-14, Cancun. 1, 55–56. A.R. Lupini and O. L. Krivanek (1998). Design of an objective lens for use in Cs-corrected STEM. ICEM-14, Cancun. 1, 59–60. H. Rose, M. Haider aand K. Urban (1998). Elektronenmikroskopie mit atomarer Auflösung. Ein Durchbruch bei der Korrektur von auflösunsbegrenzenden Linsenfehlern. Phys. Bl. 54, 411–416. S. Uhlemann and M. Haider (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109–119. 1999

O. Krivanek, N. Dellby, A. J. Spence, R. A. Camps and L. M. Brown (1997). Aberration correction in the STEM. EMAG 1997, Cambridge, 35–39.

B. Kabius, M. Haider, S. Uhlemann, E. Schwan, K. Urban and H. Rose (1999). Anwendungen der Cs-Korrektur auf materialwissenschaftliche Fragestellungen. Optik 110 (Suppl. 8), 73.

O. Krivanek, N. Dellby, A. J. Spence, R. A. Camps and L. M. Brown (1997). On-line aberration measurement and correction in STEM. Microsc. & Microanal. 3 (Suppl. 2), 1171–1172.

O. L. Krivanek, N. Dellby and A. R. Lupini (1999). Towards sub-Å electron beams. Ultramicroscopy 78, 1–11.

D. Preikszas, P. Hartel, R. Spehr and H. Rose (1997). Konstruktion, Bau und Test eines korrigierten Niederspannungs-Elektronenmikroskops. Optik 106 (Suppl. 7), 6. A. Takaoka, K. Ura, H. Mori, T. Katsuta, I. Matsui and S. Hayashi (1997). Development of a new 3 MV ultra-high voltage electron microscope at Osaka University. J. Electron Microsc. 46, 447–456.

O. L. Krivanek, N. Dellby and A. R. Lupini (1999). STEM without spherical aberration. Microsc. & Microanal. 5 (Suppl. 2), 670– 671. S.A.M. Mentink, T. Steffen, P.C. Tiemeijer and M. P.C.M. Krijn (1999). Simplified aberration corrector for low-voltage SEM. EMAG 1999, Sheffield. 83–86. H. Rose (1999). Prospects for realizing a sub-Å sub-eV resolution EFTEM. Ultramicroscopy 78, 13–25.

S. Uhlemann and M. Haider (1997). Residual wave aberrations and point resolution of the first corrected TEM. Optik 106 (Suppl. 7), 7.

A. Seeger (1999). Four generations of high-voltage electron microscopes. J. Electron Microsc. 48, 301–315.

1998

K. Urban, B. Kabius, M. Haider and H. Rose (1999). A way to higher resolution: spherical-aberration correction in a 200 kV transmission electron microscope. J. Electron Microsc. 48, 821–826.

M. Foschepoth and H. Kohl (1998). Amplitude contrast – a way to obtain directly interpretable high-resolution images in a spherical aberration corrected transmission electron microscope. Phys. Stat. Sol (a) 166, 357–366. M. Haider and S. Uhlemann (1998). A computer controlled Cs-corrected 200 keV TEM. ICEM-14, Cancun. 1, 265–266. M. Haider and J. Zach (1998). Resolution improvement of electron microscopes by means of correctors to compensate for axial aberrations. ICEM-14, Cancún. 1, 53–54. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius and K. Urban (1998). Electron microscopy image enhanced. Nature 392, 768–769. M. Haider, H. Rose, S. Uhlemann, B. Kabius and K. Urban (1998). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J. Electron Microsc. 47, 395–405. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius and K. Urban (1998). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53–60. B. Kabius, K. Urban, M. Haider, S. Uhlemann, E. Schwan and H. Rose (1998). First applications of a spherical-aberration

2000 N. Dellby, O. L. Krivanek and A. R. Lupini (2000). Progress in aberration-corrected STEM. Microsc. & Microanal. 6 (Suppl. 2), 100–101. M. Haider (2000). Towards sub-Ångstrom point resolution by correction of spherical aberration. EUREM-12, Brno. 3, I145– I148. M. Haider, S. Uhlemann and J. Zach (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163–175. J. Hu and N. Tanaka (2000). Beam alignment and related problems of spherical aberration corrected high-resolution TEM images. J. Electron Microsc. 49, 651–656. O. L. Krivanek, N. Dellby and A. R. Lupini (2000). Advances in Cs-corrected STEM. EUREM-12, Brno. 3, I149–I150. W. O. Saxton (2000). A new way of measuring microscope aberrations. Ultramicroscopy 81 41–45. T. Steffen, P. C. Tiemeijer, M. P. C. M. Krijn and S. A. M. Mentink (2000). Correction of chromatic and spherical aberration

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

24

using a Wien filter. EUREM-12, Brno. 3, I151–I152. J. Zach (2000). Aspects of aberration correction in LVSEM. EUREM-12, Brno. 3, I.169–I172. 2001

J. L. Hutchison, J. M. Titchmarsh, D. J. H. Cockayne, G. Möbus, C. J. Hetherington, R. C. Doole, F. Hosokawa, P. Hartel and M. Haider (2002). A double Cs corrected TEM/STEM. ICEM-15, Durban. 1, 33–34.

A.J. den Dekker, S. Van Aert, D. Van Dyck, A. van den Bos and P. Geuens (2001). Does a monochromator improve the precision in quantitative HRTEM? Ultramicroscopy 89, 275–290.

J. L. Hutchison, J. M. Titchmarsh, D. J. H. Cockayne, G. Möbus, C. J. D. Hetherington, R. C. Doole, F. Hosokawa, P. Hartel and M. Haider (2002). A Cs corrected HRTEM: initial applications in materials science. JEOL News 37 (1), 2–5.

N. Dellby, O. L. Krivanek, P.D. Nellist, P. E. Batson and A.R. Lupini (2001). Progress in aberration-corrected scanning transmission electron microscopy. J. Electron Microsc. 50, 177–185.

B. Kabius, C.W. Allen and D.J. Miller (2002). Aberration correction for analytical in situ TEM – the NTEAM concept. Microsc. & Microanal. 8 (Suppl. 2), 418–419.

A.R. Lupini, O.L. Krivanek, N. Dellby, P.D. Nellist and S.J. Pennycook (2001). Developments in Cs -corrected STEM. EMAG 2001, Dundee. 31–34.

B. Kabius, M. Haider, S. Uhlemann, E. Schwan, K. Urban and H. Rose (2002). First application of a spherical-aberration corrected transmission electron microscope in materials science. J. Electron Microsc. 51 (Suppl. 1), 51–58.

D. Maas, S. Henstra, M. Krijn and S. Mentink (2001). Electrostatic aberration correction in low voltage SEM. Proc. SPIE 4510, 205–217.

O. Krivanek, N. Dellby, M. Murfitt, P. Nellist and Z. Szilagyi (2002). STEM aberration correction: where next? Microsc. & Microanal. 8 (Suppl. 2), 20–21.

S.A.M. Mentink, T. Steffen and P.C. Tiemeijer (2001). Fringe fields of the Wien-filter aberration corrector for low-voltage SEM. EMAG 2001, Dundee. 147–150.

O.L. Krivanek, N. Dellby and P. D. Nellist (2002). Aberration correction in the STEM. ICEM-15, Durban. 1, 29–30.

G. Möbus, J. M. Titchmarsh, J.L. Hutchison, C.J. Hetherington, R. C. Doole and D.J.H. Cockayne (2001). Prospective applications for a double- Cs-corrector TEM/STEM. EMAG 2001, Dundee. 27–30.

M. Lentzen, B. Jahnen, C.-l. Jia, A. Thust, K. Tillmann and K. Urban (2002). High-resolution imaging with an aberration corrected transmission electron microscope. Ultramicroscopy 92, 233–242.

D.A. Muller and J. Grazul (2001). Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J. Electron Microsc. 50, 219–226.

H.-n. Liu, E. Munro, J. Rouse and X. Zhu (2002). Simulation methods for multipole imaging systems and aberration correctors. Ultramicroscopy 93, 271–291.

E. Munro, X. Zhu, J. Rouse and H. Liu (2001). Aberration correction for charged particle lithography. Proc. SPIE 4510, 218– 224.

A.R. Lupini, S.J. Pennycook, O. L. Krivanek, N. Dellby and P.D. Nellist (2002). Initial results from aberration correction in STEM. Microsc. & Microanal. 8 (Suppl. 2), 476–477.

2002

S.A.M. Mentink, D.J. Maas, T. Steffen, P.C. Tiemeijer and A. Henstra (2002). Aberration correction in low-voltage SEM. ICEM-15, Durban. 1, 31–32.

P. E. Batson, N. Dellby and O.L. Krivanek (2002). Sub-ångström resolution using aberration-corrected electron optics. Nature 418, 617–620. P. Batson, N. Dellby and O. L. Krivanek (2002). Sub-Angstrom probe size in HADF-STEM at 120 kV. Microsc. & Microanal. 8 (Suppl. 2), 14–15. A. Bleloch, L.M. Brown, R. Brydson, A. Craven, P. Goodhew and C. Kiely (2002). The SuperSTEM: an aberration corrected analytical microscopy facility. ICEM-15, Durban. 1, 35–36. A. Bleloch, L.M. Brown, R. Brydson, A. Craven, P. Goodhew and C. Kiely (2002). The SuperSTEM: an aberration corrected analytical microscopy facility. Microsc. & Microanal. 8 (Suppl. 2), 470–471. N.D. Browning, K. Sun, R.F. Klie, J. Liu, M.M. Disko, P.D. Nellist, N. Dellby and O.L. Krivanek (2002). Enhancing the resolution and sensitivity of STEM by aberration correction. Microsc. & Microanal. 8 (Suppl. 2), 18–19. M. Haider, P. Hartel, F. Kahl and S. Uhlemann (2002). Correction of spherical aberration for high resolution imaging. ICEM-15, Durban. 1, 27–28. P. Hartel, D. Preikszas, R. Spehr, H. Müller and H. Rose (2002). Mirror corrector for low-voltage electron microscopes. Adv. Imaging Electron Phys. 120, 41–133.

R. Meyer, A.I. Kirkland and W.O. Saxton (2002). A new method for the determination of the wave aberration function for high resolution TEM. I. Measurement of the symmetric aberrations. Ultramicroscopy 92, 89–109. H. Rose (2002). Theory of electron-optical achromats and apochromats. Ultramicroscopy 93, 293–303. H. Rose (2002). Correction of aberrations – past, present and future. Microsc. & Microanal. 8 (Suppl. 2), 6–7. J. Silcox (2002). The emergence of aberration correctors for electron lenses. Microsc. & Microanal. 8 (Suppl. 2), 2–3. J. Zemlin and F. Zemlin (2002). Diffractogram tableaux by mouse click. Ultramicroscopy 93, 77–82. 2003 E. Abe, A. Lupini and S. J. Pennycook (2003). Improved resolution of a spherical aberration-corrected STEM. Denshi Kenbikyo 38 (2), 197–200. P.E. Batson (2003). Aberration correction results in the IBM STEM instrument. Ultramicroscopy 96, 239–249. P.E. Batson (2003). Experience with the IBM sub-Angstrom STEM. Microsc. & Microanal. 9 (Suppl. 2), 136–137.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

G. Benner, E. Essers, B. Huber and A. Orchowski (2003). Design and first results of SESAM. Microsc. & Microanal. 9 (Suppl. 3), 66–67. G. Benner, M. Matijevic, A. Orchowski, B. Schindler, M. Haider and P. Hartel (2003). State of the first aberration-corrected, monochromatized 200 kV FEG–TEM. Microsc. & Microanal. 9 (Suppl. 3), 38–39. G. Benner, E. Essers, A. Orchowski and W.-D. Rau (2003). Design and first results of SESAM. Microsc. & Microanal. 9 (Suppl. 2), 840–841. G. Benner, A. Orchowski, M. Haider and P. Hartel (2003). State of the first aberration-corrected, monochromatized 200 kV FEG–TEM. Microsc. & Microanal. 9 (Suppl. 2), 938–939. A. L. Bleloch, L.M. Brown, R. Brydson, A. Craven, M. Falke, U. Falke, P. Goodhew and G. Tatlock (2003). First results from the UK SuperSTEM Laboratory. Microsc. & Microanal. 9 (Suppl. 2), 928–929. L.-y. Chang, F. R. Chen, A.I. Kirkland and J. J. Kai (2003). Calculations of spherical aberration-corrected imaging behaviour. J. Electron Microsc. 52, 359–364. N. Dellby, O. Krivanek, M. Murfitt, P. Nellist and Z. Szilagyi (2003). Aberration-corrected STEM for elemental mapping. Microsc. & Microanal. 9 (Suppl. 2), 924–925. P.W. Hawkes (2003). Electron optics and electron microscopy: conference proceedings and abstracts as source material. Adv. Imaging Electron Phys. 127, 207–379. K. Honda and S. Takashima (2003). Chromatic and spherical aberration correction in the LSI inspection scanning electron microscope. JEOL News 38 (1), 36–40.

25

S.J. Pennycook, A.R. Lupini, M. Varela, A. Borisevich, M. F. Chisholm, E. Abe, N. Dellby, O. L. Krivanek, P.D. Nellist, L.G. Wang, R. Buczko, X. Fan and S.T. Pantelides (2003). Nanoscale structure/property correlation through aberration-corrected STEM and theory In Spatially Resolved Characterization of Local Phenomena in Materials and Nanostructures (D. A. Bonnell, J. Piqueras, A. P. Shreve and F. Zypman, Eds), Materials Research Society Proceedings 738, G1.1 (Materials Research Society, Warrendale PA). H. Rose (2003). Advances in electron optics. In High-resolution Imaging and Spectrometry of Materials (F. Ernst and M. Rühle, Eds), 189–270 (Springer, Berlin). H. Rose (2003). Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Microsc. & Microanal. 9 (Suppl. 3), 32–33. 2004 G. Benner, E. Essers, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen, M. Haider and P. Hartel (2004). Performance of monochromized and aberration-corrected TEMs. Microsc. & Microanal. 10 (Suppl. 2), 108–109. G. Benner, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen, M. Haider and P. Hartel (2004). Sub-Ångstrom and sub-eV resolution with the analytical SATEM. Microsc. & Microanal. 10 (Suppl. 3), 6–7. B. Freitag, S. Kujawa, P.M. Mul and P. C. Tiemeijer (2004). First experimental proof of spatial resolution improvement in a monochromized and Cs -corrected TEM. Microsc. & Microanal. 10 (Suppl. 3), 4–5.

F. Hosokawa, T. Tomita, M. Naruse, T. Honda, P. Hartel and M. Haider (2003). A spherical aberration-corrected 200 kV TEM. J. Electron Microsc. 52, 3–10.

B. Freitag, S. Kujawa, P.M. Mul, P.C. Tiemeijer and E. Snoeck (2004). First experimental proof of spatial resolution improvement in a monochromized and Cs -corrected TEM. APEM-8, Kanazawa. 18–19.

F. Hosokawa and T. Honda (2003). The spherical aberration correction of TEM by means of a hexapole corrector. Denshi Kenbikyo 38 (1), 64–67.

M. Haider and H. Müller (2004). Design of an electron optical system for the correction of the chromatic aberration Cc of a TEM objective lens. Microsc. & Microanal. 10 (Suppl. 3), 2–3 .

A. R. Lupini, M. Varela, K.Y. Borisevich, S.M. Travaglini and S.J. Pennycook (2003). Advances in aberration corrected STEM at ORNL. EMAG 2003, Oxford. 211–214.

M. Haider, H. Müller and P. Hartel (2004). Present state and future trends of aberration correction APEM-8, Kanazawa. 16– 17.

S.A.M. Mentink, M.J. van der Zande, C. Kok and T.L. van Rooy (2003). Development of a Cs corrector for a Tecnai 20 FEG STEM/TEM. EMAG 2003, Oxford. 165–168.

P. Hartel, H. Müller, S. Uhlemann and M. Haider (2004). Residual aberrations of hexapole-type Cs -correctors. EUREM-13, Antwerp. 1, 41–42.

P.D. Nellist, N. Dellby, O.L. Krivanek, M. F. Murfitt, Z. Szilagyi, A. R. Lupini and S.J. Pennycook (2003). Towards sub-0.5 angstrom beams through aberration corrected STEM. EMAG 2003, Oxford. 159–164.

K. Honda, S. Uno, N. Nakamura, M. Matsuya, B. Achard and J. Zach (2004). An automated geometrical aberration correction system of scanning elecron microscopes. EUREM-13, Antwerp. 1, 43–44.

S. Pennycook, A. Lupini, M. Varela, A. Borisevich, Y. Peng, M. Chisholm, N. Dellby, O. Krivanek, P. Nellist, Z. Szilagyi and G. Duscher (2003). Sub-Angstrom resolution through aberration-corrected STEM. Microsc. & Microanal. 9 (Suppl. 2), 926– 927.

K. Honda, S. Uno, N. Nakamura, M. Matsuya and J. Zach (2004). An automatic geometrical aberration correction system of scanning electron microscopes. APEM-8, Kanazawa. 44–45.

S.J. Pennycook, A.R. Lupini, A. Kadavanich, J.R. McBride, S.J. Rosenthal, R.C. Puetter, A. Yahil, O. L. Krivanek, N. Dellby and P.D. Nellist (2003). Aberration-corrected scanning transmission electron microscopy: the potential for nano- and interface science. Z. Metallkde 94, 350–357.

J. L. Hutchison, J. M. Titchmarsh, D. J. H. Cockayne, C. J. D. Hetherington, A. I. Kirkland, R. M. Doole and H. Sawada (2004). A new double-corrected HREM/STEM and its applications for advanced materials. Microsc. & Microanal. 10 (Suppl. 3), 8–9. B. Kabius, D. J. Miller and N. J. Zaluzec (2004). Aberration correction for the TEAM project: design and applications. EUREM-13, Antwerp. 1, 25–26.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

26

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

H. Kazumori, K. Honda, M. Matsuya and M. Date (2004). Field emission SEM with a spherical and chromatic corrector. APEM-8, Kanazawa. 52–53. H. Kazumori, K. Honda, M. Matsuya, M. Date and C. Nielsen (2004). Field emission SEM with a spherical and chromatic corrector. Microsc. & Microanal. 10 (Suppl. 2), 1370–1371 A.I. Kirkland, J.M. Titchmarsh, J.L. Hutchison, D.J.H. Cockayne, C. J. D. Hetherington, R. C. Doole, H. Sawada, M. Haider and P. Hartel (2004). A double aberration corrected, energy filtered HREM/STEM. JEOL News 39 (1), 2–5. O. L. Krivanek, G. J. Corbin, N. Dellby, M. Murfitt, K. Nagesha, P. D. Nellist and Z. Szilagyi (2004). Nion UltraSTEM: a new STEM for sub-0.5 Å imaging and sub-0.5 eV analysis. EUREM-13, Antwerp. 1, 35–36. Z.-x. Liu (2004). Improved fifth-order geometric aberration coefficients of electron lenses. J. Phys. D: Appl. Phys. 37 653– 659. R. Meyer, A.I. Kirkland and W.O. Saxton (2004). A new method for the determination of the wave aberration function for high resolution TEM. II. Measurement of the antisymmetric aberrations. Ultramicroscopy 99, 115–123. P.D. Nellist, M.F. Chisholm, N. Dellby, O. L. Krivanek, M. F. Murfitt, Z. S. Szilagyi, A. R. Lupini, A. Borisevich, W. H. Sides and S. J. Pennycook (2004). Direct sub-Angstrom imaging of a crystal lattice. Science 305, 1741–1742. M.A. O'Keefe and L. F. Allard (2004). A standard for sub-Ångstrom metrology of resolution in aberration-corrected transmission electron microscopes. Microsc. & Microanal. 10 (Suppl. 2), 1002–1003. S.J. Pennycook, M. F. Chisholm, M. Varela, A.R. Lupini, A. Borisevich, Y. Peng, K. van Benthem, N. Shibata, V.P. Dravid, P. Prabhumirashi, S.D. Findlay, M.P.Oxley, L.J. Allen, N. Dellby, P. D. Nellist, Z.S. Szilagyi and O.L. Krivanek (2004). Materials applications of aberration-corrected STEM. Microsc. & Microanal. 10 (Suppl. 3), 12–13. H. Rose (2004). Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged particle lenses. Nucl. Instrum. Meth. Phys. Res. A 519, 12–27. CPO-6, College Park, 2002. H. Sawada, T. Tomita, T. Kaneyama, F. Hosokawa, M. Naruse, T. Honda, P. Hartel, M. Haider, N. Tanaka, C. J. D. Hetherington, R. C. Doole, A. I. Kirkland, J. L. Hutchison, J. M. Titchmarsh and D. J. H. Cockayne (2004). Cs corrector for imaging. Microsc. & Microanal. 10 (Suppl. 2), 976–977. H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider, C. J. D. Hetherington, R. C. Doole, A. I. Kirkland, J. L. Hutchison, J. M. Titchmarsh and D. J. H. Cockayne (2004). Cs corrector for illumination. Microsc. & Microanal. 10 (Suppl. 2), 1004–1005. H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider, C.J.D. Hetherington, R. C. Doole, A. I. Kirkland, J.L. Hutchison, J. M. Titchmarsh and D.J.H. Cockayne (2004). 200 kV TEM with Cs correctors for illumination and imaging. APEM-8, Kanazawa. 20–21.

UltraSTEM: an aberration-corrected STEM for imaging and analysis. Microsc. & Microanal. 11 (Suppl. 2), 1422–1423. A. Bleloch, U. Falke, P. Goodhew and P. Weng (2005). Surprises from aberration corrected STEM. MCM-7, Portoroz. 47–50. N.D. Browning, I. Arslan, R. Erni, J.C. Idrobo, A. Ziegler, J. Bradley, Z. Dai, E.A. Stach and A. Bleloch (2006). Monochromators and aberration correctors: taking EELS to new levels of energy and spatial resolution. J. Phys.: Conf. Ser. 26, 59–64. EMAG–NANO 2005, Leeds. E. Carlino and V. Grillo (2005). 0.12 nm resolution in HAADF experiment performed by conventional 200 kV FEG TEM/ STEM microscopy. MCM-7, Portoroz. 159–160. N. Dellby, O. L. Krivanek, M. F. Murfitt and P. D. Nellist (2005). Design and testing of a quadrupole/octupole C3/C5 aberration corrector. Microsc. & Microanal. 11 (Suppl. 2), 2130–2131. B. Freitag, S. Kujawa, P.M. Mul, J. Ringnalda and P.C. Tiemeijer (2005). Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102, 209–214. M. Haider and H. Müller (2005). Is there a road map of aberration correction towards ultra-high resolution in TEM and STEM? Microsc. & Microanal. 11 (Suppl. 2), 546–547. J. L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne, R. C. Doole, C.J. D. Hetherington, A.I. Kirkland and H. Sawada (2005). A versatile double aberration-corrected, energy filtered HREM/ STEM for materials science. Ultramicroscopy 103, 7–15. O.L. Krivanek, N. Bacon, G. Corbin, N. Dellby, P. Hrncirik, A. Smith, M. Murfitt, P. Nellist, C. Own, J. Woodruff and Z. Szilagyi (2005). Atomic-resolution imaging and EELS analysis by aberration-corrected STEM. MCM-7, Portoroz. 31–36. O.L. Krivanek, N. Dellby, A. McManama-Smith, M. Murfitt, P.D. Nellist and C.S. Own (2005). An aberration-corrected STEM for diffraction studies. Microsc. & Microanal. 11 (Suppl. 2), 544–545. H. Müller, S. Uhlemann, P. Hartel and M. Haider (2005). Optical design, simulation and adjustment of present-day and future aberration correctors for the transmission electron microscope. Microscopy Conference 2005, Davos. 6. P.D. Nellist (2005). Seeing with electrons. Phys. World 18 (November) 24–29. P.D. Nellist, M. F. Chisholm, A.R. Lupini, A. Borisevich, W. H. Sides, S. J. Pennycook, N. Dellby, R. Keyse, O.L. Krivanek, M.F. Murfitt and Z.S. Szilagyi (2006). Aberration-corrected STEM: current performance and future directions. J. Phys. Conf. Ser. 26, 7–12. EMAG-NANO 2005, Leeds. M.A. O'Keefe, L.F. Allard and D.A. Blom (2005). HRTEM imaging of atoms at sub-Ångström resolution. J. Electron Microsc. 54, 169–180. Q.M. Ramasse and A.L. Bleloch (2005). Diagnosis of aberrations from crystalline samples in scanning transmission electron microscopy. Ultramicroscopy 106, 37–56.

2005

H. Rose (2005). Prospects for aberration-free electron microscopy. Ultramicroscopy 103, 1–6.

N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, O.L. Krivanek, A. McManama-Smith, M.F. Murfitt and Z.S. Szilagyi (2005). Nion

H. Rose and W. Wan (2005). Aberration correction in electron microscopy. 2005 Particle Accelerator Conference PAC2005,

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

44–48. H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hambridge, P. Hartel, M. Haider, C. Hetherington, R. Doole, A. Kirkland, J. Hutchison, J. Titchmarsh and D. Cockayne (2005). Experimental evaluation of a spherical aberration-corrected TEM and STEM. J. Electron Microsc. 54, 119–121. M.A. van der Stam, P. Tiemeijer, B. Freitag, M. Stekelenburg and J. Ringnalda (2005). The design and first results of a dedicated corrector (S)TEM Microsc. & Microanal. 11 (Suppl. 2), 2148– 2149. A. Thust, J. Barthel, L. Houben, C. L. Jia, M. Lentzen, K. Tillmann and K. Urban (2005). Strategies for aberration control in subAngstrom HRTEM. Microsc. & Microanal. 11 (Suppl. 2), 58–59. M. Varela, A. R. Lupini, K. van Benthem, A.Y. Borisevich, M.F. Chisholm, N. Shibata, E. Abe and S.J. Pennycook (2005). Materials characterization in the scanning transmission electron microscope. Ann. Rev. Mater. Res. 35, 539–569. 2006 P.E. Batson (2006). Characterizing probe performance in the aberration corrected STEM. Ultramicroscopy 106, 1104–1114. D.A. Blom, L.F. Allard, S. Mishima and M.A. O'Keefe (2006). Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory. Microsc. & Microanal. 12, 483–491. L.-y. Chang and A.I. Kirkland (2006). Optimum conditions for ultra-high resolution aberration-corrected imaging. IMC-16, Sapporo. 2, 950. L.-y. Chang, A.I. Kirkland and J.M. Titchmarsh (2006). On the importance of fifth-order spherical aberration for a fully corrected electron microsope. Ultramicroscopy 106, 301–306 M. Haider, H. Müller, P. Hartel and S. Uhlemann (2006). Advancement of hexapole Cs-correctors for high resolution CTEM and STEM. IMC-16, Sapporo. 2, 614.

27

of a 300 kV super-high resolution FETEM R 005. IMC-16, Sapporo. 2, 616. A. I. Kirkland, R. R. Meyer and L.-y. S. Chang (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc. & Microanal. 12, 461–468. A. I. Kirkland, L.-y. Chang and J. L. Hutchison (2006). Applications of aberration corrected transmission electron microscopy to materials science. JEOL News 41 (1), 8–11. C.T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner and M. Matjevich (2006). SESAM: exploring the frontiers of electron microscopy. Microsc. & Microanal. 12, 506–514. O.L. Krivanek, N. J. Bacon, G.J. Corbin, N. Dellby, B.F. Elston, P. Hrncirik, R. J. Keyse, M. F. Murfitt, C.S. Own, Z. S. Szilagyi and J. W. Woodruff (2006). New approaches to instrumentation for high resolution STEM and TEM. IMC-16, Sapporo. 2, 615. M. Lentzen (2006). Progress in aberration-corrected transmission electron microscopy using hardware aberration correction. Microsc. & Microanal. 12, 191–205. M. Lentzen and A. Thust (2006). Optimum aberration setting for sub-Ångström HRTEM and contrast theory for Wien-filter monochromators. IMC-16, Sapporo. 2, 638. K. Mitsuishi, M. Takeguchi, Y. Kondo, F. Hosokawa, K. Okamoto, T. Sannomiya, M. Hori, T. Iwama, M. Kawazoe and K. Furuya (2006). Ultrahigh-vacuum third-order spherical aberration (Cs) corrector for a scanning transmission electron microscope. Microsc. & Microanal. 12, 456–460. H. Müller, S. Uhlemann, P. Hartel and M. Haider (2006). Advancing the hexapole Cs -corrector for the scanning transmission electron microscope. Microsc. & Microanal. 12, 442– 455. E. Munro, J. Rouse, H. Liu, L. Wang and X. Zhu (2006). Simulation software for designing electron and ion beam equipment. Microelectron. Eng. 83, 994–1002.

M. Haider, H. Müller and S. Uhlemann (2006). Improvement path for the hexapole Cs-corrector towards 0.5 Å resolution. Microsc. & Microanal. 12 (Suppl. 2), 1468–1469.

K. Nakamura, M. Konno, T. Yaguchi, T. Kamino, D. Terauchi, H. Inada, H. Tanaka, Y. Taniguchi and S. Isakozawa (2006). Development of a Cs -corrected dedicated STEM. IMC-16, Sapporo. 2, 633.

M. Haider, H. Müller, P. Hartel and S. Uhlemann (2006). Cs -correction for 0.5 Å resolution of a monochromated STEM. Materials Research in an Aberration-corrected Environment, 2 pp.

H. Sawada, T. Sannomiya, F. Hosokawa, T. Kaneyama, Y. Kondo, Y. Tanishiro and K. Takayanagi (2006). Method to measure aberrations from Ronchigram by auto-correlation function. IMC-16, Sapporo. 2, 632.

M. Haider, H. Müller, S. Uhlemann and J. Zach (2006). Correction of spherical and chromatic aberration for TEM. Materials Research in an Aberration-corrected Environment, 2 pp.

T. Walther and H. Stegmann (2006). Performance evaluation of a new monochromatic and aberration-corrected 200 kV fieldemission scanning transmission electron microscope. IMC-16, Sapporo. 2, 607.

M. Hibino, R. Iiyoshi and T. Kitamura (2006). Optimum combination of 3rd and 5th order spherical aberrations for high resolution imaging of carbon single atoms in spherical aberration corrected TEM. IMC-16, Sapporo. 2, 626. F. Hosokawa, H. Sawada, T. Sannomiya, T. Kaneyama, Y. Kondo, M. Hori, S. Yuasa, M. Kawazoe, T. Nakamichi, Y. Tanishiro, N. Yamamoto and K. Takayanagi (2006). Design and development of Cs corrector for a 300 kV TEM and STEM. IMC-16, Sapporo. 2, 582. T. Kaneyama, T. Tomita, F. Hosokawa, H. Sawada, T. Sannomiya, S. Deguchi, M. Kawazoe, T. Miyata, E. Kobayashi, Y. Kondo, Y. Tanishiro and K. Takayanagi (2006). Design and development

T. Walther and H. Stegmann (2006). Preliminary results from the first monochromated and aberration corrected 200 kV field-emission scanning transmission electron microscope. Microsc. & Microanal. 12, 498–505. M. Watanabe, D.W. Ackland, C.J. Kiely, D.B. Williams, M. Kanno, R. Hynes and H. Sawada (2006). Optimization of a sphericalaberration-corrected scanning transmission electron microscope for atomic-resolution annular dark-field imaging and electron energy-loss spectrometry. IMC-16, Sapporo. 2, 606. M. Watanabe, D. W. Ackland, C. J. Kiely, D. B. Williams, M. Kanno, R. Hynes and H. Sawada (2006). The aberration

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

28

corrected JEOL JEM–2200FS FEG–STEM/TEM fitted with an Ω electron energy-filter: performance characterization and selected applications. JEOL News 41 (1), 2–7. T. Yamazaki, Y. Kotaka, Y. Kikuchi and K. Watanabe (2006). Precise measurement of third-order spherical aberration using low-order zone-axis Ronchigrams. Ultramicroscopy 106, 153–163. J. Zach (2006). Aberration correction in SEM and FIB – the state of the art. IMC-16, Sapporo. 2, 662. 2007 U. Dahmen (2007). A status report on the TEAM project. Microsc. & Microanal. 13 (Suppl. 2), 1150–1151. M. Haider, U. Loebau, R. Hoeschen, H. Müller, S. Uhlemann and J. Zach (2007). State of the development of a Cc and Cs corrector for TEAM. Microsc. & Microanal. 13 (Suppl. 2), 1156– 1157. P. Hartel, H. Müller, S. Uhlemann and M. Haider (2007). Experimental set-up of an advanced hexapole Cs -corrector. Microsc. & Microanal. 13 (Suppl. 2), 1148–1149. P.W. Hawkes (2007). Aberration correction. In Science of Microscopy (P. W. Hawkes and J. C. H. Spence, Eds), 696–747 (Springer, New York); (2008) corrected second printing.

K. van Benthem, Y. Peng, N. de Jonge, G.M. Veith, S.T. Pantelides, M.F. Chisholm and S.J. Pennycook (2008). Scanning transmission electron microscopy. In Nanocharacterisation (A. I. Kirkland and J.L. Hutchison, Eds) 28–65 (Royal Society of Chemistry, Cambridge). K. Nakamura, H. Inada, H. Tanaka, M. Konno and T. Ogawa (2007). Hitachi's spherical aberration corrected STEM: HD2700. Hitachi Rev. 56 (3), 34–38. H. Rose (2007). Optimum imaging modes in electron microscopy. MCM-8, Prague. 21–24. H. Sawada, F. Hosokawa, T. Kaneyama, T. Ishizawa, M. Terao, M. Kawazoe, T. Sannomiya, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, N. Yamamoto and K. Takayanagi (2007). Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Japan. J. Appl. Phys. 46, L568–L570. H. Sawada, F. Hosokawa, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, K. Takayanagi and T. Sannomiya (2007). Development of spherical aberration corrected 300 kV FETEM. Microsc. & Microanal. 13 (Suppl. 2), 880–881. K. Takayanagi (2007). 50 pm ultrahigh resolution microscopy. Kenbikyo 42 (Supplement), 70. 2008

T. Kaneyama, H. Sawada, F. Hosokawa, T. Tomita, Y. Kondo, Y. Tanishiro and K. Takayanagi (2007). Development of ultrahigh resolution 300 kV FETEM "R005". Kenbikyo 42 (Supplement), 72.

J. Barthel and A. Thust (2008). First time quantification of the HRTEM information-limit reveals insufficiency of the Young's-fringe test. EMC-14, Aachen. 1, 99–100.

A.I. Kirkland and J.L. Hutchison, Eds (2008). Nanocharacterisation (Royal Society of Chemistry, Cambridge).

J. Barthel and A. Thust (2008). Quantification of the information limit of transmission electron microscopes. Phys. Rev. Lett. 101, 200801 (4 pp.)

A.I. Kirkland, S.L.-y. Chang and J.L. Hutchison (2007). Atomic resolution transmission electron microscopy. In Science of Microscopy (P. W. Hawkes and J. C. H. Spence, Eds), 3–64 (Springer, New York).

P.E. Batson (2008). First results using the Nion third-order scanning transmission electron microscope. Adv. Imaging & Electron Phys. 153, 161–194.

A.I. Kirkland, S. Haigh and L.-y. Chang (2008). Aberration corrected TEM: current status and future prospects. J. Phys.: Conf. Ser. 126, 012034 (6 pp.). EMAG 2007, Glasgow. Y. Kondo, F. Hosokawa, H. Sawada and E. Okunishi (2007). TEM/ STEM equipped with Cs corrector and its applications. Kenbikyo 42 (Supplement), 8. O.L. Krivanek, G. Corbin, N. Dellby, B. Elston, R. Keyse, M. Murfitt, C.S. Own and Z. S. Szilagyi (2007). UltraSTEM progress: flexible electron optics, high-performance sample stage. Microsc. & Microanal. 13 (Suppl. 2), 878–879. O.L. Křivánek, N. Bacon, G. Corbin, N. Dellby, B. Elston, P. Hrncirik, R. Keyse, M. Murfitt, C. Own, J. Woodruff and Z. Szilagyi (2007). Atomic resolution nanoanalysis. MCM-8, Prague. 3–8. Z.-x. Liu (2007). Exploring third-order chromatic aberrations of electron lenses with computer algebra. Adv. Imaging & Electron Phys. 145, 95–148. A.R. Lupini and S. Pennycook (2007). Aberration-corrected imaging in the STEM. Microsc. & Microanal. 13 (Suppl. 2), 1146–1147. A.R. Lupini, S.N. Rashkeev, M. Varela, A.Y. Borisevic, M.P. Oxley,

P.E. Batson (2008). Control of parasitic aberrations in multipole corrector optics. Microsc. & Microanal. 14 (Suppl. 2), 830–831. J. Biskupek, A. Chuvilin, J.R. Jinschek and U. Kaiser (2008). Quantitative investigations of the depth of field in a corrected high resolution transmission electron microscope. EMC-14, Aachen. 1, 101–102. A.L. Bleloch, M. Gass, L. Jiang, B. Mendis, K. Sader and P. Wang (2008). Aberration corrected STEM and EELS: atomic scale chemical mapping. EMC-14, Aachen. 1, 1–2. U. Dahmen, R. Erni, C. Kisielowski, V. Radmilovic, Q. Ramasse, A. Schmid, T. Duden, M. Watanabe, A. Minor and P. Denes (2008). An update on the TEAM project – first results from the TEAM 0.5 microscope, and its future development. EMC-14, Aachen. 1, 3–4. N. Dellby, O.L. Krivanek and M.F. Murfitt (2008). Optimized quadrupole-octupole C3/C5 aberration corrector for STEM. Phys. Procedia 1, 179–183. CPO-7, Cambridge, 2006. N. Dellby, M. Murfitt, O..L. Krivanek, M. Kociak, K. March, M. Tencé and C. Colliex (2008). Atomic-resolution STEM at 60 kV primary voltage. Microsc. & Microanal. 14 (Suppl. 2), 136–137. C. Dwyer, R. Erni and J. Etheridge (2008). Method to measure spatial coherence of subangstrom electron beams. Appl. Phys.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Lett. 93, 021115 (3 pp.). B. Freitag and C. Kisielowski (2008). Determining resolution in the transmission electron microscope: object-defined resolution below 0.5 Å. EMC-14, Aachen. 1, 21–22. P.L. Gai and E.D. Boyes (2008). Aberration corrected TEM and STEM for dynamic in situ experiments. EMC-14, Aachen. 1, 15–16.

29

microscopy. Adv. Imaging & Electron Phys. 153, 283–325. C. Kisielowski, R. Erni and B. Freitag (2008). Object-defined resolution below 0.5 Å in transmission electron microscopy – recent advances on the TEAM 0.5 instrument. Microsc. & Microanal. 14 (Suppl. 2), 78–79.

M. Haider, P. Hartel, U. Loebau, R. Hoeschen, H. Müller, S. Uhlemann, F. Kahl and J. Zach (2008). Progress on the development of a Cc/ Cs corrector for TEAM. Microsc. & Microanal. 14 (Suppl. 2), 800–801.

C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Krippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E.A. Olson, T. Donchev, E.A. Kenik, A.R. Lupini, J. Bentley, S. J. Pennycook, I. M. Anderson, A.M. Minor, A.K. Schmid, T. Duden, V. Radmilovic, Q.M. Ramasse, M. Watanabe, R. Erni, E. A. Stach, P. Denes and U. Dahmen (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. & Microanal. 14, 469–477.

M. Haider, H. Müller and S. Uhlemann (2008). Present and future hexapole aberration correctors for high resolution electron microscopy. Adv. Imaging & Electron Phys. 153, 43–120.

R.F. Klie, C. Johnson and Y. Zhu (2008). Atomic-resolution STEM in the aberration-corrected JEOL JEM 2200FS. Microsc. & Microanal. 14, 104–112.

M. Haider, H. Müller, S. Uhlemann, P. Hartel and J. Zach (2008). Developments of aberration correction systems for current and future requirements. EMC-14, Aachen. 1, 9–10.

O. Krivanek, N. Dellby, R.J. Keyse, M. Murfitt, C. Own and Z. Szilagyi (2008). Advances in aberration-corrected scanning transmission electron microscopy and electron spectroscopy. Adv. Imaging & Electron Phys. 153, 121–160.

M. Haider, H. Müller, S. Uhlemann, P. Hartel and J. Zach (2008). Recent corrector developments for high-resolution electron microscopy. Korean J. Microsc. 38 (Part 4, Supplement), 14–15. APMC-9, Jeju.

O. Krivanek, N. Dellby, M. Murfitt, C. Own and Z. Szilagyi (2008). STEM aberration correction: an integrated approach. EMC-14, Aachen. 1, 11–12.

M. Haider, H. Müller, S. Uhlemann, J. Zach, U. Loebau and R. Hoeschen (2008). Prerequisites for a Cc/ Cs -corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167–178.

O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M. F. Murfitt, C.S. Own, Z. S. Szilagyi and J.W. Woodruff (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195.

P. Hartel, H. Müller, S. Uhlemann, J. Zach, U. Löbau, R. Höschen and M. Haider (2008). Demonstration of Cc/ Cs correction in HRTEM. EMC-14, Aachen. 1, 27–28.

B. Lencová and J. Zlámal (2008). A new program for the design of electron microscopes. Phys. Procedia 1, 315–324. CPO-7, Cambridge 2006.

P.W. Hawkes (2008). Aberrations. In Handbook of Charged Particle Optics (J. Orloff, Ed.), 209–339 (CRC Press, Baton Rouge).

M. Lentzen (2008). Contrast transfer and resolution limits for sub-Angstrom high-resolution transmission electron microscopy. Microsc. & Microanal. 14, 16–26.

C. Gatel, F. Houdellier and M.J. Hÿtch (2008). Direct measurement of aberrations by convergent-beam electron holography. EMC-14, Aachen. 1, 23–24.

F. Houdellier, M. Hÿtch, F. Hüe and E. Snoeck (2008). Aberration correction with the SACTEM–Toulouse: from imaging to diffraction. Adv. Imaging & Electron Phys. 153, 225–259. H. Inada, Y. Zhu, J. Wall, V. Volkov, K. Nakamura, M. Konno, K. Kaji and K. Jarausch (2008). The newly installed aberration corrected dedicated STEM (Hitachi HD 2700C) at Brookhaven National Laboratory. EMC-14, Aachen. 1, 31–32. B. Kabius and H. Rose (2008). Novel aberration correction concepts. Adv. Imaging & Electron Phys.. 153, 261–281. U. Kaiser, A. Chuvilin, R.R. Schröder, M. Haider and H. Rose (2008). Sub-Ångstrøm low-voltage electron microscopy – future reality for deciphering the structure of beam-sensitive nanoobjects? EMC-14, Aachen. 1, 35–36. K. Kimoto, K. Ishizuka and Y. Matsui (2008). Decisive factors for realizing atomic-column resolution using STEM and EELS. Micron 39, 257–262. K. Kimoto, K. Ishizuka and Y. Matsui (2008). Erratum, Decisive factors for realizing atomic-column resolution using STEM and EELS. Micron 39, 653–657. A.I. Kirkland, P.D. Nellist, L.-y. Chang and S. J. Haigh (2008). Aberration-corrected imaging in conventional transmission electron microscopy and scanning transmission electron

H.-n. Liu, J. Rouse, L.-p. Wang and E. Munro (2008). Software for designing multipole aberration correctors. Phys. Procedia 1, 339–353. CPO-7, Cambridge 2006. A.R. Lupini and S.J. Pennycook (2008). Rapid autotuning for crystalline specimens from an inline hologram. J. Electron Microsc. 57, 195–201. D. A. Muller, L. F. Kourkoutis, M. Murfitt, J. H. Song, H. Y. Hwang, J. Silcox, N. Dellby and O. L. Krivanek (2008). Atomic-scale chemical imaging of composition and bonding by aberratiomcorrected microscopy. Science 319, 1073–1076. H. Müller, S. Uhlemann, P. Hartel and M. Haider (2008). Aberration-corrected optics: from an idea to a device. Phys. Procedia 1, 167–178. CPO-7, Cambridge 2006. S.J. Pennycook, M.F. Chisholm, A.R. Lupini, M. Varela, K. van Benthem, A.Y. Borisevich, M.P. Oxley, W. Luo and S.T. Pantelides (2008). Materials applications of aberration-corrected scanning transmission electron microscopy. Adv. Imaging & Electron Phys. 153, 327–384. J.M. Rodenburg (2008). Ptychography and related diffractive imaging methods. Adv. Imaging & Electron Phys. 150, 87–184.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

30

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

H. Rose (2008). History of direct aberration correction. Adv. Imaging & Electron Phys. 153, 1–37. H. Rose (2008). Optics of high performance electron microscopes. Sci. Technol. Adv. Mater. 9, 014107 (30 pp.). T. Sato, H. Matsumoto, M. Konno, Y. Taniguchi and S. Mamishin (2008). Hitachi's high-end analytical electron microscope: HF-3300. Hitachi Rev. 57 132–135. H. Sawada, F. Hosokawa, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro and K. Takayanagi (2008). Auto-adjustment of aberration correction and experimental evaluation of R005 microscope. Microsc. & Microanal. 14 (Suppl. 2), 802–803. H. Sawada, F. Hosokawa, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, N. Yamamoto and K. Takayanagi (2008). Performance of R005 microscope and aberration correction system. EMC-14, Aachen. 1, 47–48. H. Sawada, T. Sannomiya, F. Hosokawa, T. Nakamichi, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro and K. Takayanagi (2008). Measurement method of aberration from Ronchigram by autocorrelation function. Ultramicroscopy 108, 1467–1475. H. Sawada, F. Hosokawa, T. Nakamichi, T. Tomita, T. Kaneyama, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro and K. Takayanagi (2008). Experimental evaluation and development of autoaberration-tuning system for the spherical aberration corrected microscope (R005). Kenbikyo 43 (Supplement), 86. D. J. Smith (2008). Development of aberration-corrected electron microscopy. Microsc. & Microanal. 14, 2–15. K. Takayanagi (2008). Status quo and future trends of aberration correction in electron microscopy. J. Vac. Soc. Japan 51, 691–694. N. Tanaka (2008). Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials. Sci. Technol. Adv. Mater. 9, 014111 (11 pp.). P.C. Tiemeijer, M. Bischoff, B. Freitag and C. Kisielowski (2008). Using a monochromator to improve the resolution in focalseries reconstructed TEM down to 0.5 Å. EMC-14, Aachen.1, 53–54. K. Tillmann, J. Barthel, L. Houben, C.-l. Jia, M. Lentzen, A. Thust and K. Urban (2008). Progress in aberration-corrected highresolution transmission electron microscopy of crystalline materials. Springer Proceedings in Physics 120 (2008) 133–148 (A.G. Cullis and P.A. Midgley, Eds). Microscopy of Semiconducting Materials 2007. K. Urban (2008). Studying atomic structures by aberrationcorrected transmission electron microscopy. Science 321, 506–510. K. Urban, L. Houben, C.-l. Jia, M. Lentzen, S.-b. Mi, A. Thust and K. Tillmann (2008). Atomic-resolution aberration-corrected transmission electron microscopy. Adv. Imaging & Electron Phys. 153, 439–480. P. Wang, M. Gass, M. Falke and A. Bleloch (2008). Performance of a Nion Co. UltraSTEM. Microsc. & Microanal. 14 (Suppl. 2), 1376–1377. J. Yamasaki, H. Tamaki, T. Kawai, Y. Kondo and N. Tanaka (2008). A practical solution for elimination of artificial image contrast

in Cs-corrected TEM. AMTC Lett. 1, 94–95. Y. Zhu and J. Wall (2008). Aberration-corrected electron microscopes at Brookhaven National Laboratory. Adv. Imaging & Electron Phys. 153, 481–523. 2009 N. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, O. Krivanek, M. Murfitt, C.S. Own and Z. Szilagyi (2009). Aberration-corrected STEM. Microsc. & Microanal. 15 (Suppl. 2), 1462–146.3 P.E. Batson (2009). Control of parasitic aberrations in multipole optics. J. Electron Microsc. 58, 123–130. A. L. Bleloch, M. Gass, B. Mendis, K. Sader, B. Schaffer and P. Wang (2009). Scanning transmission electron microscopy: the major beneficiary of aberration correction? Microsc. & Microanal. 15 (Suppl. 2), 152–153. A. Bleloch (2009). Imaging single atoms and atomic clusters in complex media by aberration corrected STEM. MC-2009, Graz. 1, 11–12. D. Cockayne (2010). The nanoworld through aberration corrected lenses. J. Phys. Conf. Ser. 241, 012001 (8 pp.). EMAG 2009, Sheffield. U. Dahmen, R. Erni, V. Radmilovic, C. Kisielowski, M.D. Rossell and P. Denes (2009). Background, status and future of the Transmission Electron Aberration-corrected Microscope project. Phil. Trans. Roy. Soc. London A 367, 3795–3808. P. Denes (2009). The TEAM project. MC-2009, Graz. 1, 3–8. R. Erni, M.D. Rossell, C. Kisielowski and U. Dahmen (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (4 pp.). S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto and Y. Ikuhara (2009). Robust atomic resolution of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (3 pp.). P.L. Gai and E.D. Boyes (2009). Advances in atomic resolution in situ environmental transmission electron microscopy and 1 Å aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72, 153–164. P.L. Gai and E.D. Boyes (2010). Angstrom analysis with dynamic in-situ aberration corrected electron microscopy. J. Phys.: Conf. Ser 241, 012055 (6 pp.). EMAG, 2009, Sheffield. M. Haider, P. Hartel, H. Müller, S. Uhlemann and J. Zach (2009). Current and future aberration correctors for the improvement of resolution in electron microscopy. Phil. Trans. Roy. Soc. London A 367, 3665–3682. M. Haider, P. Hartel, H. Müller, S. Uhlemann and J. Zach (2009). Development of correctors: from O. Scherzer to TEAM. Microsc. & Microanal. 15 (Suppl. 2), 150–151. M. Haider, P. Hartel, R. Höschen, U. Loebau, H. Müller, S. Uhlemann and J. Zach (2009). Aberration correctors in electron microscopy: from the first ideas of O. Scherzer to sophisticated correction systems. MC-2009, Graz. 1, 49–50. P.W. Hawkes (2009). Aberration correction past and present. Phil. Trans. Roy. Soc. London A 367, 3637–3664. H. Inada, H. Kakibayashi, S. Isakozawa, T. Hashimoto, T. Yaguchi

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

and K. Nakamura (2009). Hitachi's development of cold-field emission scanning transmission electron microscopes. Adv. Imaging & Electron Phys. 159, 123–186. H. Inada, L. Wu, J. Wall, D. Su and Y. Zhu (2009). Performance and image analysis of the aberration-corrected Hitachi HD2700C STEM. J. Electron Microsc. 58, 111–122. I. Ishikawa, E. Okunishi, H. Sawada, Y. Ohkura, K. Yamazaki, T. Ishikawa, M. Kawazu, M. Hori, M. Terao, Y. Kondo, (2009). Development of atomic resolution analytical electron microscope. Kenbikyo 44 (Supplement), 11. K. Ishizuka, K. Kimoto and Y. Bando (2009). Fourier analysis of Ronchigram and aberration assessment. Microsc. & Microanal. 15 (Suppl. 2), 1094–1095. B. Kabius, P. Hartel, M. Haider, H. Müller, S. Uhlemann, U. Loebau and J. Zach (2009). First application of Cc corrected imaging for high-resolution and energy-filtered TEM. Microsc. & Microanal. 15 (Suppl. 2), 1456–1457. B. Kabius, P. Hartel, M. Haider, H. Müller, S. Uhlemann, U. Loebau, J. Zach and H. Rose (2009). First application of Cs -corrected imaging for high-resolution and energy-filtered TEM. J. Electron Microsc. 58, 147–155. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2009). Delta type new spherical aberration corrector. Kenbikyo 44 (Supplement), 13.

31

Sheffield. 339–342. H. Rose (2009). Geometrical Charged-Particle Optics (Springer, Berlin); 2nd edn 2012. H. Rose (2009). Historical aspects of aberration correction. J. Electron Microsc. 58, 77–85. H. H. Rose (2009). Future trends in aberration-corrected electron microscopy. Phil. Trans. Roy. Soc. London A 367, 3809– 3823. H. Rose (2009). In memoriam of Otto Scherzer on the occasion of his hundredth birthday. MC-2009, Graz. 1, 1–2. H. Rose (2009). Eine Brille für Elektronen. Physik Journal 8(8/9), 61–66. Robert–Wichard–Pohl Prize lecture. T. Sasaki, H. Sawada, T. Nakamichi, F. Hosokawa, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2009). Performance of low-voltage electron microscope with new aberration correction system and cold field emission gun. Microsc. & Microanal. 15 (Suppl. 2), 1080–1081. T. Sasaki, H. Sawada, T. Nakamichi, F. Hosokawa, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2009). Development and performance evaluation of 60 kV aberration-corrected TEM/STEM. Kenbikyo 44 (Supplement), 11.

Y. Kondo, H. Sawada, F. Hosokawa, T. Tomita, T. Kaneyama, Y. Oshima, T. Tanaka, N. Yamamoto, Y. Tanishiro and K. Takayanagi (2009). Development of ultrahigh resolution microscope having resolution of 50 pm. Kenbikyo 44 (Supplement), 33.

H. Sawada, F. Hosokawa, T. Nakamichi, T. Tomita, T. Kaneyama, Y. Kondo, T. Tanaka, Y. Tanishiro and K. Takayanagi (2009). Development of auto-tuning system for spherical aberration corrector and achievement of 47 pm resolution. Kenbikyo 44 (Supplement), 33.

O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M. F. Murfitt, C. S. Own and Z.S. Szilagyi (2009). High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Phil. Trans. Roy. Soc. London A 367, 3683–3697.

H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2009). Correction of higher order geometrical aberration by triple 3-fold astigmatism field. J. Electron Microsc. 58, 341–347.

O. Krivanek, J. Ursin, G.J. Corbin, N. Dellby, M. Murfitt, C. Own and Z. Szilagyi (2009). Aberration correction in energy-loss spectrometers and monochromators. Microsc. & Microanal. 15 (Suppl. 2), 210–211.

H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, K. Omoto, T. Kaneyama, T. Tomita, Y. Kondo, K. Kimoto and K. Suenaga (2009). Correction of spherical aberration and six-fold astigmatism using three dodecapoles. Microsc. & Microanal. 15 (Suppl. 2), 1458–1459.

O.L. Krivanek, N. Dellby and M. Murfitt (2009). Aberration correction in electron microscopy. In Handbook of Charged Particle Optics, 2nd edn (J. Orloff, Ed.), 601–640 (CRC Press, Boca Raton). M. Lentzen (2009). Aberration-corrected atomic-resolution transmission electron microscopy. MC-2009, Graz. 1, 9–10. A.R. Lupini, A. . Borisevich, J.C. Idrobo, K. Christen, M. Biegalski and S.J. Pennycook (2009). Characterizing the two- and threedimensional resolution of an improved aberration-corrected STEM. Microsc. & Microanal. 15, 441–453. D.A. Muller (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Materials 8, 263–270. T. Oikawa, E. Okunishi, N. Endo and C. Ricolleau (2009). Structural and elemental analysis under the sub-Angstrom resolution with Cs -corrected STEM. MC-2009, Graz. 1, 13–14. J. M. Rodenburg and A. R. Lupini (1999). Measuring lens parameters from coherent Ronchigrams in STEM. EMAG-1999,

H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama, Y. Kondo and K. Takayanagi (2009). STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300 kV cold field emission gun. J. Electron Microsc. 58, 357–361. B. Schaffer, K. Sader, G. Vaughan and A. Bleloch (2009). SMART approaches to analytical Cs -corrected STEM. MC-2009, Graz. 1, 153–154. T. Tomita, Y. Tanishiro, F. Hosokawa, Y. Kondo, T. Kaneyama, Y. Oshima, T. Tanaka, N. Yamamoto. H/ Sawada and K. Takayanagi (2009). Development of 300 kV cold field emission gun for the microscope of 50 pm resolution. Kenbikyo 44 (Supplement), 35. K. W. Urban, C.-l. Jia, L. Houben, M. Lentzen, S.-b. Mi and K. Tillmann (2009). Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy. Phil. Trans. Roy. Soc. London A 367, 3735–3753. K. Urban (2009). Is science prepared for atomic-resolution

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

32

electron microscopy? Nature Materials 8, 260–262. H.S. von Harrach (2009). Development of the 300-kV Vacuum Generator STEM (1985–1996). Adv. Imaging & Electron Phys. 159, 287–323. I.R.M. Wardell and P.E. Bovey (2009). A history of Vacuum Generators' 100-kV scanning transmission electron microscope. Adv. Imaging & Electron Phys. 159, 221–285. J. Zach (2009). Chromatic correction: a revolution in electron microscopy? Phil. Trans. Roy. Soc. London A 367, 3699–3707. Y. Zhu, H. Inada, L. Wu, J. Wall and D. Su (2009). The aberratoncorrected Hitachi HD-2700C at Brookhaven National Laboratory. Hitachi E.M. News 3, 2–13.

field. Kenbikyo 45 (Supplement), 14. U. Kaiser, J. Meyer, J. Biskupek, J. Leschner, L. Lechner, S. Kurasch, Z. Lee, A. N. Khlobystov, H. Müller, P. Hartel, M. Haider, S. Eyhusen, G. Benner and H. Rose (2010). Towards sub Ångstrøm low voltage electron microscopy (SALVE); first results of Cs corrected transmission electron microscopy at 20 kV. IMC-17, Rio de Janeiro. I20.7. O.L. Krivanek, M.F. Chisholm, N. Dellby, M. Murfitt, V. Nicolosi and T.J. Pennycook (2010). Atom-by-atom imaging: towards 3-D atomic resolution. IMC-17, Rio de Janeiro. I20.9.

2010

O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G. J. Corbin, N. Dellby, M.F. Murfitt, C. S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides and S.J. Pennycook (2010). Atom-byatom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574.

J. Barthel and A. Thust (2010). Aberration measurement in HRTEM: implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. Ultramicroscopy 111, 27–46.

O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga and V. Nicolosi (2010). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110 935–945.

D. C. Bell, C. J. Russo and G. Benner (2010). Sub-ångstrom lowvoltage performance of a monochromated, aberration-corrected transmission electron microscope. Microsc. & Microanal. 16, 386–392.

A.R. Lupini and S. J. Pennycook (2010). Rapid methods for dynamic autotuning. Microsc. & Microanal. 16 (Suppl. 2), 244– 245.

E. D. Boyes, K. Yoshida, M. Walsh and P. L. Gai (2010). Aberration correction in dynamic in situ studies of nanoparticles. AMTC Lett. 2, 98–99.

A.R. Lupini, P. Wang, P.D. Nellist, A. I. Kirkland and S. J. Pennycook (2010). Aberration measurement using the Ronchigram contrast transfer function. Ultramicroscopy 110, 891–898.

R. Erni (2010). Aberration-corrected Imaging in Transmission Electron Microscopy (Imperial College Press, London).

M. Marko and H. Rose (2010). The contributions of Otto Scherzer (1909–1982) to the development of the electron microscope. Microsc. & Microanal. 16, 366–374.

E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell and R. Höschen (2010). Energy resolution of an omega-type monochromator and imaging properties of the MANDOLINE filter. Ultramicroscopy 110, 971–980.

E. Munro, H. Liu, J. Rouse and L. Wang (2010). Simulation of aberration correctors for electron microscopy using multipole lenses, Wien filters and electron mirrors. IMC-17, Rio de Janeiro. I1.7

S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo and Y. Ikuhara (2010). Dynamics of annular bright field scanning transmission electron microscopy imaging. AMTC Lett. 2, 102– 103.

H. Rose (2010). Outline of an aberration-corrected low-voltage phase electron microscope. IMC-17, Rio de Janeiro. I23.4.

M. Haider, P. Hartel, H. Müller, S. Uhlemann and J. Zach (2010). Ultra high resolution by means of correction of the spherical and the chromatic aberration. IMC-17, Rio de Janeiro. I20.6.

H. Rose (2010). Theoretical aspects of image formation in the aberration-corrected electron microscope. Ultramicroscopy 110, 488–499.

M. Haider, P. Hartel, H. Müller, S. Uhlemann and J. Zach (2010). Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc. & Microanal. 16, 393–408.

T. Sasaki, H. Sawada, F. Hosokawa, M. Kawazoe, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2010). Experimental results of new-type of chromatic aberration corrector mounted on low-voltage transmission electron microscope. IMC-17, Rio de Janeiro. I2.2.

T. W. Hansen, J. B. Wagner and R. E. Dunin-Borkowski (2010). Aberration corrected and monochromated environmental transmission electron microscopy. Mater. Sci. Technol. 26, 1338–1344.

T. Sasaki, H. Sawada, F. Hosokawa, Y. Kohno, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto, Y. Sato and K. Suenaga (2010). Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. J. Electron Microsc. 59, S7–S13.

T. W. Hansen, J. B. Wagner and R. E. Dunin-Borkowski (2010). Aberration corrected monochromated environmental transmission electron microscopy – progress, prospects and challenges. AMTC Lett. 2, 76–77.

T. Sasaki, H. Sawada, F. Hosokawa, Y. Kohno, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto, Y. Sato and K. Suenaga (2010). Development and performance of an aberration-corrected 30–60 kV TEM/STEM with a cold field emission gun. AMTC Lett. 2, 122–123.

P. Hartel, H. Müller, S. Uhlemann, J. Zach and M. Haider (2010). Benefits of simultaneous Cc- and Cs -correction. Microsc. & Microanal. 16 (Suppl. 2), 114–115. F. Hosokawa, H. Sawada, T. Sasaki, Y. Kondo and K. Suenaga (2010). Chromatic aberration correction for an objective lens utilizing concave lens effect generated from thick quadrupole

H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2010). Development of Cc corrector by combination concave lens system. IMC-17, Rio de Janeiro. I20.8. H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, M. Kawazoe, M.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Terao, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2010). Chromatic aberration correction by combination concave lens. Microsc. & Microanal. 16 (Suppl. 2), 116–117. H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2010). Higher-order aberration corrector for an image-forming system in a transmission electron microscope. Ultramicroscopy 110, 958–961. H. Sawada, T. Sasaki, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2010). Delta-type spherical aberration corrector. Kenbikyo 45 (3), 193–197. N. Shibata, Y. Kohno, S. D. Findlay, H. Sawada, Y. Kondo and Y. Ikuhara (2010). New area detector for atomic-resolution scanning transmission electron microscopy. J. Electron Microsc. 59, 473–479 K. Suenaga and M. Koshino (2010). Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090. K. Takayanagi, Y. Oshima, T. Tanaka, Y. Tanishiro, H. Sawada, F. Hosokawa, T. Tomita, T. Kaneyama and Y. Kondo (2010). Lithium atom microscopy at sub-50 pm resolution by R005. JEOL News 45 (1), 2–7. K. Tamura, S. Okayama and R. Shimizu (2010). Third-order spherical aberration correction using multistage self-aligned quadrupole correction-lens system. J. Electron Microsc. 59, 197–206. A. Thust and J. Barthel (2010). Ultimate limits of aberration control in HRTEM. IMC-17, Rio de Janeiro. I20.4. W. Wan (2010). Aberration correction in microscopes. Proceedings PAC09, Vancouver (BC), 778–782. 2011 D.C. Bell, W. K. Thomas, K. Murtagh and W.R. Glover (2011). Albert Crewe's dream realized: sequencing DNA with STEM. Microsc. & Microanal. 17 (Suppl. 2), 1276–1277.

33

microscopy at the angstrom scale. Microsc. Res. Tech. 74, 664– 670. M. Haider (2011). Is there a need for further instrumental developments? MC-2011, Kiel. 1, I1.111. S.J. Haigh and A.I. Kirkland (2011). Aberration-corrected imaging in CTEM. In Aberration-corrected Analytical Transmission Electron Microscopy (R. Brydson, Ed), 241–266 (Wiley, Chichester and RMS, Oxford). F. Hüe, J.M. Rodenburg, A. M. Maiden and P. A. Midgley (2011). Extended ptychography in the transmission electron microscope: possibilties and limitations. Ultramicroscopy 111, 1117– 1123. H. Inada, D. Su, R. F. Egerton, M. Konno, L. Wu, J. Ciston, J. Wall and Y. Zhu (2011). Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms. Ultramicroscopy 111, 865–876. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa and E. Abe (2011). Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Materials 10, 278–281. R. Janzen (2011). Concept for electrostatic correctors for reduction of aberrations within miniaturized columns. MC2011, Kiel. 1, IM1.P104. F. Kahl, S. Uhlemann, Z. Zach and H. Müller (2011). Design of a C3/C5 corrector for a sub-angstrom low-voltage electron-microscope (SALVE). MC-2011, Kiel. 1, IM1.115. U. Kaiser, J. Biskupek, S. Kurasch, U. Golla-Schindler, J.C. Meyer, M. Kinyanjui, L. Lechner, Z. Lee, J. Leschner, G. Algara-Siller, T. Zoberbier, A. Chuvilin, M. Stöger-Pollach, A. N. Khlobystov, E. Bichoutskaia, V. Skakalova, J.H. Smet, K. Kotakoski, A. Krasheninnikov, P. Hartel, H. Müller, M. Haider, A. Orchowski, S. Eyhusen, G. Benner and H. Rose (2011). Transmission electron microscopy at 20 and 80 keV for imaging and spectroscopy – current status and future prospects. MC-2011, Kiel. 1, IM5.514.

A. Bleloch and Q. Ramasse (2011). Lens aberrations: diagnosis and correction. In Aberration-corrected Analytical Transmission Electron Microscopy (R. Brydson, Ed), 55–87 (Wiley, Chichester and RMS, Oxford).

U. Kaiser, J. Biskupek, J.C. Meyer, J. Leschner, L. Lechner, H. Rose, M. Stöger-Pollach, A.N. Khlobystov, P. Hartel, H. Müller, M. Haider, S. Eyhusen and G. Benner (2011). Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy 111, 1239–1246.

R. Brydson, Ed. (2011). Aberration-corrected Analytical Transmission Electron Microscopy. (Wiley, Chichester and RMS, Oxford).

E.J. Kirkland (2011). On the optimum probe in aberration corrected ADF–STEM. Ultramicroscopy 111, 1523–1530.

N. Dellby, N. J. Bacon, P. Hrncirik, M. F. Murfitt, G. S. Skone, Z. S. Szilagyi and O. L. Krivanek (2011). Dedicated STEM for 200 to 40 keV operation. Eur. Phys. J.: Appl. Phys. 54, 33505 (11 pp.). J. Etheridge, S. Lazar, C. Dwyer and G.A. Botton (2011). Imaging high-energy electrons propagating in a crystal. Phys. Rev. Lett. 106, 160802 (4 pp.). S.D. Findlay, N.R. Lugg, N. Shibata, L. J. Allen and Y. Ikuhara (2011). Prospects for lithium imaging using annular bright field scanning transmission electron microscopy: a theoretical study. Ultramicroscopy 111, 1144–1154. P.L. Gai, K. Yoshida, C. Shute, X. Jia, M. Walsh, M. Ward, M.S. Dresselhaus, J.R. Weertman and E.D. Boyes (2011). Probing structures of nanomaterials using advanced electron microscopy methods, including aberration-corrected electron

O. L. Krivanek, M. F. Chisholm, N. Dellby and M. F. Murfitt (2011). Atomic-resolution STEM at low primary energies. In Scanning Transmission Electron Microscopy (S. J. Pennycook and P. D. Nellist, Eds), 615–658 (Springer, New York). O.L. Krivanek, N. Dellby, M. Murfitt, N. Bacon, G. Corbin, P. Hrncirik, J. Nelson, T. Lovejoy, G. Skone and Z. Szilagyi (2011). Improving the spatial and energy resolution of aberration-corrected STEM. Microsc. & Microanal. 17 (Suppl. 2), 1290–1291. S. Lazar, J. Etheridge, C. Dwyer, B. Freitag and G. Botton (2011). Atomic resolution imaging using the real-space distribution of electrons scattered by crystalline material. Acta Cryst. A 67, 487–490. R. Leary and R. Brydson (2011). Chromatic aberration correction: the next step in electron microscopy. Adv. Imaging & Electron Phys. 165, 73–130.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

34

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

A.R. Lupini (2011). The electron Ronchigram. In Scanning Transmission Electron Microscopy, Imaging and Analysis (S. J. Pennycook and P. D. Nellist, Eds), 117–161 (Springer, New York). A.R. Lupini (2011). Aberration correction in STEM. Thesis, Cambridge. A.R. Lupini and N. de Jonge (2011). The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc. & Microanal. 17, 817–826. I. Maßmann, S. Uhlemann, H. Müller, P. Hartel, J. Zach, M. Haider, Y. Taniguchi, D. Hoyle and R. Herring (2011). Realization of the first aplanatic transmission electron microscope. Microsc. & Microanal. 17 (Suppl. 2), 1270–1271. A. Mayoral, R. Esparza, F.L. Deepak, G. Casillas, S. Mejía–Rosales, A. Ponce and M. José–Yacamán (2011). Study of nanoparticles at UTSA: one year of using the first JEM–ARM200F installed in USA. JEOL News 46 (1), 1–5. UTSA ¼ University of Texas at San Antonio. H. Müller, I. Maßmann, S. Uhlemann, P. Hartel, J. Zach and M. Haider (2011). Aplanatic imaging systems for the transmission electron microscope. Nucl. Instrum. Meth. Phys. Res. A 645, 20–27. CPO-8, Singapore, 2010.

triple C project. Adv. Imaging & Electron Phys. 168, 297–336. H. Sawada, M. Watanabe, E. Okunishi and Y. Kondo (2011). Auto-tuning of aberrations using high-resolution STEM images by auto-correlation function. Microsc. & Microanal. 17 (Suppl. 2), 1308–1309. H. Sawada, M. Watanabe, E. Okunishi and Y. Kondo (2011). Auto tuning of aberrations using high-resolution STEM images. Kenbikyo 46 (Supplement), 266. H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, M. Terao, M. Kawazoe, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2011). Development of 30 kV Cc/ Cs correction tandem system. Kenbikyo 46 (Supplement), 265. K. Suenaga, Y. Iizumi and T. Okazaki (2011). Singe atom spectroscopy with reduced delocalization effect using a 30 kV STEM. Eur. Phys. J.: Appl. Phys. 54, 33508 (4 pp.). K. Takayanagi, S. Kim, S. Lee, Y. Oshima, T. Tanaka, Y. Tanishiro, H. Sawada, F. Hosokawa, T. Tomita, T. Kaneyama and Y. Kondo (2011). Electron microscopy at a sub-50 pm resolution. J. Electron Microsc. 60 (Suppl. 1), S239–S244. A. Thust and J. Barthel (2011). HRTEM beyond frequent idealizations: characterization of the actual contrast-transfer properties of transmission elecron microscopes. MC-2011, Kiel. 1, IM2.211.

H. Müller, I. Maßmann, S. Uhlemann, P. Hartel, J. Zach, M. Haider, Y. Taniguchi, D. Hoyle and R. Herring (2011). Realization of the first aplanatic transmission electron microscope. MC-2011, Kiel. 1, IM1.111

K. Tsuno (2011). Monochromators in electron microscopy. Nucl. Instrum. Meth. Phys. Res. A 645, 12–19. CPO-8, Singapore, 2010.

T. Nakano, K. Hirose and T. Kawasaki (2011). C3c measurement and dispersion reduction for beam-tilt optics of aberrationcorrected SEM. Nucl. Instrum. Meth. Phys. Res. A 645, 28–32. CPO-8, Singapore, 2010

2012

S.J. Pennycook (2011). A scan through the history of STEM. In Scanning Transmission Electron Microscopy (S. J. Pennycook and P. D. Nellist, Eds), 1–90 (Springer, New York). S.J. Pennycook and P.D. Nellist, Eds (2011). Scanning Transmission Electron Microscopy, Imaging and Analysis (Springer, New York). S. J. Pennycook and M. Varela (2011). New views of materials through aberration-corrected scanning transmission electron microscopy. J. Electron Microsc. 60 (Suppl. 1), 213–223. S. Pokrant, G. Benner, A. Orchowski, M. Cheynet, U. GollaSchindler and U. Kaiser (2011). Comparison between 20 kV and 80 kV spectroscopy with monochromation and in-column filter. MC-2011, Kiel.IM1.117. M. E. Rudnaya, W. van den Broeck, R. M. P. Doornbos, R. M. M. Mattheij and J. M. L. Maubach (2011). Defocus and twofold astigmatism correction in HAADF–STEM. Ultramicroscopy 111, 1043–1054. Not specifically for aberration-corrected microscopes, cites several related papers by Rudnaya et al. T. Sasaki, H. Sawada, F. Hosokawa, Y. Shinizu, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2011). Performance of chromatic/spherical aberration corrected 30 kV TEM. Kenbikyo 46 (Supplement), 3. H. Sawada, F. Hosokawa, T. Sasaki, T. Kaneyama, Y. Kondo and K. Suenaga (2011). Aberration correctors developed under the

H. Akima, Y. Hirayama and T. Yoshida (2012). Development of automatic aberration correction algorithm by using reinforcement learning for aberration corrected STEM. Kenbikyo 47 (Supplement), 24. P.E. Batson (2012). The first years of the aberration-corrected electron microscopy century. Microsc. & Microanal. 18, 652– 655. P.E. Batson (2012). Aberration corrected electron microscopy. In Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization (R. Haight, F. M. Ross and J. B. Hannon, Eds), 89–125 (World Scientific, Singapore). V.D. Beck (2012). Chicago aberration correction work. Ultramicroscopy 123, 22–27. D.C. Bell, C.J. Russo and D.V. Kolmykov (2012). 40 keV atomic resolution TEM. Ultramicroscopy 114, 31–37. D.C. Bell, W.K. Thomas, K.M. Murtagh, C.A. Dionne, A.C. Graham, J.E. Anderson and W.R. Glover (2012). DNA base identification by electron microscopy. Microsc. & Microanal. 18, 1049–1053. J. Biskupek, P. Hartel, M. Haider and U. Kaiser (2012). Effects of residual aberrations explored on single-walled carbon nanotubes. Ultramicroscopy 116, 1–7. J. Biskupek, P. Hartel, M. Haider and U. Kaiser (2012). Effects of residual aberrations explored on single-walled carbon nanotubes. EMC-15, Manchester. 2, 387–388. E.D. Boyes, M.J. Walsh, M.R. Ward and P.L. Gai (2012). Double aberration corrected (AC) ETEM and (AC) ESTEM. EMC-15, Manchester. 2, 533–534.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

E.D. Boyes, M.J. Walsh, M.R. Ward and P.L. Gai (2012). Development and initial applications of double aberration corrected (AC) ETEM and (AC) ESTEM at York. AMTC Lett. 3, 66– 67. P. Ercius, M. Boese, T. Duden and U. Dahmen (2012). Operation of TEAM I in a user environment at NCEM. Microsc. & Microanal. 18, 676–683. P.L. Gai and E.D. Boyes (2012). Atomic-resolution environmental transmission electron microscopy. In Handbook of Nanoscopy (G. Van Tendeloo, D. Van Dyck and S. J. Pennycook, Eds), 1, 375–403 (Wiley–VCH, Weinheim). T.W. Hansen and J.B. Wagner (2012). Environmental transmission electron microscopy in an aberration-corrected environment. Microsc. & Microanal. 18, 684–690. Y. Hirayama, H. Akima and T. Yoshida (2012). Development of STEM automatic aberration correction system. Kenbikyo 47 (Supplement), 174. L. Houben, J. Barthel, A. Thust, M. Luysberg, C.B. Boothroyd, A. Kovács, J. R. Jinschek and R.E. Dunin-Borkowski (2012). Recent progress in chromatic aberration corrected high-resolution and Lorentz transmission electron microscopy. AMTC Lett. 3, 150–151. M.J. Humphry, B. Kraus, A.C. Hurst, A. M. Maiden and J.M. Rodenburg (2012). Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nature Commun. 3, 730–736.

35

resolution imaging in scanning transmission electron microscopy using detectors in real space. APMC-10, Perth. 942 (2pp.). Z. Lee, J. Meyer, H. Rose and U. Kaiser (2012). Optimum HRTEM image contrast at 20 kV and 80 kV – exemplified by graphene. Ultramicroscopy 112, 39–49. T.C. Lovejoy, Q.M. Ramasse, M. Falke, A. Kaeppel, R. Terborg, R. Zan, N. Dellby and O.L. Krivanek (2012). Single atom identification by energy dispersive x-ray spectroscopy. Appl. Phys. Lett. 100, 154101 (4 pp.). A.R. Lupini and S.J. Pennycook (2012). Tuning fifth-order aberrations in a quadrupole-octupole corrector. Microsc. & Microanal. 18, 699–704. P. D. Nellist and P. Wang (2012). Optical sectioning and confocal imaging and analysis in the transmission electron microscope. Ann. Rev. Mater. Res. 42, 125–143. E. Okunishi, Y. Kohno, T. Sasaki, H. Sawada and Y. Kondo (2012). 2D elemental map at sub-Angstrom resolution using a Cs -corrected STEM equipped with an improved cold field emission gun. EMC-15, Manchester. 2, 687–688. E. Okunishi, H. Sawada and Y. Kondo (2012). Experimental study of annular bright field (ABF) imaging using aberrationcorrected scanning transmission electron microscopy (STEM). Micron 43, 538–544. S.J. Pennycook (2012). Scanning transmission electron microscopy: seeing the atoms more clearly. MRS Bull. 37, 943–951.

M. J. Humphry, A.M. Maiden, B. Kraus, M.C. Sarahan and J.M. Rodenburg (2012). Beyond the magnetic lens: resolution improvement by a factor of five via electron ptychography. EMC15, Manchester. 2, 523–524.

S. J. Pennycook, A. R. Lupini, A. Y. Borisevich and M. P. Oxley (2012). Z-contrast imaging. In Handbook of Nanoscopy (G. Van Tendeloo, D. Van Dyck and S. J. Pennycook, Eds), 109–152 (Wiley–VCH, Weinheim).

H. Jiang, J. Ruokolainen, N. Young, T. Oikawa, A.G. Nasibulin, A. Kirkland and E.I. Kauppinen (2012). Performance and early applications of a versatile double aberration-corrected JEOL– 2200FS FEG TEM/STEM at Aalto University. Micron 43, 545– 550.

C. Ricolleau, J. Nelayah, T. Oikawa, Y. Kohno, N. Braidy, G. Wang, F. Hüe and D. Alloyeau (2012). High resolution imaging and spectroscopy using Cs -corrected TEM with cold FEG JEM– ARM200F. JEOL News 47 (1), 2–8.

U.A. Kaiser (2012). Low-voltage TEM – current status and future prospects. EMC-15, Manchester. 2, 539–540.

C. Ricolleau, J. Nelayah, T. Oikawa, Y. Kohno, N. Braidy, G. Wang, F. Hüe and D. Alloyeau (2012). Performance of a cold FEG microscope with an objective lens aberration-corrector. EMC15, Manchester. 2, 479–480.

M. Kawasaki, Y. Kohno, E. Okunishi, I. Ishikawa, T. Tomita, T. Kaneyama and Y. Kondo (2012). Development of a cold FEG for higher performance imaging and analysis with aberration corrected STEM. APMC-10, Perth.1068 (2 pp.).

T. Sannomiya (2012). Method to determine the centre of a Ronchigram for STEM aberration correctors. Kenbikyo 47 (Supplement), 153.

R.F. Klie, A. Gulec, J. Liu, P. Phillips, R. Tao, K. Low and A. Nicholls (2012). The new aberration-corrected, cold-field emission JEOL JEM-ARM 200CF STEM/TEM at the University of Illinois at Chicago. Microsc. & Microanal. 18 (Suppl. 2), 406–407.

T. Sasaki, H. Sawada, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Atomic resolution capability of 30 kV Cc/Cs-corrected transmission electron microscope and its application. APMC-10, Perth.385 (2 pp.).

O.L. Krivanek, M.F. Chisholm, M.F. Murfitt and N. Dellby (2012). Scanning transmission electron microscopy: Albert Crewe's vision and beyond. Ultramicroscopy 123, 90–98.

T. Sasaki, H. Sawada, E. Okunishi, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Evaluation of probe size in STEM imaging at 30 and 60 kV. Micron 43, 551–556.

O.L. Krivanek, T.C. Lovejoy, G. J. Corbin, N. Dellby, M. F. Murfitt, N. Kurz, P. E. Batson and R. W. Carpenter (2012). Monochromated STEM with high energy and spatial resolution. Microsc. & Microanal. 18 (Suppl. 2), 330–331.

T. Sasaki, H. Sawada, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Advantage of low-kV aberration-corrected scanning/transmission electron microscopy. AMTC Lett. 3, 156–157.

O.L. Krivanek, T. C. Lovejoy, Q. M. Ramasse and N. Dellby (2012). Atom-by-atom imaging and spectroscopy by aberration-corrected STEM. EMC-15, Manchester. 2, 407–408.

T. Sasaki, H. Sawada, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga. (2012). Atomic resolution imaging in 30 kV Cc/ Cs corrected TEM and its applications. Kenbikyo 47 (Supplement), 26.

S. Lazar, C. Dwyer, C. Zheng and J. Etheridge (2012). Atomic

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

36

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, M. Kawazoe, M. Terao, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Evaluation of 30-kV microscope with Cc and Cs correction tandem system. EMC-15, Manchester. 2, 531–532. H. Sawada, M. Watanabe and I. Chiyo (2012). Ad hoc autotuning of aberrations using high-resolution STEM images by autocorrelation function. Microsc. & Microanal. 18, 705–710. H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, M. Terao, M. Kawazoe, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga. (2012). Evaluation of 30 kV Cc/Cs correction tandem system. Kenbikyo 47 (Supplement), 23. H. Sawada, M. Watanabe and I. Chiyo (2012). Autotuning of aberrations using high-resolution STEM images. Kenbikyo 47 (Supplement), 25. R. Schillinger (2012). Monochromated high resolution STEM. EMC-15, Manchester. 2, 513–514. S. M. Schramm, S. J. van der Molen and R. M. Tromp (2012). Intrinsic instability of aberration-corrected electron microscopes. Phys. Rev. Lett. 109, 163901, 5pp. N. Shibata, S. D. Findlay, Y. Kohno, H. Sawada, Y. Kondo and Y. ikuhara (2012). Differential phase-contrast microscopy at atomic resolution. Nature Physics 8, 611–615. K. Suenaga, T. Okazaki, E. Okunishi and S. Matsumura (2012). Detection of photons emitted from single erbium atoms in energy-dispersive x-ray spectroscopy. Nature Photonics 6, 545–548. M. Texier and J. Thibault-Pénisson (2012). Optimum correction conditions for aberration-corrected HRTEM SiC dumbbells chemical imaging. Micron 43, 516–523. A. Thust, J. Barthel and R.E. Dunin-Borkowski (2012). New concepts for quantifying the optical properties of modern high-resolution transmission electron microscopes. EMC-15, Manchester. 2, 495–496. P.C. Tiemeijer, M. Bischoff, B. Freitag and C. Kisielowski (2012). Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part I: Creating highly coherent monochromated illumination. Ultramicroscopy 114, 72–81. P.C. Tiemeijer, M. Bischoff, B. Freitag and C. Kisielowski (2012). Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part II: Application to focal series reconstruction. Ultramicroscopy 118, 35–43. K.W. Urban, J. Barthel, L. Houben, C.-l. Jia, M. Lentzen, A. Thust and K. Tillmann (2012). Ultrahigh-resolution transmission electron microscopy at negative spherical aberration. In Handbook of Nanoscopy (G. Van Tendeloo, D. Van Dyck and S. J. Pennycook, Eds), 1, 81–107 (Wiley–VCH, Weinheim). M. Watanabe and H. Sawada (2012). Development of an ad-hoc aberration auto-tuning procedure on an oriented crystalline specimen in aberration corrected scanning transmission electron microscopy: the SIAM method. Microsc. & Microanal. 18 (Suppl. 2), 334–335. J. Zach, S. Uhlemann and P. Hartel (2012). Chromatic correction: chances and fundamental limitations of an evolving corrector technology. EMC-15, Manchester. 2, 449–450. C.L. Zheng and J. Etheridge (2012). Measurement of chromatic aberration in scanning transmision electron microscope by

coherent convergent beam electron diffraction. APMC-10, Perth. 826 (2 pp.). W. Zhou, M.P. Oxley, A. R. Lupini, O. L. Krivanek, S. J. Pennycook and J.-C. Idrobo (2012). Single atom microscopy. Microsc. & Microanal. 18, 1342–1354. 2013 J. Arbiol (2013). ABF STEM, a direct way to visualize light atoms. Acta Microscópica 222 (Suppl. A), 3–4. J. Barthel and A. Thust (2013). On the optical stability of highresolution transmission electron microscopes. Ultramicroscopy 134, 6–17. E.D. Boyes and P.L. Gai (2014). Aberration corrected environmental STEM (AC ESTEM) for dynamic in-situ gas reaction studies of nanoparticle catalysts. J. Phys.: Conf. Ser. 522, 012004 (6 pp.). EMAG, York, 2013. E.D. Boyes, M.R. Ward, L. Lari and P.L. Gai (2013). ESTEM imaging of single atoms under controlled temperature and gas environment conditions in catalyst reaction studies. Ann. Physik 525, 423–429. M. Haider, H. Müller and P. Hartel (2013). High-resolution TEM/ STEM by means of advanced instrumentation. Microsc. & Microanal. 19 (Suppl. 2), 304–305. S. Haigh (2013). Recent developments in transmission electron microscopy and their application for nanoparticle characterisation. In Nanoscience, Vol. 1: Nanostructure through Chemistry (P. O'Brien, Ed.) 89–101 (Royal Society of Chemistry, Cambridge). F. Hosokawa, H. Sawada, Y. Kondo, K. Takayanagi and K. Suenaga (2013). Development of Cs and Cc correctors for transmission electron microscopy. Microscopy 62, 23–41. R. Janzen, S. Burkhardt, P. Fehlner, T. Späth and M. Haider (2013). The SPANOCH method: a key to establish aberration correction in miniaturized (multi)column systems? MC-2013, Regensburg. 1, 107–108. U. Kaiser, J. Biskupek, U. Golla-Schindler, S. Kurasch, Z. Lee, P. Wachsmuth, O. Lehtinen, M. Haider, G. Benner and H. Rose (2013). High-resolution low-voltage electron microscopy and spectroscopy – current status of the SALVE project. MC-2013, Regensburg. 2, 547. U.A. Kaiser (2013). Currrent status of the sub-Ångstrom lowvoltage electron microscope (SALVE) project. Microsc. & Microanal. 19 (Suppl. 2), 1218–1219. C. Kisielowski, L.-w. Wang, P. Specht, H.A. Calderon, B. Barton, B. Jiang, J.H. Kang and R. Cieslinski (2013). Real-time sub-Ångstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene. Phys. Rev. B 88, 024305 (12 pp.). O. L. Krivanek, T. C. Lovejoy, N. Dellby and R. W. Carpenter (2013). Monochromated STEM with a 30 meV-wide, atomsized electron probe. Microscopy 62, 3–21. O.L. Krivanek, T.C. Lovejoy, M.F. Murfitt, G. Skone, P.E. Batson and N. Dellby (2014). Towards sub-10 meV energy resolution STEM–EELS. J. Phys.: Conf. Ser 522, 012023 (6 pp.). EMAG, York, 2013.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

O. Krivanek, T. Lovejoy, N. Bacon, G. Corbin, M. Murfitt and N. Dellby (2013). Advances in monochromators and aberration correctors. MC-2013, Regensburg.1, 91–92. O.L. Krivanek, T.C. Lovejoy, N. J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M.F. Murfitt, G. Skone, Z. S. Szilagyi, P. E. Batson and R. W. Carpenter (2013). High energy resolution monochromated EELS–STEM system. Microsc. & Microanal. 19 (Suppl. 2), 1124–1125. O.L. Krivanek, W. Zhou, M.F. Chisholm, J.C. Idrobo, T.C. Lovejoy, Q.M. Ramasse and N. Dellby (2013). Gentle STEM of single atoms: low keV imaging and analysis at ultimate detection limits. In Low Voltage Electron Microscopy: Principles and Applications (D. C. Bell and N. Erdman, Eds), 119–161 (Wiley, Chichester). S. Lee, Y. Oshima, E. Hosono, H. Zhou and K. Takayanagi (2013). Reversible contrast in focus series of annular bright field images of a crystalline LiMn2O4 nanowire. Ultramicroscopy 125, 43–48. T.C. Lovejoy, N. Dellby, G.J. Corbin, P. Hrncirik, M.F. Murfitt, Z. S. Szilagyi and O.L. Krivanek (2013). Improving the spatial resolution of low-keV STEM with a monochromator. Microsc. & Microanal. 19 (Suppl. 2), 312–313.

37

the Japanese Society of Microscopy (Kanto Branch). Y. Takahashi, H. Kasai and T. Kawasaki (2013). Study on information limit for 1.2 MV holography electron microscopes. 69th Annual Meeting of the Japanese Society of Microscopy (not published in Kenbikyo). R.M. Tromp and S.M. Schramm (2013). Optimization and stability of the contrast transfer function in aberration-corrected electron microscopy. Ultramicroscopy 125, 72–80. S. Uhlemann, H. Müller, P. Hartel, J. Zach and M. Haider (2013). Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys. Rev. Lett. 111, 046101 (5 pp.). S. Uhlemann, H. Müller, P. Hartel, J. Zach and M. Haider (2013). Instrumental resolution limit by magnetic thermal noise from conductive parts. Microsc. & Microanal. 19 (Suppl. 2), 598– 599. K. Urban, J. Mayer and L. Allen (2013). FTEM [sic] at atomic resolution in the chromatic-aberration corrected transmission electron microscope. MC-2013, Regensburg. 1, 164–165. K. W. Urban, J. Mayer, J. R. Jinschek, M. J. Neish, N. R. Lugg and L. J. Allen (2013). Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope. Phys. Rev. Lett. 110 185507 (5 pp.).

S. Morishita, T. Nakamichi, A. Takano, K. Satoh, T. Sasaki and H. Sawada (2013). Cyclic procedure for aberration correction. 69th Annual Meeting of the Japanese Society of Microscopy (not published in Kenbikyo).

P. Wang, D.J. Batey, J. M. Rodenburg, H. Sawada and A. I. Kirkland (2013). Towards sub-Angström ptychographic diffractive imaging. Microsc. & Microanal. 19 (Suppl. 2), 706–707.

Q.M. Ramasse, C.R. Seabourne, D.-M. Keepaptsoglou, R. Zan, U. Bangert and A.J. Scott (2013). Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 13, 4989–4995.

J.G. Wen, D.J. Miller, N.J. Zaluzec, J.M. Hiller and R.E. Cook (2013). Contribution of Cc -correction to high-resolution TEM at all electron energy loss regimes. Microsc. & Microanal. 19 (Suppl. 2), 594–595.

C. Ricolleau, J. Nelayah, T. Oikawa, Y. Kohno, N. Braidy, G. Wang, F. Hüe, L. Florea, V. P. Bohnes and D. Alloyeau (2013). Performance of an 80–200 kV microscope employing a cold-FEG and an aberration-corrected objective lens. Microscopy 62, 283–293.

2014 H. Akima and T. Yoshida (2014). Measurement of large loworder aberrations by using a series of through focus Ronchigrams. Microscopy 63, 325–332.

H. Rose (2013). The long-lasting struggle to achieve atomicresolution microscopy by correcting the aberrations of electron lenses. Microsc. & Microanal. 19 (Suppl. 2), 2006–2007.

H. Akima and T. Yoshida (2014). Auto adjustment method for STEM astigmatism and coma-aberrations by using a series of through-focus Ronchigrams. Kenbikyo 49 (Supplement), 55.

H. Rose (2013). The long-lasting struggle to achieve atomicresolution microscopy by correcting the aberrations of electron lenses. Microsc. & Microanal. 19 (Suppl. 3), 11–12.

J. Barthel and A. Thust (2014). Lifetime of the aberration-corrected optical state in HRTEM. IMC-18, Prague.IT-2-P-1633.

T. Sannomiya, H. Sawada, T. Nakamichi, F. Hosokawa, Y. Nakamura, Y. Tanishiro and K. Takayanagi (2013). Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy. Ultramicroscopy 135, 71–79. T. Sannomiya, H. Sawada, T. Nakamichi, F. Hosokawa, Y. Nakamura, Y. Tanishiro and K. Takayanagi (2013). Determination of aberration center of STEM Ronchigram for fully automated aberration correctors. Microsc. & Microanal. 19 (Suppl. 2), 308–309. T. Sannomiya, H. Sawada, T. Nakamichi, F. Hosokawa, Y. Nakamura and Y. Tanishiro (2013). Aberration centre determination for STEM Ronchigrams. 69th Annual Meeting of the Japanese Society of Microscopy (not published in Kenbikyo). T. Sasaki (2013). Development of extra-low voltage aberrationcorrected STEM/TEM. Proceedings of the Annual Meeting of

F. Börrnert, T. Riedel, H. Müller, M. Linck, B. Büchner and H. Lichte (2014). In-situ (S)TEM redesigned: concept and electron-holographic performance. IMC-18, Prague.IT-7-O-1894. H.A. Calderon, C. Kisielowski, P. Specht, B. Barton, F. GodinezSalomon and O. Solorza-Feria (2014). Maintaining the genuine structure of 2D materials and catalytic nanoparticles at atomic resolution. Micron 64, 164–175. P.A. Crozier, J. Zhu, T. Aoki, P. Rez, W. J. Bowman, R. W. Carpenter, O. L. Krivanek, N. Dellby, T. C. Lovejoy and R. F. Egerton (2014). Challenges and opportunities in materials science with next generation monochromated EELS. IMC-18, Prague. IT-5-O-2679. N. Dellby, T. C. Lovejoy and O. L. Křivánek (2014). Tuning and operation of a sub-20 meV monochromator. IMC-18, Prague. IT-1-O-2914. N. Dellby, G. J. Corbin, Z. Dellby, T. C. Lovejoy, Z. S. Szilagyi, M. F.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

38

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Chisholm and O. L. Krivanek (2014). Tuning high order geometric aberrations in quadrupole-octupole correctors. Microsc. & Microanal. 20 (Suppl. 3), 928–929 . P. Ercius, T. Harvey, J. Pierce, J. Chess, M. Linck and B. McMorran (2014). Atomic-resolution imaging using Cs -corrected vortex beams. Microsc. & Microanal. 20 (Suppl. 3), 84–85. S.D. Findlay, N. Shibata and Y. Ikuhara (2014). Theory for annular bright field STEM imagery. In N. Tanaka (Ed.) Scanning Transmission Electron Microscopy of Materials. Basics of Imaging and Analysis (Imperial College Press, London) 217–230. B. Ge, Y. Wang, Y. Chang and Y. Yao (2014). Study of point spread in the aberration-corrected transmission electron microscopy. Microsc. & Microanal. 20, 1447–1452. M. Haider, S. Uhlemann, P. Hartel and H. Müller (2014). Towards high resolution in TEM and STEM: what are the limitations and achievements? Microsc. & Microanal. 20 (Suppl. 3), 378– 379. M. Haider and S. Uhlemann (2014). Instrumental developments for high resolution EM approaching its physical limitations. XV International Conference on Electron Microscopy, Cracow. P. Hartel, M. Linck, F. Kahl, H. Müller and M. Haider (2014). On proper phase contrast imaging in aberration corrected TEM. Microsc. & Microanal. 20 (Suppl. 3), 926–927. L. Houben, M. Luysberg, J. Barthel, J. Mayer and R. E. DuninBorkowski (2014). Low-voltage and energy-filtered chromatc aberration-corrected high-resolution TEM on the PICO instrument. IMC-18, Prague. IT-2-O-2644. H. Inada and Y. Zhu (2014). Secondary electron microscopy in STEM. In N. Tanaka (Ed.) Scanning Transmission Electron Microscopy of Materials. Basics of Imaging and Analysis (Imperial College Press, London) 307–344. T. Ishida, T. Kawasaki, T. Kodama, K. Ogai, T. Ikuta and T. Tanji (2014). Phase reconstruction in annular bright field STEM. IMC-18, Prague. IT-11-P-1790. F. Kahl, P. Hartel, M. Linck, H. Müller and M. Haider (2014). Optimising phase contrast imaging in aberration corrected TEM. IMC-18, Prague. IT-2-O-2538. K. Kasuya, T. Kawasaki, N. Moriya, M. Arai and T. Furutsu (2014). Magnetic-field superimposed cold field emission gun for 1.2MV transmission electron microscope. IMC-18, Prague. IT-1O-1644. D.M. Kepaptsoglou, A.R. Lupini, D. Mücke-Herzberg, G. Vaughan and Q.M. Ramasse (2014). Performance and stability of dedicated aberration-corrected STEMs: a user's perspective. Microsc. & Microanal. 20 (Suppl. 3), 924–925. K. Kimoto (2014). Practical aspects of monochromators developed for transmission electron microscopy. Microscopy 63 337–344. K. Kimoto and K. Ishizuka (2014). Assessment of lower-voltage TEM performance using 3D Fourier transform of through-focus images. IMC-18, Prague. IT-2-O-1921. A. I. Kirkland, J. Kim, J. Warner, K. Borisenko, S. Haigh, N. Young, P. Wang and P. Nellist (2014). Applications of aberration corrected TEM and exit wavefunction reconstruction to materials science. Microsc. & Microanal. 20 (Suppl. 3), 930–931. C. Kisielowski, P. Specht, S.M. Gygax, B. Barton, H.A. Calderon, J.

H. Kang and R. Cieslinski (2014). Instrumental requirements for the detection of electron beam-induced object excitations at the single atom level in high-resolution transmission electron microscopy. Micron 64, 186–193. R.F. Klie, A. Gulec, A. Mukherjee, T. Paulauskas, Q. Qiao, X. Rui, R. Tao, C. Wang, T. Daniel, P.J. Phillips and A.W. Nicholls (2014). Atomic-resolution characterization using the aberration-corrected JEOL JEM–ARM200CF at the University of Illinois, Chicago. JEOL News 49 (1), 11–20. Y. Kono, N. Shibata and H. Sawada (2014). Measurement method of aberration for probe-forming system using segmented detector. Kenbikyo 49 (Supplement), 191. O.L. Krivanek, N. Dellby, T.C. Lovejoy, N.J. Bacon, G.J. Corbin, P. Hrncirik, Z. S. Szilagyi, T. Aoki, R. W. Carpenter, P. A. Crozier, J. Zhu, P. Rez, R.F. Egerton and P.E. Batson (2014). Exploring signals made accessible by sub-20 meV resolution EELS. AMTC Lett. 4, 246–247. O. L. Křivánek (2014). From the Prague Spring to a Spring in electron microscopy. IMC-18, Prague. V. Ellis Cosslett Medal speech. O.L. Krivanek (2014). Advances in EM instrumentation and software. Kenbikyo 49 (Suppl.) 5. O. L. Křivánek, T. C. Lovejoy, T. Aoki, P. A. Crozier, P. Rez, R. F. Egerton and N. Dellby (2014). New EM signals made accessible by sub-20 meV resolution EELS. IMC-18, Prague. IT-5-O1653. O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, E. Soignard, J.-t. Zhu, P.E. Batson, M.J. Lagos, R.F. Egerton and P.A. Crozier (2014). Vibrational spectroscopy in the electron microscope. Nature 514, 209–212. M. Linck, B. McMorran, J. Pierce and P. Ercius (2014). Aberration-corrected STEM by means of diffraction gratings. Microsc. & Microanal. 20 (Suppl. 3), 946–947. J. Liu (2014). The versatile imaging capabilties of aberrationcorrected STEM. Microsc. & Microanal. 20 (Suppl. 3), 88–89. S. Lopatin, A. Chuvilin and D. Delille (2014). 5th order aberration correction in the Cs corrected Titan TEM for optimized HRTEM study of low-angle boundaries in graphene-like materials. XV International Conference on Electron Microscopy, Cracow. I. Maclaren and Q.M. Ramasse (2014). Aberration-corrected scanning transmission electron microscopy for atomic-resolution studies of functional oxides. Internat. Mater. Rev. 59, 115–131. A. Maiden (2014). Super-resolved ptychographic imaging. Microsc. & Microanal. 20 (Suppl. 3), 372–373. F.W. Martin (2014). Cc, Cs, and parasitic correction in quadrupole probe-forming lenses. Optik 125, 1311–1315 (q.v. for earlier papers by this author). D. McGrouther, M.-J. Benitez, S. McFadzean and S. McVitie (2014). Development of aberration corrected differential phase contrast (DPC) STEM. JEOL News 49 (1), 2–10. S. Morishita, T. Nakamichi, A. Takano, K. Satoh, T. Sasaki and H. Sawada (2014). Precision of aberration measurement in diffractogram tableau. Kenbikyo 49 (Supplement), 55. S. Morishita, T. Nakamichi, A. Takano, K. Satoh, F. Hosokawa, K.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Suenaga and H. Sawada (2014). Aberration correction through auto-iteration system utilizing diffractogram analysis by profile fitting technique. IMC-18, Prague. IT-2-P-2594. M. Mukai, J.S. Kim, K. Omoto, H. Sawada, A. Kimura, A. Ikeda, J. Zhou, T. Kaneyama, N.P. Young, J.H. Warner, P.D. Nellist and A. I. Kirkland (2014). The development of a 200 kV monochromated field emission elecron source. Ultramicroscopy 140, 37–43. M. Mukai, K. Omoto, T. Sasaki, Y. Kohno, S. Morishita, A. Kimura, A. Ikeda, K. Somehara, H. Sawada, K. Kimoto and K. Suenaga (2014). Design of a monochromator for aberration-corrected low-voltage S(TEM). IMC-18, Prague. IT-1-P-2578. M. Mukai, E. Okunishi, M. Ashino, K. Omoto, T. Fukuda, A. Ikeda, K. Somehara, T. Kaneyama, T. Saitoh, T. Hirayama and Y. Ikuhara (2014). Monochromator for aberration-corrected STEM. Microsc. & Microanal. 20 (Suppl. 3), 606–607. M. Mukai, E. Okunishi, M. Ashino, K. Omoto, T. Fukuda, A. Ikeda, K. Somehara, T. Kaneyama, T. Saitoh, T. Hirayama and Y. Ikuhara (2014). Monochromator with double Wien-filter for aberration-corrected STEM. AMTC Lett. 4 272–273. H. Müller, S. Uhlemann, P. Hartel, J. Zach and M. Haider (2014). Overview of commercially available CEOS hexapole-type aberration correctors Microsc. & Microanal. 20 (Suppl. 3), 934–945. R. Nishi, H. Ito and S. Hoque (2014). Wire corrector for aberration corrected electron optics. IMC-18, Prague. IT-1-P-2984.

39

aberration corrected STEM. Microsc. & Microanal. 20 (Suppl. 3), 124–125. H. Sawada, T. Sasaki, F. Hosokawa and K. Suenaga (2014). Resolution enhancement at low-accelerating-voltage by improvements of diffraction limit and chromatic aberration. Microsc. & Microanal. 20 (Suppl. 3), 380–381. H. Sawada, T. Sasaki, F. Hosokawa and K. Suenaga (2014). Resolution enhancement at a large convergence angle by a delta corrector with a CFEG in a low-accelerating-voltage STEM. Micron 63, 35–39. H. Sawada, N. Shimura, K. Satoh, E. Okunishi, S. Morishita, T. Sasaki, Y. Jimbo, Y. Kohno, F. Hosokawa, T. Naruse, M. Hamochi, T. Sato, K. Terasaki, T. Suzuki, M. Terao, S. Waki, T. Nakamichi, A. Takano, Y. Kondo and T. Kaneyama (2014). Super high resolution imaging with atomic resolution electron microscope of JEM-ARM300F. JEOL News 49 (1), 51–58. N. Shibata (2014). Advanced scanning transmission electron microscopy with symmetrical annular all field detector. IMC18, Prague. IT-2-IN-2458. N. Shibata (2014). Development and applications of SAAF detector for atomic-resolution STEM. Kenbikyo 49 (Suppl. ) 9. N. Shibata, S.D. Findlay and Y. Ikuhara (2014). Atomic-resolution scanning transmission electron microscopy with segmented annular all field detector. Microsc. & Microanal. 20 (Suppl. 3), 64–65.

G. Patriarche, P. Walker, E. van Elslande, J. Ayache and J. Castaing (2014). Aberration corrected STEM to study an ancient hair dyeing formula. IMC-18, Prague. ID-7-P-1468.

E. Snoeck, F. Houdellier, Y. Taniguchi, A. Masseboeuf, C. Gatel, J. Nicolai and M. Hÿtch (2014). Off-axial aberration correction using a B-COR for Lorentz and HREM modes. Microsc. & Microanal. 20 (Suppl. 3), 932–933.

T.J. Pennycook, A.R. Lupini, L. Jones and P.D. Nellist (2014). Maximum efficiency STEM phase contrast imaging. Microsc. & Microanal. 20 (Suppl. 3), 382–383.

N. Tanaka, Ed. (2014). Scanning Transmission Electron Microscopy of Materials. Basics of Imaging and Analysis (Imperial College Press, London).

T. Sasaki, H. Sawada, F. Hosokawa, Y. Sato and K. Suenaga (2014). Aberration-corrected STEM/TEM imaging at 15 kV. Ultramicroscopy 145, 50–55.

N. Tanaka (2014). Historical survey of the development of STEM instruments. In Scanning Transmission Electron Microscopy of Materials. Basics of Imaging and Analysis (N. Tanaka, Ed.) 9–38 (Imperial College Press, London)

T. Sasaki, H. Sawada, and F. Hosokawa (2014). Evaluation of probe size in 15 kV STEM. Kenbikyo 49 (Supplement), 56. H. Sawada (2014). Aberration correction in STEM. In Scanning Transmission Electron Microscopy of Nanomaterials (N. Tanaka, Ed.), 283–305 (Imperial College Press, London) H. Sawada (2014). Ronchigram and geometrical aberrations in STEM. In Scanning Transmission Electron Microscopy of Nanomaterials (N. Tanaka, Ed.), 461–485 (Imperial College Press, London) H. Sawada, T. Sasaki, F. Hosokawa and K. Suenaga (2014). Ultralow-voltage observation with Cc and Cs correction. Kenbikyo 49 (Supplement), 6. H. Sawada, N. Shimura, K. Satoh, E. Okunishi, F. Hosokawa, N. Shibata and Y. Ikuhara (2014). Resolving 45 pm with aberration corrected STEM. Kenbikyo 49 (Supplement), 7. H. Sawada, E. Okunishi, N. Shimura, K. Satoh, F. Hosokawa and T. Kaneyama (2014). Sub-angstrom resolution realized with super high-resolution aberration corrected STEM at 300 kV. IMC-18, Prague. IT-2-P-3202. H. Sawada, N. Shimura, K. Satoh, E. Okunishi, F. Hosokawa, N. Shibata and Y. Ikuhara (2014). Resolving 45 pm with 300 kV

N. Tanaka (2014). Recent topics and future prospects in STEM. In Scanning Transmission Electron Microscopy of Materials. Basics of Imaging and Analysis (N. Tanaka, Ed.) 425–440 (Imperial College Press, London). S. Uhlemann, H. Müller, J. Zach, C. Berger and M. Haider (2014). Thermal magnetic field noise and electron optics – more experiments and calculations. IMC-18, Prague. IT-16-IN-1882. K. Urban (2014). Ultra-high precision measurements in the aberration-corrected transmission electron microscope. Kenbikyo 49 (Suppl.) 6. D. Van Dyck, I. Lobato, F.-r. Chen and C. Kisielowski (2014). Do you believe that atoms stay in place when you observe them in HREM? Micron 64, 158–163. P. Wang, C.B. Boothroyd, R.E. Dunin-Borkowski, A. I. Kirkland and P. D. Nellist (2014). Towards 4-D EEL spectroscopic scanning confocal electron microscopy (SCAM–EELS) optical sectioning on a Cc and Cs double-corrected transmission electron microscope. IMC-18, Prague. IT-10-O-2435. P. Wang, A. I. Kirkland, P. D. Nellist, A. J. d'Alfonso, A. J. Morgan, L. J. Allen, A. Hashimoto, M. Taneguchi, K. Mitsuishi and M.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

40

Shimojo (2014). Atomically resolved scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope. Microsc. & Microanal. 20 (Suppl. 3), 376–377. J.G. Wen, D.J. Miller, R.E. Cook and N.J. Zaluzec (2014). Amplitude contrast imaging: high resolution electron microscopy using a spherical and chromatic aberration corrected TEM. Microsc. & Microanal. 20 (Suppl. 3), 942–943.

K. Somehara, T. Kaneyama, T. Saitoh, T. Hirayama and Y. Ikuhara (2015). Development of a monochromator for aberration-corrected scanning transmission electron microscopy. Microscopy 64 (2015) 151–158. S.J. Pennycook (2015). Fulfilling Feynmann's dream: "Make the electron microscope 100 times better" – are we there yet? MRS Bull. 40, 71–78.

H. Yang, T.J. Pennycook and P.D. Nellist (2014). Maximising phase contrast in aberration-corrected STEM using pixelated detectors. IMC-18, Prague. IT-1-P-2263.

T.J. Pennycook, A.R. Lupini, H. Yang, M.F. Murfitt, I. Jones and P. D. Nellist (2015). Efficient phase contrast imaging in STEM using a pixelated detector. Part I. Experimental demonstration at atomic resolution. Ultramicroscopy 151, 160–167.

2015

Q. Ramasse and R. Brydson (2015). The SuperSTEM laboratory. Adv. Imaging Electron Phys. (in preparation).

T. Akashi, Y. Takahashi, T. Tanigaki, T. Shimakura, T. Kawasaki, T. Furutsu, H. Shinada, H. Müller, M. Haider, N. Osakabe and A. Tonomura (2015). Aberration corrected 1.2-MV cold fieldemission transmission electron microscope with a sub-50-pm resolution. Appl. Phys. Lett. 106, 074101 (4 pp.). F. Börrnert, H. Müller, T. Riedel, M. Linck, A.I. Kirkland, B. Büchner and H. Lichte (2015). A flexible multi-stimuli in-situ (S)TEM: concept and optical performance. Ultramicroscopy. L.M. Brown, P.E. Batson, N. Dellby and O.L. Krivanek (2015). Brief history of the Cambridge STEM aberration correction project and its progeny. Ultramicroscopy (forthcoming) R. Erni (2015). Aberration-corrected Imaging in Transmission Electron Microscopy, 2nd ed. (Imperial College Press, London). P.L. Gai and E.D. Boyes (2015). Aberration-corrected environmental electron microscopy. Adv. Imaging & Electron Phys. (in preparation). G. Guzzinati, L. Clark, A. Béché, R. Juchtmans, R. van Boxem, M. Mazilu and J. Verbeeck (2015). Prospects for versatile phase manipulation in the TEM: beyond aberration correction. Ultramicroscopy 151, 85–93. P.W. Hawkes (2015). Electron optics and electron microscopy conference proceedings and abstracts, a supplement Adv. Imaging & Electron Phys. 190, 143–175. R. Ishikawa, A.R. Lupini, Y. Hinuma and S.J. Pennycook (2015). Large-angle illumination STEM: toward three-dimensional atom-by-atom imaging. Ultramicroscopy 151,122–129. U. Kaiser (2015). The SALVE project. Adv. Imaging & Electron Phys. (in preparation). A.I. Kirkland and S.J. Haigh, Eds (2015). Nanocharacterisation, 2nd edn. (Royal Society of Chemistry, Cambridge). O.L. Krivanek, T.C. Lovejoy and N. Dellby (2015) Aberrationcorrected STEM for atomic resolution imaging and specroscopy. J. Microscopy (forthcoming). O. Lehtinen, D. Geiger, Z. Lee, M.B. Whitwick, M.-w. Chen, A. Kis and U. Kaiser (2015). Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2Dobjects. Ultramicroscopy 151,130–135. S. Majert and H. Kohl (2015). High-resolution STEM imaging with a quadrant detector – conditions for differential phase contrast microscopy in the weak phase object approximation. Ultramicroscopy 148, 81–86. M. Mukai, E. Okunishi, M. Ashino, K. Omoto, T. Fukuda, A. Ikeda,

H. Sawada, N. Shimura, F. Hosokawa, N. Shibata and Y. Ikuhara (2015). Resolving 45-pm-separated Si–Si atomic columns with an aberration-corrected STEM. Microscopy 64, 213–217. H. Sawada, T. Sasaki, F. Hosokawa and K. Suenaga (2015). Atomic-resolution STEM imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle. Phys. Rev. Lett. 114, 166102 (5 pp.) W.O. Saxton (2015). Observation of lens aberations for highresolution electron microscopy. II. Simple expressions for optimal estimates. Ultramicroscopy 151, 168–177. S. Takeda, Y. Kuwauchi and H. Yoshida (2015). Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector. Ultramicroscopy 151, 178– 190. S. Uhlemann, H. Müller, J. Zach and M. Haider (2015). Thermal magnetic field noise: electron optics and decoherence. Ultramicroscopy 151, 199–210. K. Urban (2015). In quest of perfection in electron optics: a biographical sketch of Harald Rose on the occasion of his 80th birthday. Ultramicroscopy 151, 2–10. H. Yang, T.J. Pennycook and P.D. Nellist (2015). Efficient phase contrast imaging in STEM using a pixelated detector. Part II. Optimization of the imaging conditions. Ultramicroscopy 151, 232–239. N.J. Zaluzec (2015). The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy. Ultramicroscopy. 151, 240–249.

Appendix B. List of publications on aberration correctors in alphabetical order (Harvard convention) E. Abe, A. Lupini and S.J. Pennycook (2003). Improved resolution of a spherical aberration-corrected STEM. Denshi Kenbikyo 38 (2), 197–200. T. Akashi, Y. Takahashi, T. Tanigaki, T. Shimakura, T. Kawasaki, T. Furutsu, H. Shinada, H. Müller, M. Haider, N. Osakabe and A. Tonomura (2015). Aberration corrected 1.2-MV cold fieldemission transmission electron microscope with a sub-50-pm resolution. Appl. Phys. Lett. 106, 074101 (4 pp.). H. Akima and T. Yoshida (2014). Measurement of large loworder aberrations by using a series of through focus Ronchigrams. Microscopy 63, 325–332.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

H. Akima and T.Yoshida (2014). Auto adjustment method for STEM astigmatism and coma-aberrations by using a series of through-focus Ronchigrams. Kenbikyo 49 (Supplement), 55.

P. Batson, N. Dellby and O.L. Krivanek (2002). Sub-Angstrom probe size in HADF-STEM at 120 kV. Microsc. & Microanal. 8 (Suppl. 2), 14–15.

H. Akima, Y. Hirayama and T.Yoshida (2012). Development of automatic aberration correction algorithm by using reinforcement learning for aberration corrected STEM. Kenbikyo 47 (Supplement), 24.

V.D. Beck (1979). A hexapole spherical aberration corrector. Optik 53, 241–255.

J. Arbiol (2013). ABF STEM, a direct way to visualize light atoms. Acta Microscópica 222 (Suppl. A), 3–4. N.J. Bacon, G. J. Corbin, N. Dellby, P. Hrncirik, O. L. Krivanek, A. McManama-Smith, M. F. Murfitt and Z. S. Szilagyi (2005). Nion UltraSTEM: an aberration-corrected STEM for imaging and analysis. Microsc. & Microanal. 11 (Suppl. 2), 1422–1423. N. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, O. Krivanek, M. Murfitt, C.S. Own and Z. Szilagyi (2009). Aberration-corrected STEM. Microsc. & Microanal. 15 (Suppl. 2), 1462–1463. J. Barthel and A. Thust (2008). First time quantification of the HRTEM information-limit reveals insufficiency of the Young's-fringe test. EMC-14, Aachen. 1, 99–100. J. Barthel and A. Thust (2008). Quantification of the information limit of transmission electron microscopes. Phys. Rev. Lett. 101, 200801.

41

V.D. Beck (2012). Chicago aberration correction work. Ultramicroscopy 123, 22–27. D.C. Bell, C.J. Russo and G. Benner (2010). Sub-ångstrom lowvoltage performance of a monochromated, aberration-corrected transmission electron microscope. Microsc. & Microanal. 16, 386–392. D.C. Bell, W.K. Thomas, K.M. Murtagh and W.R. Glover (2011). Albert Crewe's dream realized: sequencing DNA with STEM. Microsc. & Microanal. 17 (Suppl. 2), 1276–1277. D.C. Bell, C.J. Russo and D.V. Kolmykov (2012). 40 keV atomic resolution TEM. Ultramicroscopy 114, 31–37. D.C. Bell, W.K. Thomas, K.M. Murtagh, C.A. Dionne, A.C. Graham, J.E. Anderson and W. R. Glover (2012). DNA base identification by electron microscopy. Microsc. & Microanal. 18, 1049–1053. G. Benner, E. Essers, A. Orchowski and W.-D. Rau (2003). Design and first results of SESAM. Microsc. & Microanal. 9 (Suppl. 2), 840–841.

J. Barthel and A. Thust (2010). Aberration measurement in HRTEM: implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. Ultramicroscopy 111, 27–46.

G. Benner, E. Essers, B. Huber and A. Orchowski (2003). Design and first results of SESAM. Microsc. & Microanal. 9 (Suppl. 3), 66–67.

J. Barthel and A. Thust (2013). On the optical stability of highresolution transmission electron microscopes. Ultramicroscopy 134, 6–17.

G. Benner, A. Orchowski, M. Haider and P. Hartel (2003). State of the first aberration-corrected, monochromatized 200 kV FEG–TEM. Microsc. & Microanal. 9 (Suppl. 2), 938–939.

J. Barthel and A. Thust (2014). Lifetime of the aberration-corrected optical state in HRTEM. IMC-18, Prague. IT-2-P-1633.

G. Benner, M. Matijevic, A. Orchowski, B. Schindler, M. Haider and P. Hartel (2003). State of the first aberration-corrected, monochromatized 200 kV FEG–TEM. Microsc. & Microanal. 9 (Suppl. 3), 38–39.

P.E. Batson (2003). Experience with the IBM sub-Angstrom STEM. Microsc. & Microanal. 9 (Suppl. 2), 136–137. P.E. Batson (2003). Aberration correction results in the IBM STEM instrument. Ultramicroscopy 96, 239–249. P.E. Batson (2006). Characterizing probe performance in the aberration corrected STEM. Ultramicroscopy 106, 1104–1114. P.E. Batson (2008). First results using the Nion third-order scanning transmission electron microscope. Adv. Imaging & Electron Phys. 153, 161–194. P.E. Batson (2008). Control of parasitic aberrations in multipole corrector optics. Microsc. & Microanal. 14 (Suppl. 2), 830–831. P.E. Batson (2009). Control of parasitic aberrations in multipole optics. J. Electron Microsc. 58, 123–130. P.E. Batson (2012). The first years of the aberration-corrected electron microcopy century. Microsc. & Microanal. 18, 652– 655. P.E. Batson (2012). Aberration corrected electron microscopy. In Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization (R. Haight, F. M. Ross and J. B. Hannon, Eds), 89–125 (World Scientific, Singapore). P.E. Batson, N. Dellby and O.L. Krivanek (2002). Sub-ångström resolution using aberration-corrected electron optics. Nature 418, 617–620.

G. Benner, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen, M. Haider and P. Hartel (2004). Sub-Ångstrom and sub-eV resolution with the analytical SATEM. Microsc. & Microanal. 10 (Suppl. 3), 6–7. G. Benner, E. Essers, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen, M. Haider and P. Hartel (2004). Performance of monochromized and aberration-corrected TEMs. Microsc. & Microanal. 10 (Suppl. 2), 108–109. J. Biskupek, A. Chuvilin, J.R. Jinschek and U. Kaiser (2008). Quantitative investigations of the depth of field in a corrected high resolution transmission electron microscope. EMC-14, Aachen. 1, 101–102. J. Biskupek, P. Hartel, M. Haider and U. Kaiser (2012). Effects of residual aberrations explored on single-walled carbon nanotubes. Ultramicroscopy 116, 1–7. J. Biskupek, P. Hartel, M. Haider and U. Kaiser (2012). Effects of residual aberrations explored on single-walled carbon nanotubes. EMC-15, Manchester. 2, 387–388. A. Bleloch (2009). Imaging single atoms and atomic clusters in complex media by aberration corrected STEM. MC-2009, Graz. 1, 11–12. A. Bleloch and Q. Ramasse (2011). Lens aberrations: diagnosis

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

42

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

and correction. In Aberration-corrected Analytical Transmission Electron Microscopy (R. Brydson, Ed.), 55–87 (Wiley, Chichester and RMS, Oxford). A. Bleloch, L.M. Brown, R. Brydson, A. Craven, P. Goodhew and C. Kiely (2002). The SuperSTEM: an aberration corrected analytical microscopy facility. ICEM-15, Durban. 1, 35–36 A. Bleloch, L.M. Brown, R. Brydson, A. Craven, P. Goodhew and C. Kiely (2002). The SuperSTEM: an aberration corrected analytical microscopy facility. Microsc. & Microanal. 8 (Suppl. 2), 470–471. A.L. Bleloch, L.M. Brown, R. Brydson, A. Craven, M. Falke, U. Falke, P. Goodhew and G. Tatlock (2003). First results from the UK SuperSTEM Laboratory. Microsc. & Microanal. 9 (Suppl. 2), 928–929. A. Bleloch, U. Falke, P. Goodhew and P. Weng (2005). Surprises from aberration corrected STEM. MCM-7, Portoroz. 47–50. A. L. Bleloch, M. Gass, L. Jiang, B. Mendis, K. Sader and P. Wang (2008). Aberration corrected STEM and EELS: atomic scale chemical mapping. EMC-14, Aachen. 1, 1–2. A.L. Bleloch, M. Gass, B. Mendis, K. Sader, B. Schaffer and P. Wang (2009). Scanning transmission electron microscopy: the major beneficiary of aberration correction? Microsc. & Microanal. 15 (Suppl. 2), 152–153. D.A. Blom, L.F. Allard, S. Mishima and M. A. O'Keefe (2006). Early results from an aberration-corrected JEOL 2200FS STEM/ TEM at Oak Ridge National Laboratory. Microsc. & Microanal. 12, 483–491. F. Börrnert, T. Riedel, H. Müller, M. Linck, B. Büchner and H. Lichte (2014). In-situ (S)TEM redesigned: concept and electron-holographic performance. IMC-18, Prague. IT-7-O-1894. F. Börrnert, H. Müller, T. Riedel, M. Linck, A.I. Kirkland, M. Haider, B. Büchner and H. Lichte (2015). A flexible multi-stimuli in-situ (S)TEM: concept and optical performance. Ultramicroscopy 151, 31–36. G. Bouwhuis and N.H. Dekkers (1980). Ultramicroscopy in scanning microscopes. Optik 56, 233–242. E.D. Boyes and P.L. Gai (2014). Aberration corrected environmental STEM (AC ESTEM) for dynamic in-situ gas reaction studies of nanoparticle catalysts. J. Phys.: Conf. Ser. 522, 012004 (6 pp.). EMAG, York, 2013. E.D. Boyes, K. Yoshida, M. Walsh and P.L. Gai (2010). Aberration correction in dynamic in situ studies of nanoparticles. AMTC Lett. 2, 98–99. E.D. Boyes, M.J. Walsh, M.R. Ward and P.L. Gai (2012). Double aberration corrected (AC) ETEM and (AC) ESTEM. EMC-15, Manchester. 2, 533–534.

Cambridge. 17–30. L.M. Brown, P.E. Batson, N. Dellby and O.L. Krivanek (2015). Brief history of the Cambridge STEM aberration correction project and its progeny. Ultramicroscopy (forthcoming) N.D. Browning, I. Arslan, R. Erni, J.C. Idrobo, A. Ziegler, J. Bradley, Z. Dai, E.A. Stach and A. Bleloch (2006). Monochromators and aberration correctors: taking EELS to new levels of energy and spatial resolution. J. Phys.: Conf. Ser. 26, 59–64. EMAG–NANO 2005, Leeds. R. Brydson, Ed. (2011). Aberration-corrected Analytical Transmission Electron Microscopy (Wiley, Chichester and RMS, Oxford). N.D. Browning, K. Sun, R.F. Klie, J. Liu, M.M. Disko, P.D. Nellist, N. Dellby and O.L. Krivanek (2002). Enhancing the resolution and sensitivity of STEM by aberration correction. Microsc. & Microanal. 8 (Suppl. 2), 18–19. H.A. Calderon, C. Kisielowski, P. Specht, B. Barton, F. GodinezSalomon and O. Solorza-Feria (2014). Maintaining the genuine structure of 2D materials and catalytic nanoparticles at atomic resolution. Micron 64, 164–175. E. Carlino and V. Grillo (2005). 0.12 nm resolution in HAADF experiment performed by conventional 200 kV FEG TEM/ STEM microscopy. MCM-7, Portoroz. 159–160. L.-y. Chang and A. I. Kirkland (2006). Optimum conditions for ultra-high resolution aberration-corrected imaging. IMC-16, Sapporo. 2, 950. L.-y. Chang, F. R. Chen, A.I. Kirkland and J. J. Kai (2003). Calculations of spherical aberration-corrected imaging behaviour. J. Electron Microsc. 52, 359–364 L.-y. Chang, A.I. Kirkland and J.M. Titchmarsh (2006). On the importance of fifth-order spherical aberration for a fully corrected electron microsope. Ultramicroscopy 106, 301–306. J.N. Chapman, P.E. Batson, E.M. Waddell and R.P. Ferrier (1978). The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3, 203–214. E. Chen and C. Mu (1991). New development in correction of spherical aberration of electromagnetic round lens. In International Symposium on Electron Microscopy (K. Kuo and J. Yao, Eds), 28–35 (World Scientific, Singapore). D. Cockayne (2010). The nanoworld through aberration corrected lenses. J. Phys.: Conf. Ser. 241, 012001 (8 pp.). EMAG 2009, Sheffield. J.M. Cowley (1976). Scanning transmission electron microscopy of thin specimens. Ultramicroscopy 2, 3–16 A.V. Crewe (1980). Studies on sextupole correctors. Optik 57, 313–327.

E.D. Boyes, M.J. Walsh, M.R. Ward and P.L. Gai (2012). Development and initial applications of double aberration corrected (AC) ETEM and (AC) ESTEM at York. AMTC Lett. 3, 66– 67.

A.V. Crewe (1980). The sextupole as corrector. EUREM-7, The Hague 1, 36–37.

E.D. Boyes, M.R. Ward, L. Lari and P.L. Gai (2013). ESTEM imaging of single atoms under controlled temperature and gas environment conditions in catalyst reaction studies. Ann. Physik 525, 423–429.

A.V. Crewe (1982). A system for the correction of axial aperture aberrations in electron lenses. Optik 60, 271–281.

L.M. Brown (1997). A synchrotron in a microscope. EMAG 1997,

A.V. Crewe (1980). A new possibility for correcting Cs. EMSA 38, San Francisco, 274–277.

A.V. Crewe (1984). The sextupole corrector. 1. Algebraic

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

calculations. Optik 69, 24–29. A.V. Crewe (1993). The aberration problem in electron optics. Proc. SPIE 2014, 77–84. A.V. Crewe and D. Kopf (1980). A sextupole system for the correction of spherical aberration. Optik 55, 1–10. A.V. Crewe and D. Kopf (1980). Limitations of sextupole correctors. Optik 56, 391–399. P.A. Crozier, J. Zhu, T. Aoki, P. Rez, W.J. Bowman, R.W. Carpenter, O.L. Krivanek, N. Dellby, T.C. Lovejoy and R.F. Egerton (2014). Challenges and opportunities in materials science with next generation monochromated EELS. IMC-18, Prague. IT-5-O2679.

43

Design and testing of a quadrupole/octupole C3/C5 aberration corrector. Microsc. & Microanal. 11 (Suppl. 2), 2130–2131. N. Dellby, O.L. Krivanek and M.F. Murfitt (2008). Optimized quadrupole-octupole C3/C5 aberration corrector for STEM. Phys. Procedia 1, 179–183. CPO-7, Cambridge, 2006. N. Dellby, M. Murfitt, O.L. Krivanek, M. Kociak, K. March, M. Tencé and C. Colliex (2008). Atomic-resolution STEM at 60 kV primary voltage. Microsc. & Microanal. 14 (Suppl. 2), 136–137. N. Dellby, N.J. Bacon, P. Hrncirik, M.F. Murfitt, G.S. Skone, Z.S. Szilagyi and O.L. Krivanek (2011). Dedicated STEM for 200 to 40 keV operation. Eur. Phys. J.: Appl. Phys. 54, 33505 (11 pp.).

U. Dahmen (2007). A status report on the TEAM project. Microsc. & Microanal. 13 (Suppl. 2), 1150–1151.

N. Dellby, T.C. Lovejoy and O.L. Křivánek (2014). Tuning and operation of a sub-20 meV monochromator. IMC-18, Prague. IT-1-O-2914.

U. Dahmen, R. Erni, C. Kisielowski, V. Radmilovic, Q. Ramasse, A. Schmid, T. Duden, M. Watanabe, A. Minor and P. Denes (2008). An update on the TEAM project – first results from the TEAM 0.5 microscope, and its future development. EMC-14, Aachen. 1, 3–4.

N. Dellby, G.J. Corbin, Z. Dellby, T.C. Lovejoy, Z.S. Szilagyi, M.F. Chisholm and O.L. Krivanek (2014). Tuning high order geometric aberrations in quadrupole-octupole correctors. Microsc. & Microanal. 20 (Suppl. 3), 928–929. P. Denes (2009). The TEAM project. MC-2009, Graz. 1, 3–8.

U. Dahmen, R. Erni, V. Radmilovic, C. Kisielowski, M.D. Rossell and P. Denes (2009). Background, status and future of the Transmission Electron Aberration-corrected Microscope project. Phil. Trans. Roy. Soc. London A 367, 3795–3808.

D. Dwyer, R. Erni and J. Etheridge (2008). Method to measure spatial coherence of subangstrom electron beams. Appl. Phys. Lett. 93, 021115 (3 pp.).

A.J. den Dekker, S. Van Aert, D. Van Dyck, A. van den Bos and P. Geuens (2001). Does a monochromator improve the precision in quantitative HRTEM? Ultramicroscopy 89, 275–290.

P. Ercius, M. Boese, T. Duden and U. Dahmen (2012). Operation of TEAM I in a user environment at NCEM. Microsc. & Microanal. 18, 676–683.

N.H. Dekkers (1979). Object wave reconstruction in STEM. Optik 53, 131–142.

P. Ercius, T. Harvey, J. Pierce, J. Chess, M. Linck and B. McMorran (2014). Atomic-resolution imaging using Cs-corrected vortex beams. Microsc. & Microanal. 20 (Suppl. 3), 84–85.

N.H. Dekkers and H. de Lang (1974). Differential phase contrast in a STEM. Optik 41, 452–456. N.H. Dekkers and H. de Lang (1977). A detection method for producing phase and amplitude images simultaneously in a scanning transmission electron microscope. Philips Tech. Rev. 37, 1–9. N.H. Dekkers and H. de Lang (1978). A calculation of bright field single-atom images in STEM with half plane detectors. Optik 51, 83–92. N.H. Dekkers and H. de Lang (1978). Comment on "Scanning transmission electron microscopy of thin specimens" by J.M. Cowley. Ultramicroscopy 3, 101–102. N.H. Dekkers, H. de Lang and K.D. van der Mast (1976). Field emission STEM on a Philips EM 400 with a new detection system for phase and amplitude contrast. J. Microsc. Spectrosc. Electron. 1, 511–512. N. Dellby, O.L. Krivanek and A.R. Lupini (2000). Progress in aberration-corrected STEM. Microsc. & Microanal. 6 (Suppl. 2), 100–101. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson and A.R. Lupini (2001). Progress in aberration-corrected scanning transmission electron microscopy. J. Electron Microsc. 50, 177–185.

R. Erni (2010). Aberration-corrected Imaging in Transmission Electron Microscopy (Imperial College Press, London); 2nd ed. 2015. R. Erni, M.D. Rossell, C. Kisielowski and U. Dahmen (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (4 pp.). E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell and R. Höschen (2010). Energy resolution of an omega-type monochromator and imaging properties of the MANDOLINE filter. Ultramicroscopy 110, 971–980. J. Etheridge, S. Lazar, C. Dwyer and G.A. Botton (2011). Imaging high-energy electrons propagating in a crystal. Phys. Rev. Lett. 106, 160802 (4 pp.). S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto and Y. Ikuhara (2009). Robust atomic resolution of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (3 pp.). S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo and Y. Ikuhara (2010). Dynamics of annular bright field scanning transmission electron microcopy imaging. AMTC Lett. 2, 102– 103.

N. Dellby, O. Krivanek, M. Murfitt, P. Nellist and Z. Szilagyi (2003). Aberration-corrected STEM for elemental mapping. Microsc. & Microanal. 9 (Suppl. 2), 924–925.

S.D. Findlay, N.R. Lugg, N. Shibata, L.J. Allen and Y. Ikuhara (2011). Prospects for lithium imaging using annular bright field scanning transmission electron microscopy: a theoretical study. Ultramicroscopy 111, 1144–1154.

N. Dellby, O.L. Krivanek, M.F. Murfitt and P.D. Nellist (2005).

S.D. Findlay, N. Shibata and Y. Ikuhara (2014). Theory for

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

44

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

annular bright field STEM imagery. In Scanning Transmission Electron Microscopy of Nanomaterials (N. Tanaka, Ed.), 217–230 (Imperial College Press, London). M. Foschepoth and H. Kohl (1998). Amplitude contrast – a way to obtain directly interpretable high-resolution images in a spherical aberration corrected transmission electron microscope. Phys. Stat. Sol (a) 166, 357–366. B. Freitag and C. Kisielowski (2008). Determining resolution in the transmission electron microscope: object-defined resolution below 0.5 Å. EMC-14, Aachen.1, 21–22. B. Freitag, S. Kujawa, P.M. Mul and P.C. Tiemeijer (2004). First experimental proof of spatial resolution improvement in a monochromized and Cs -corrected TEM. Microsc. & Microanal. 10 (Suppl. 3), 4–5. B. Freitag, S. Kujawa, P.M. Mul, P.C. Tiemeijer and E. Snoeck (2004). First experimental proof of spatial resolution improvement in a monochromized and Cs-corrected TEM. APEM-8, Kanazawa. 18–19. B. Freitag, S. Kujawa, P.M. Mul, J. Ringnalda and P.C. Tiemeijer (2005). Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102, 209–214. P.L. Gai and E.D. Boyes (2008). Aberration corrected TEM and STEM for dynamic in situ experiments. EMC-14, Aachen. 1, 15–16. P.L. Gai and E.D. Boyes (2009). Advances in atomic resolution in situ environmental transmission electron microscopy and 1 Å aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72, 153–164. P.L. Gai and E.D. Boyes (2010). Angstrom analysis with dynamic in-situ aberration corrected electron microscopy. J. Phys.: Conf. Ser 241, 012055 (6 pp.). EMAG 2009, Sheffield P.L. Gai and E.D. Boyes (2012). Atomic-resolution environmental transmission electron microscopy. In Handbook of Nanoscopy (G. Van Tendeloo, D. Van Dyck and S. J. Pennycook, Eds), 1, 375–403 (Wiley–VCH, Weinheim). P.L. Gai and E.D. Boyes (2015). Aberration-corrected environmental electron microscopy. Adv. Imaging & Electron Phys. (in preparation). P.L. Gai, K. Yoshida, C. Shute, X. Jia, M. Walsh, M. Ward, M. S. Dresselhaus, J.R. Weertman and E.D. Boyes (2011). Probing structures of nanomaterials using advanced electron microscopy methods, including aberration-corrected electron microscopy at the angstrom scale. Microsc. Res. Tech. 74, 664–670. C. Gatel, F. Houdellier and M.J. Hÿtch (2008). Direct measurement of aberrations by convergent-beam electron holography. EMC-14, Aachen. 1, 23–24. B. Ge, Y. Wang, Y. Chang and Y. Yao (2014). Study of point spread in the aberration-corrected transmission electron microscopy. Microsc. & Microanal. 20, 1447–1452. W. Glaser (1942). Über elektronenoptische Abbildung bei gestörter Rotationssymmetrie. Z. Physik 120, 1–15. W. Glaser and P. Schiske (1953). Bildstörungen durch Polschuhasymmetrien bei Elektronenlinsen. Z. Angew. Phys. 5, 329– 339.

G. Guzzinati, L. Clark, A. Béché, R. Juchtmans, R. van Boxem, M. Mazilu and J. Verbeeck (2015). Prospects for versatile phase manipulation in the TEM: beyond aberration correction. Ultramicroscopy 151, 85–93. M. Haider (1987). Entwurf, Bau und Erprobung eines korrigierten Elektronen-Energieverlust-Spektrometers mit großer Dispersion und großem Akzeptanzwinkel. Dissertation, Darmstadt. M. Haider (1989). State of STEM-microscopy. Optik 83 (Suppl. 4), 33. M. Haider (1996). Correctors for electron microscopes: tools or toys for scientists? EUREM-11, Dublin. 1, I350–I351. M. Haider (2000). Towards sub-Ångstrom point resolution by correction of spherical aberration. EUREM-12, Brno. 3, I145– I148. M. Haider (2011). Is there a need for further instrumental developments? MC-2011, Kiel. 1, I1.111. M. Haider and H. Müller (2004). Design of an electron optical system for the correction of the chromatic aberration Cc of a TEM objective lens. Microsc. & Microanal. 10 (Suppl. 3), 2–3. M. Haider and H. Müller (2005). Is there a road map of aberration correction towards ultra-high resolution in TEM and STEM? Microsc. & Microanal. 11 (Suppl. 2), 546–547. M. Haider and S. Uhlemann (1997). Seeing is not believing: reduction of artefacts by an improved point resolution with a spherical aberration corrected 200 kV transmission electron microscope. Microsc. & Microanal. 3 (Suppl. 2), 1179–1180. M. Haider and S. Uhlemann (1998). A computer controlled Cs-corrected 200 keV TEM. ICEM-14, Cancun.1, 265–266. M. Haider and S. Uhlemann (2014). Instrumental developments for high resolution EM approaching its physical limitations. XV International Conference on Electron Microscopy, Cracow. M. Haider and J. Zach (1998). Resolution improvement of electron microscopes by means of correctors to compensate for axial aberrations. ICEM-14, Cancún. 1, 53–54. M. Haider, W. Bernhardt and H. Rose (1982). Design and test of an electric and magnetic dodecapole lens. Optik 63, 9–23. M. Haider, G. Braunshausen and E. Schwan (1993). Correction of the spherical aberration of a 200 kV TEM by means of hexapoles. Optik 94 (Suppl. 5) 18. M. Haider, G. Braunshausen and E. Schwan (1994). State of the development of a Cs corrected high resolution 200 kV TEM. ICEM-13, Paris.1, 195–196. M. Haider, G. Braunshausen and E. Schwan (1995). Correction of the spherical aberration of a 200 kV TEM by means of a hexapole corrector. Optik 99, 167–179. M. Haider, G. Braunshausen and E. Schwan (1995). State of the development of a spherically corrected 200 kV TEM. Optik 100 (Suppl. 6), 4. M. Haider, S. Uhlemann, E. Schwan and B. Kabius (1997). Development of a spherical corrected 200 kV TEM: current state of the project and results obtained so far. Optik 106 (Suppl. 7), 7. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius and K. Urban (1998). Electron microscopy image enhanced. Nature

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

392, 768–769. M. Haider, H. Rose, S. Uhlemann, B. Kabius and K. Urban (1998). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J. Electron Microsc. 47, 395– 405. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius and K. Urban (1998). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53–60. M. Haider, S. Uhlemann and J. Zach (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163–175. M. Haider, P. Hartel, F. Kahl and S. Uhlemann (2002). Correction of spherical aberration for high resolution imaging. ICEM-15, Durban. 1, 27–28. M. Haider, H. Müller and P. Hartel (2004). Present state and future trends of aberration correction APEM-8, Kanazawa. 16– 17. M. Haider, H. Müller, P. Hartel and S. Uhlemann (2006). Advancement of hexapole Cs-correctors for high resolution CTEM and STEM. IMC-16, Sapporo. 2, 614. M. Haider, H. Müller, P. Hartel and S. Uhlemann (2006). Cs -correction for 0.5 Å resolution of a monochromated STEM. Materials Research in an Aberration-corrected Environment, 2 pp. M. Haider, H. Müller, S. Uhlemann and J. Zach (2006). Correction of spherical and chromatic aberration for TEM. Materials Research in an Aberration-corrected Environment, 2 pp. M. Haider, H. Müller and S. Uhlemann (2006). Improvement path for the hexapole Cs -corrector towards 0.5 Å resolution. Microsc. & Microanal. 12 (Suppl. 2), 1468–1469. M. Haider, U. Loebau, R. Hoeschen, H. Müller, S. Uhlemann and J. Zach (2007). State of the development of a Cc and Cs corrector for TEAM. Microsc. & Microanal. 13 (Suppl. 2), 1156– 1157. M. Haider, H. Müller and S. Uhlemann (2008). Present and future hexapole aberration correctors for high resolution electron microscopy. Adv. Imaging & Electron Phys. 153, 43–120.

45

M. Haider, P. Hartel, H. Müller, S. Uhlemann and J. Zach (2009). Current and future aberration correctors for the improvement of resolution in electron microscopy. Phil. Trans. Roy. Soc. London A 367, 3665–3682. M. Haider, P. Hartel, H. Müller, S. Uhlemann and J. Zach (2009). Development of correctors: from O. Scherzer to TEAM. Microsc. & Microanal. 15 (Suppl. 2), 150–151. M. Haider, P. Hartel, H. Müller, S. Uhlemann and J. Zach (2010). Ultra high resolution by means of correction of the spherical and the chromatic aberration. IMC-17, Rio de Janeiro. I20.6. M. Haider, P. Hartel, H. Müller, S. Uhlemann and J. Zach (2010). Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc. & Microanal. 16, 393–408. M. Haider, H. Müller and P. Hartel (2013). High-resolution TEM/ STEM by means of advanced instrumentation. Microsc. & Microanal. 19 (Suppl. 2), 304–305. M. Haider, S. Uhlemann, P. Hartel and H. Müller (2014). Towards high resolution in TEM and STEM: what are the limitations and achievements? Microsc. & Microanal. 20 (Suppl. 3), 378– 379. S. Haigh (2013). Recent developments in transmission electron microscopy and their application for nanoparticle characterisation. In Nanoscience, Vol. 1: Nanostructure through Chemistry (P. O'Brien, Ed.) 89–101 (Royal Society of Chemistry, Cambridge). S.J. Haigh and A.I. Kirkland (2011). Aberration-corrected imaging in CTEM. In Aberration-corrected Analytical Transmission Electron Microscopy (R. Brydson, Ed.), 241–266 (Wiley, Chichester and RMS Oxford). T.W. Hansen and J.B. Wagner (2012). Environmental transmission electron microscopy in an aberration-corrected environment. Microsc. & Microanal. 18, 684–690. T.W. Hansen, J.B. Wagner and R.E. Dunin-Borkowski (2010). Aberration corrected and monochromated environmental transmission electron microscopy. Mater. Sci. Technol. 26, 1338–1344. T.W. Hansen, J.B. Wagner and R.E. Dunin-Borkowski (2010). Aberration corrected monochromated environmental transmission electron microscopy – progress, prospects and challenges. AMTC Lett. 2, 76–77.

M. Haider, P. Hartel, U. Loebau, R. Hoeschen, H. Müller, S. Uhlemann, F. Kahl and J. Zach (2008). Progress on the development of a Cc/Cs corrector for TEAM. Microsc. & Microanal. 14 (Suppl. 2), 800–801.

D.F. Hardy (1967). Combined magnetic and electrostatic quadrupole lenses. Thesis, Cambridge.

M. Haider, H. Müller, S. Uhlemann, P. Hartel and J. Zach (2008). Developments of aberration correction systems for current and future requirements. EMC-14, Aachen.1, 9–10.

P. Hartel, D. Preikszas, R. Spehr, H. Müller and H. Rose (2002). Mirror corrector for low-voltage electron microscopes. Adv. Imaging Electron Phys. 120, 41–133.

M. Haider, H. Müller, S. Uhlemann, P. Hartel and J. Zach (2008). Recent corrector developments for high-resolution electron microscopy. Korean J. Microsc. 38 (Part 4, Supplement), 14–15. APMC-9, Jeju.

P. Hartel, H. Müller, S. Uhlemann and M. Haider (2004). Residual aberrations of hexapole-type Cs -correctors. EUREM-13, Antwerp. 1, 41–42.

M. Haider, H. Müller, S. Uhlemann, J. Zach, U. Loebau and R. Hoeschen (2008). Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167–178. M. Haider, P. Hartel, R. Höschen, U. Loebau, H. Müller, S. Uhlemann and J. Zach (2009). Aberration correctors in electron microscopy: from the first ideas of O. Scherzer to sophisticated correction systems. MC-2009, Graz.1, 49–50.

P. Hartel, H. Müller, S. Uhlemann and M. Haider (2007). Experimental set-up of an advanced hexapole Cs -corrector. Microsc. & Microanal. 13 (Suppl. 2), 1148–1149. P. Hartel, H. Müller, S. Uhlemann, J. Zach, U. Löbau, R. Höschen and M. Haider (2008). Demonstration of Cc/Cs correction in HRTEM. EMC-14, Aachen.1, 27–28. P. Hartel, H. Müller, S. Uhlemann, J. Zach and M. Haider (2010). Benefits of simultaneous Cc- and Cs-correction. Microsc. &

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

46

Microanal. 16 (Suppl. 2), 114–115.

Antwerp.1, 43–44.

P. Hartel, M. Linck, F. Kahl, H. Müller and M. Haider (2014). On proper phase contrast imaging in aberration corrected TEM. Microsc. & Microanal. 20 (Suppl. 3), 926–927

K. Honda, S. Uno, N. Nakamura, M. Matsuya and J. Zach (2004). An automatic geometrical aberration correction system of scanning electron microscopes. APEM-8, Kanazawa. 44–45.

H. Hashimoto (1986). 400 kV analytical atom resolution electron microscopes. Denshi Kenbikyo 20 (3), 173–180.

S. Horiuchi and T. Matsui (1991). Theory and practice of 1 Å ultra-high resolution HVEM. J. Electron Microsc. 40, 203.

P.W. Hawkes (1965). The geometrical aberrations of general optical systems. Phil. Trans. Roy. Soc. London A 257, 479–552.

F. Hosokawa and T. Honda (2003). The spherical aberration correction of TEM by means of a hexapole corrector. Denshi Kenbikyo 38 (1), 64–67.

P.W. Hawkes (1978). Half-plane apertures in TEM, split detectors in STEM and ptychography. J. Optics (Paris) 9, 235–241. P.W. Hawkes (1980). Improvements in STEM imaging by special probe and detector shaping techniques. Scanning Electron Microsc., 93–98. P.W. Hawkes (1995). The STEM forms templates. Optik 98, 81– 84. P.W. Hawkes (2003). Electron optics and electron microscopy: conference proceedings and abstracts as source material. Adv. Imaging & Electron Phys. 127, 207–379. P.W. Hawkes (2007). Aberration correction. In Science of Microscopy (P. W. Hawkes and J. C. H. Spence, Eds), 696–747 (Springer, New York); (2008) corrected second printing. P.W. Hawkes (2008). Aberrations. In Handbook of Charged Particle Optics (J. Orloff, Ed.), 209–339 (CRC Press, Baton Rouge). P.W. Hawkes (2009). Aberration correction past and present. Phil. Trans. Roy. Soc. London A 367, 3637–3664. P.W. Hawkes (2015). Electron optics and electron microscopy conference proceedings and abstracts, a supplement Adv. Imaging & Electron Phys. 190, 143–175. P.W. Hawkes and E. Kasper (1989). Principles of Electron Optics, Vols. 1 and 2 (Academic Press, London). P.W. Hawkes and E. Kasper (1994). Principles of Electron Optics, vol. 3 (Academic Press, London). H. Hely (1982). Messungen an einem verbesserten korrigierten Elektronenmikroskop. Optik 60, 353–370. H. Hely (1982). Technologische Voraussetzungen für die Verbesserung der Korrektur von Elektronenlinsen. Optik 60, 307– 326. M. Hibino, R. Iiyoshi and T. Kitamura (2006). Optimum combination of 3rd and 5th order spherical aberrations for high resolution imaging of carbon single atoms in spherical aberration corrected TEM. IMC-16, Sapporo. 2, 626. Y. Hirayama, H. Akima and T. Yoshida (2012). Development of STEM automatic aberration correction system. Kenbikyo 47 (Supplement), 174. G. Hoffstätter and H. Rose (1991). Theoretische Auflösungsgrenze sphärisch korrigierter Elektronenmikroskope. Optik 88 (Suppl. 4), 54. K. Honda and S. Takashima (2003). Chromatic and spherical aberration correction in the LSI inspection scanning electron microscope. JEOL News 38 (1), 36–40. K. Honda, S. Uno, N. Nakamura, M. Matsuya, B. Achard and J. Zach (2004). An automated geometrical aberration correction system of scanning electron microscopes. EUREM-13,

F. Hosokawa, T. Tomita, M. Naruse, T. Honda, P. Hartel and M. Haider (2003). A spherical aberration-corrected 200 kV TEM. J. Electron Microsc. 52, 3–10. F. Hosokawa, H. Sawada, T. Sannomiya, T. Kaneyama, Y. Kondo, M. Hori, S. Yuasa, M. Kawazoe, T. Nakamichi, Y. Tanishiro, N. Yamamoto and K. Takayanagi (2006). Design and development of Cs corrector for a 300 kV TEM and STEM. IMC-16, Sapporo. 2, 582. F. Hosokawa, H. Sawada, T. Sasaki, Y. Kondo and K. Suenaga (2010). Chromatic aberration correction for an objective lens utilizing concave lens effect generated from thick quadrupole field. Kenbikyo 45 (Supplement), 14 F. Hosokawa, H. Sawada, Y. Kondo, K. Takayanagi and K. Suenaga (2013). Development of Cs and Cc correctors for transmission electron microscopy. Microscopy 62, 23–41. L. Houben, J. Barthel, A. Thust, M. Luysberg, C. B. Boothroyd, A. Kovács, J. R. Jinschek and R. E. Dunin-Borkowski (2012). Recent progress in chromatic aberration corrected high-resolution and Lorentz transmission electron microscopy. AMTC Lett. 3, 150–151. L. Houben, M. Luysberg, J. Barthel, J. Mayer and R. E. DuninBorkowski (2014). Low-voltage and energy-filtered chromatc aberration-corrected high-resolution TEM on the PICO instrument. IMC-18, Prague. IT-2-O-2644. F. Houdellier, M. Hÿtch, F. Hüe and E. Snoeck (2008). Aberration correction with the SACTEM–Toulouse: from imaging to diffraction. Adv. Imaging & Electron Phys. 153, 225–259. J. Hu and N. Tanaka (2000). Beam alignment and related problems of spherical aberration corrected high-resolution TEM images. J. Electron Microsc. 49, 651–656. F. Hüe, J. M. Rodenburg, A. M. Maiden and P. A. Midgley (2011). Extended ptychography in the transmission electron microscope: possibilties and limitations. Ultramicroscopy 111, 1117– 1123. M.J. Humphry, B. Kraus, A.C. Hurst, A.M. Maiden and J. M. Rodenburg (2012). Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nature Commun. 3, 730–736. M.J. Humphry, A.M. Maiden, B. Kraus, M.C. Sarahan and J.M. Rodenburg (2012). Beyond the magnetic lens: resolution improvement by a factor of five via electron ptychography. EMC15, Manchester. 2, 523–524. J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne, G. Möbus, C.J. Hetherington, R.C. Doole, F. Hosokawa, P. Hartel and M. Haider (2002). A double Cs corrected TEM/STEM. ICEM-15, Durban.1, 33–34. J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne, G. Möbus, C. J.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

D. Hetherington, R.C. Doole, F. Hosokawa, P. Hartel and M. Haider (2002). A Cs corrected HRTEM: initial applications in materials science. JEOL News 37 (1), 2–5. J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne, C.J.D. Hetherington, A.I. Kirkland, R.M. Doole and H. Sawada (2004). A new double-corrected HREM/STEM and its applications for advanced materials. Microsc. & Microanal. 10 (Suppl. 3), 8–9.

47

71–79 K. Ishizuka, K. Kimoto and Y. Bando (2009). Fourier analysis of Ronchigram and aberration assessment. Microsc. & Microanal. 15 (Suppl. 2), 1094–1095. S. Isoda, S. Moriguchi, H. Kurata, T. Kobayashi and N. Uyeda (1991). A new 1000 kV HREM for organic crystal study. Ultramicroscopy 39, 247–253.

J. L. Hutchison, J. M. Titchmarsh, D. J. H. Cockayne, R. C. Doole, C. J. D. Hetherington, A. I. Kirkland and H. Sawada (2005). A versatile double aberration-corrected, energy filtered HREM/ STEM for materials science. Ultramicroscopy 103, 7–15.

R. Janzen (2011). Concept for electrostatic correctors for reduction of aberrations within miniaturized columns. MC2011, Kiel. 1, IM1.P104.

H. Ichinose and Y. Ishida (1989). High-resolution in-situ observation of moving grain boundaries in gold by high-resolution electron microscopy. Phil. Mag. A 60, 555–562.

R. Janzen, S. Burkhardt, P. Fehlner, T. Späth and M. Haider (2013). The SPANOCH method: a key to establish aberration correction in miniaturized (multi)column systems? MC-2013, Regensburg.1, 107–108.

H. Inada and Y. Zhu (2014). Secondary electron microscopy in STEM. In Scanning Transmission Electron Microscopy of Nanomaterials (N. Tanaka, Ed.), 307–344 (Imperial College Press, London). H. Inada, Y. Zhu, J. Wall, V. Volkov, K. Nakamura, M. Konno, K. Kaji and K. Jarausch (2008). The newly installed aberration corrected dedicated STEM (Hitachi HD 2700C) at Brookhaven National Laboratory. EMC-14, Aachen. 1, 31–32.

H. Jiang, J. Ruokolainen, N. Young, T. Oikawa, A. G. Nasibulin, A. Kirkland and E. I. Kauppinen (2012). Performance and early applications of a versatile double aberration-corrected JEOL– 2200FS FEG TEM/STEM at Aalto University. Micron 43, 545– 550. A.V. Jones and M. Haider (1989). Modular detector system for scanning transmission electron microscope. Scanning Microscopy 3 (1), 33–42.

H. Inada, H. Kakibayashi, S. Isakozawa, T. Hashimoto, T. Yaguchi and K. Nakamura (2009). Hitachi's development of cold-field emission scanning transmission electron microscopes. Adv. Imaging & Electron Phys. 159, 123–186.

A.V. Jones and B.M. Unitt (1982). An integrated approach to scanning microscope data acquisition. J. Microscopy 127, 61– 68

H. Inada, L. Wu, J. Wall, D. Su and Y. Zhu (2009). Performance and image analysis of the aberration-corrected Hitachi HD2700C STEM. J. Electron Microsc. 58, 111–122.

A.V. Jones, J.-C. Homo, B.M. Unitt and N. Webster (1985). The CryoSTEM: a STEM with superconducting objective lens. J. Microsc. Spectrosc. Electron. 10, 361–370.

H. Inada, D. Su, R.F. Egerton, M. Konno, L. Wu, J. Ciston, J. Wall and Y. Zhu (2011). Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms. Ultramicroscopy 111, 865–876.

B. Kabius and H. Rose (2008). Novel aberration correction concepts. Adv. Imaging & Electron Phys. 153, 261–281.

T. Ishida, T. Kawasaki, T. Kodama, K. Ogai, T. Ikuta and T. Tanji (2014). Phase reconstruction in annular bright field STEM. IMC-18, Prague. IT-11-P-1790. I. Ishikawa, E. Okunishi, H. Sawada, Y. Ohkura, K. Yamazaki, T. Ishikawa, M. Kawazu, M. Hori, M. Terao and Y. Kondo (2009). Development of atomic resolution analytical electron microscope. Kenbikyo 44 (Supplement), 11.

B. Kabius, K. Urban, M. Haider, S. Uhlemann, E. Schwan and H. Rose (1998). First applications of a spherical-aberration corrected transmission electron microscope in materials science. ICEM-14, Cancun. 1, 609–610. B. Kabius, M. Haider, S. Uhlemann, E. Schwan, K. Urban and H. Rose (1999). Anwendungen der Cs-Korrektur auf materialwissenschaftliche Fragestellungen. Optik 110 (Suppl. 8), 73. B. Kabius, C.W. Allen and D.J. Miller (2002). Aberration correction for analytical in situ TEM – the NTEAM concept. Microsc. & Microanal. 8 (Suppl. 2), 418–419.

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa and E. Abe (2011). Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Materials 10, 278–281.

B. Kabius, M. Haider, S. Uhlemann, E. Schwan, K. Urban and H. Rose (2002). First application of a spherical-aberration corrected transmission electron microscope in materials science. J. Electron Microsc. 51 (Suppl. 1), 51–58.

R. Ishikawa, A.R. Lupini, Y. Hinuma and S.J. Pennycook (2015). Large-angle illumination STEM: toward three-dimensional atom-by-atom imaging. Ultramicroscopy 151,122–129.

B. Kabius, D.J. Miller and N.J. Zaluzec (2004). Aberration correction for the TEAM project: design and applications. EUREM-13, Antwerp. 1, 25–26.

K. Ishizuka (1994). Coma-free alignment of a high-resolution electron microscope with three-fold astigmatism. Ultramicroscopy 55, 407–418.

B. Kabius, P. Hartel, M. Haider, H. Müller, S. Uhlemann, U. Loebau and J. Zach (2009). First application of Cc corrected imaging for high-resolution and energy-filtered TEM. Microsc. & Microanal. 15 (Suppl. 2), 1456–1457.

K. Ishizuka and K. Shirota (1996). Voltage-center and coma-free alignment for high-resolution electron microscopy. Ultramicroscopy 62, 9–13. K. Ishizuka and K. Shirota (1996). Lens-field center alignment for high resolution electron microscopy. Ultramicroscopy 65,

B. Kabius, P. Hartel, M. Haider, H. Müller, S. Uhlemann, U. Loebau, J. Zach and H. Rose (2009). First application of Cs-corrected imaging for high-resolution and energy-filtered TEM. J. Electron Microsc. 58, 147–155.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

48

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

F. Kahl, S. Uhlemann, Z. Zach and H. Müller (2011). Design of a C3/C5 corrector for a sub-angstrom low-voltage electron-microscope (SALVE). MC-2011, Kiel. 1, IM1.115. F. Kahl, P. Hartel, M. Linck, H. Müller and M. Haider (2014). Optimising phase contrast imaging in aberration corrected TEM. IMC-18, Prague. IT-2-O-2538. U.A. Kaiser (2012). Low-voltage TEM – current status and future prospects. EMC-15, Manchester. 2, 539–540 U.A. Kaiser (2013). Currrent status of the sub-Ångstrom lowvoltage electron microscope (SALVE) project. Microsc. & Microanal. 19 (Suppl. 2), 1218–1219 U. Kaiser (2015). The SALVE project. Adv. Imaging Electron Phys. (in preparation) U. Kaiser, A. Chuvilin, R.R. Schröder, M. Haider and H. Rose (2008). Sub-Ångstrøm low-voltage electron microscopy – future reality for deciphering the structure of beam-sensitive nanoobjects? EMC-14, Aachen. 1, 35–36. U. Kaiser, J. Meyer, J. Biskupek, J. Leschner, L. Lechner, S. Kurasch, Z. Lee, A. N. Khlobystov, H. Müller, P. Hartel, M. Haider, S. Eyhusen, G. Benner and H. Rose (2010). Towards sub Ångstrøm low voltage electron microscopy (SALVE); first results of Cs corrected transmission electron microscopy at 20 kV. IMC-17, Rio de Janeiro. I20.7. U. Kaiser, J. Biskupek, S. Kurasch, U. Golla-Schindler, J. C. Meyer, M. Kinyanjui, L. Lechner, Z. Lee, J. Leschner, G. Algara-Siller, T. Zoberbier, A. Chuvilin, M. Stöger-Pollach, A. N. Khlobystov, E. Bichoutskaia, V. Skakalova, J. H. Smet, K. Kotakoski, A. Krasheninnikov, P. Hartel, H. Müller, M. Haider, A. Orchowski, S. Eyhusen, G. Benner and H. Rose (2011). Transmission electron microscopy at 20 and 80 keV for imaging and spectroscopy – current status and future prospects. MC-2011, Kiel. 1, IM5.514. U. Kaiser, J. Biskupek, J.C. Meyer, J. Leschner, L. Lechner, H. Rose, M. Stöger-Pollach, A.N. Khlobystov, P. Hartel, H. Müller, M. Haider, S. Eyhusen and G. Benner (2011). Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy 111, 1239–1246. U. Kaiser, J. Biskupek, U. Golla-Schindler, S. Kurasch, Z. Lee, P. Wachsmuth, O. Lehtinen, M. Haider, G. Benner and H. Rose (2013). High-resolution low-voltage electron microscopy and spectroscopy – current status of the SALVE project. MC-2013, Regensburg. 2, 547. T. Kaneyama, T. Tomita, F. Hosokawa, H. Sawada, T. Sannomiya, S. Deguchi, M. Kawazoe, T. Miyata, E. Kobayashi, Y. Kondo, Y. Tanishiro and K. Takayanagi (2006). Design and development of a 300 kV super-high resolution FETEM R 005. IMC-16, Sapporo. 2, 616. T. Kaneyama, H. Sawada, F. Hosokawa, T. Tomita, Y. Kondo, Y. Tanishiro and K. Takayanagi (2007). Development of ultrahigh resolution 300 kV FETEM "R005". Kenbikyo 42 (Supplement), 72. K. Kasuya, T. Kawasaki, N. Moriya, M. Arai and T. Furutsu (2014). Magnetic-field superimposed cold field emission gun for 1.2MV transmission electron microscope. IMC-18, Prague. IT-1O-1644. M. Kawasaki, Y. Kohno, E. Okunishi, I. Ishikawa, T. Tomita, T. Kaneyama and Y. Kondo (2012). Development of a cold FEG for higher performance imaging and analysis with aberration

corrected STEM. APMC-10, Perth. 1068 (2 pp.). H. Kazumori, K. Honda, M. Matsuya and M. Date (2004). Field emission SEM with a spherical and chromatic corrector. APEM-8, Kanazawa. 52–53. H. Kazumori, K. Honda, M. Matsuya, M. Date and C. Nielsen (2004). Field emission SEM with a spherical and chromatic corrector. Microsc. & Microanal. 10 (Suppl. 2), 1370–1371 V. M. Kel'man and S. Ya. Yavor (1961). Achromatic quadrupole electron lenses. Zh. Tekh. Fiz. 31, 1439–1442; Sov. Phys. Tech. Phys. 6, 1052–1054. D.M. Kepaptsoglou, A.R. Lupini, D. Mücke-Herzberg, G. Vaughan and Q. M. Ramasse (2014). Performance and stability of dedicated aberration-corrected STEMs: a user's perspective. Microsc. & Microanal. 20 (Suppl. 3), 924–925. K. Kimoto (2014). Practical aspects of monochromators developed for transmission electron microscopy. Microscopy 63, 337–344. K. Kimoto and K. Ishizuka (2014). Assessment of lower-voltage TEM performance using 3D Fourier transform of through-focus images. IMC-18, Prague. IT-2-O-1921. K. Kimoto, K. Ishizuka and Y. Matsui (2008). Decisive factors for realizing atomic-column resolution using STEM and EELS. Micron 39, 257–262. K. Kimoto, K. Ishizuka and Y. Matsui (2008). Erratum, Decisive factors for realizing atomic-column resolution using STEM and EELS. Micron 39, 653–657 A.I. Kirkland and S.J. Haigh, Eds (2015). Nanocharacterisation, 2nd edn. (Royal Society of Chemistry, Cambridge). A.I. Kirkland and J.L. Hutchison, Eds (2008). Nanocharacterisation (Royal Society of Chemistry, Cambridge). A.I. Kirkland, J.M. Titchmarsh, J.L. Hutchison, D.J.H. Cockayne, C. J.D. Hetherington, R.C. Doole, H. Sawada, M. Haider and P. Hartel (2004). A double aberration corrected, energy filtered HREM/STEM. JEOL News 39 (1), 2–5. A.I. Kirkland, L.-y. Chang and J.L. Hutchison (2006). Applications of aberration corrected transmission electron microscopy to materials science. JEOL News 41 (1), 8–11. A.I. Kirkland, R.R. Meyer and L.-y. S. Chang (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc. & Microanal. 12, 461–468. A.I. Kirkland, S.L.-y. Chang and J.L. Hutchison (2007). Atomic resolution transmission electron microscopy. In Science of Microscopy (P.W. Hawkes and J. C. H. Spence, Eds), 3–64 (Springer, New York). A. I. Kirkland, S. Haigh and L.-y. Chang (2008). Aberration corrected TEM: current status and future prospects. J. Phys.: Conf. Ser. 126, 012034 (6 pp.). EMAG 2007, Glasgow. A.I. Kirkland, P.D. Nellist, L.-y. Chang and S.J. Haigh (2008). Aberration-corrected imaging in conventional transmission electron microscopy and scanning transmission electron microscopy. Adv. Imaging & Electron Phys. 153, 283–325. A.I. Kirkland, J. Kim, J. Warner, K. Borisenko, S. Haigh, N. Young, P. Wang and P. Nellist (2014). Applications of aberration corrected TEM and exit wavefunction reconstruction to materials

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

science. Microsc. & Microanal. 20 (Suppl. 3), 930–931. E.J. Kirkland (2011). On the optimum probe in aberration corrected ADF–STEM. Ultramicroscopy 111, 1523–1530. C. Kisielowski, R. Erni and B. Freitag (2008). Object-defined resolution below 0.5 Å in transmission electron microscopy – recent advances on the TEAM 0.5 instrument. Microsc. & Microanal. 14 (Suppl. 2), 78–79. C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Krippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E.A. Olson, T. Donchev, E.A. Kenik, A. R. Lupini, J. Bentley, S.J. Pennycook, I.M. Anderson, A.M. Minor, A. K. Schmid, T. Duden, V. Radmilovic, Q. M. Ramasse, M. Watanabe, R. Erni, E.A. Stach, P. Denes and U. Dahmen (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. & Microanal. 14, 469–477. C. Kisielowski, L.-w. Wang, P. Specht, H. A. Calderon, B. Barton, B. Jiang, J.H. Kang and R. Cieslinski (2013). Real-time subÅngstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene. Phys. Rev. B 88, 024305 (12 pp.). C. Kisielowski, P. Specht, S.M. Gygax, B. Barton, H.A. Calderon, J. H. Kang and R. Cieslinski (2014). Instrumental requirements for the detection of electron beam-induced object excitations at the single atom level in high-resolution transmission electron microscopy. Micron 64, 186–193. R. F. Klie, C. Johnson and Y. Zhu (2008). Atomic-resolution STEM in the aberration-corrected JEOL JEM 2200FS. Microsc. & Microanal. 14, 104–112 R.F. Klie, A. Gulec, J. Liu, P. Phillips, R. Tao, K. Low and A. Nicholls (2012). The new aberration-corrected, cold-field emission JEOL JEM-ARM 200CF STEM/TEM at the University of Illinois at Chicago. Microsc. & Microanal. 18 (Suppl. 2), 406–407. R.F. Klie, A. Gulec, A. Mukherjee, T. Paulauskas, Q. Qiao, X. Rui, R. Tao, C. Wang, T. Daniel, P.J. Phillips and A.W. Nicholls (2014). Atomic-resolution characterization using the aberration-corrected JEOL JEM–ARM200CF at the University of Illinois, Chicago. JEOL News 49 (1), 11–20. C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner and M. Matjevich (2006). SESAM: exploring the frontiers of electron microscopy. Microsc. & Microanal. 12, 506–514.

49

Eds), 519–567 (Oxford University Press, Oxford). O. Krivanek (1994). Three-fold astigmatism in high-resolution transmission electron microscopy. Ultramicroscopy 55, 419– 433. O.L. Křivánek (2014). From the Prague Spring to a Spring in electron microscopy. IMC-18, Prague. V. Ellis Cosslett Medal speech. O.L. Krivanek (2014). Advances in EM instrumentation and software. Kenbikyo 49 (Suppl.) 5. O.L. Krivanek and G.Y. Fan (1992). Complete HREM autotuning using automated diffractogram analysis. EMSA 50, Boston, part 1, 96–97. O.L. Krivanek and G.Y. Fan (1992). Application of slow-scan charge-coupled device (CCD) cameras to on-line microscope control. Scanning Microscopy (Suppl. 6) 105–114. O.L. Krivanek and M.L. Leber (1993). Three-fold astigmatism: an important TEM aberration. MSA 51, Cincinnati, 972–973 O.L. Krivanek and M.L. Leber (1994). Autotuning for 1 Å resolution. ICEM-13, Paris. 1, 157–158. O.L. Krivanek and P.E. Mooney (1993). Applications of slow-scan CCD cameras in transmission electron microscopy. Ultramicroscopy 49, 95–108. O.L. Krivanek and P.A. Stadelmann (1995). Effect of three-fold astigmatism on high-resolution electron micrographs. Ultramicroscopy 60, 103–113. O.L. Krivanek, N. Dellby and L.M. Brown (1996). Spherical aberration corrector for a dedicated STEM. EUREM-11, Dublin. 1, I352–I353. O. Krivanek, N. Dellby, A.J. Spence, R.A. Camps and L.M. Brown (1997). Aberration correction in the STEM. EMAG 1997, Cambridge. 35–39. O. Krivanek, N. Dellby, A.J. Spence, R.A. Camps and L.M. Brown (1997). On-line aberration measurement and correction in STEM. Microsc. & Microanal. 3 (Suppl. 2), 1171–1172. O.L. Krivanek, N. Dellby, A.J. Spence and L.M. Brown (1998). Spherical aberration correction in dedicated STEM. ICEM-14, Cancún. 1, 55–56. O.L. Krivanek, N. Dellby and A.R. Lupini (1999). Towards sub-Å electron beams. Ultramicroscopy 78, 1–11.

Y. Kondo, F. Hosokawa, H. Sawada and E. Okunishi (2007). TEM/ STEM equipped with Cs corrector and its applications. Kenbikyo 42 (Supplement), 8.

O.L. Krivanek, N. Dellby and A.R. Lupini (1999). STEM without spherical aberration. Microsc. & Microanal. 5 (Suppl. 2), 670– 671.

Y. Kondo, H. Sawada, F. Hosokawa, T. Tomita, T. Kaneyama, Y. Oshima, T. Tanaka, N. Yamamoto, Y. Tanishiro and K. Takayanagi (2009). Development of ultrahigh resolution microscope having resolution of 50 pm. Kenbikyo 44 (Supplement), 33.

O.L. Krivanek, N. Dellby and A.R. Lupini (2000). Advances in Cs corrected STEM. EUREM-12, Brno. 3, I149–I150.

Y. Kono, N. Shibata and H. Sawada (2014). Measurement method of aberration for probe-forming system using segmented detector. Kenbikyo 49 (Supplement), 191. O.L. Krivanek (1978). EM contrast transfer functions for tilted illumination imaging. ICEM-9, Toronto, 1, 168–169. O.L. Krivanek (1992). Practical high-resolution electron microscopy. In High-resolution Transmission Electron Microscopy and Associated Techniques (P.R. Buseck, J.M. Cowley and L. Eyring,

O.L. Krivanek, N. Dellby and P.D. Nellist (2002). Aberration correction in the STEM. ICEM-15, Durban. 1, 29–30. O. Krivanek, N. Dellby, M. Murfitt, P. Nellist and Z. Szilagyi (2002). STEM aberration correction: where next? Microsc. & Microanal. 8 (Suppl. 2), 20–21. O.L. Krivanek, G.J. Corbin, N. Dellby, M. Murfitt, K. Nagesha, P. D. Nellist and Z. Szilagyi (2004). Nion UltraSTEM: a new STEM for sub-0.5 Å imaging and sub-0.5 eV analysis. EUREM-13, Antwerp. 1, 35–36.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

50

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

O.L. Krivanek, N. Dellby, A. McManama-Smith, M. Murfitt, P.D. Nellist and C. S. Own (2005). An aberration-corrected STEM for diffraction studies. Microsc. & Microanal. 11 (Suppl. 2), 544–545. O.L. Krivanek, N. Bacon, G. Corbin, N. Dellby, P. Hrncirik, A. Smith, M. Murfitt, P. Nellist, C. Own, J. Woodruff and Z. Szilagyi (2005). Atomic-resolution imaging and EELS analysis by aberration-corrected STEM. MCM-7, Portoroz. 31–36. O.L. Krivanek, N.J. Bacon, G.J. Corbin, N. Dellby, B.F. Elston, P. Hrncirik, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi and J. W. Woodruff (2006). New approaches to instrumentation for high resolution STEM and TEM. IMC-16, Sapporo. 2, 615. O.L. Křivánek, N. Bacon, G. Corbin, N. Dellby, B. Elston, P. Hrncirik, R. Keyse, M. Murfitt, C. Own, J. Woodruff and Z. Szilagyi (2007). Atomic resolution nanoanalysis. MCM-8, Prague. 3–8. O.L. Krivanek, G. Corbin, N. Dellby, B. Elston, R. Keyse, M. Murfitt, C. S. Own and Z. S. Szilagyi (2007). UltraSTEM progress: flexible electron optics, high-performance sample stage. Microsc. & Microanal. 13 (Suppl. 2), 878–879. O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M. F. Murfitt, C.S. Own, Z.S. Szilagyi and J.W. Woodruff (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195. O. Krivanek, N. Dellby, R.J. Keyse, M. Murfitt, C. Own and Z. Szilagyi (2008). Advances in aberration-corrected scanning transmission electron microscopy and electron spectroscopy. Adv. Imaging & Electron Phys. 153, 121–160. O. Krivanek, N. Dellby, M. Murfitt, C. Own and Z. Szilagyi (2008). STEM aberration correction: an integrated approach. EMC-14, Aachen. 1, 11–12. O.L. Krivanek, N. Dellby and M. Murfitt (2009). Aberration correction in electron microscopy. In Handbook of Charged Particle Optics (2nd edn) (J. Orloff, Ed.), 601–640 (CRC Press, Boca Raton). O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M.F. Murfitt, C.S. Own and Z.S. Szilagyi (2009). Highenergy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energyloss spectroscopy. Phil. Trans. Roy. Soc. London A 367, 3683– 3697. O. Krivanek, J. Ursin, G.J. Corbin, N. Dellby, M. Murfitt, C. Own and Z. Szilagyi (2009). Aberration correction in energy-loss spectrometers and monochromators. Microsc. & Microanal. 15 (Suppl. 2), 210–211. O.L. Krivanek, M.F. Chisholm, N. Dellby, M. Murfitt, V. Nicolosi and T.J. Pennycook (2010). Atom-by-atom imaging: towards 3-D atomic resolution. IMC-17, Rio de Janeiro. I20.9. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides and S.J. Pennycook (2010). Atom-byatom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574. O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga and V. Nicolosi (2010). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935–945.

O.L. Krivanek, M.F. Chisholm, N. Dellby and M.F. Murfitt (2011). Atomic-resolution STEM at low primary energies. In Scanning Transmission Electron Microscopy (S. J. Pennycook and P. D. Nellist, Eds), 615–658 (Springer, New York). O.L. Krivanek, N. Dellby, M. Murfitt, N. Bacon, G. Corbin, P. Hrncirik, J. Nelson, T. Lovejoy, G. Skone and Z. Szilagyi (2011). Improving the spatial and energy resolution of aberrationcorrected STEM. Microsc. & Microanal. 17 (Suppl. 2), 1290– 1291. O.L. Krivanek, M.F. Chisholm, M.F. Murfitt and N. Dellby (2012). Scanning transmission electron microscopy: Albert Crewe's vision and beyond. Ultramicroscopy 123, 90–98. O.L. Krivanek, T.C. Lovejoy, G.J. Corbin, N. Dellby, M.F. Murfitt, N. Kurz, P. E. Batson and R. W. Carpenter (2012). Monochromated STEM with high energy and spatial resolution. Microsc. & Microanal. 18 (Suppl. 2), 330–331. O.L. Krivanek, T.C. Lovejoy, Q.M. Ramasse and N. Dellby (2012). Atom-by-atom imaging and spectroscopy by aberration-corrected STEM. EMC-15, Manchester. 2, 407–408. O. Krivanek, T. Lovejoy, N. Bacon, G. Corbin, M. Murfitt and N. Dellby (2013). Advances in monochromators and aberration correctors. MC-2013, Regensburg. 1, 91–92. O.L. Krivanek, T.C. Lovejoy, N. Dellby and R.W. Carpenter (2013). Monochromated STEM with a 30 meV-wide, atom-sized electron probe. Microscopy 62, 3–21. O.L. Krivanek, T.C. Lovejoy, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M.F. Murfitt, G. Skone, Z.S. Szilagyi, P.E. Batson and R. W. Carpenter (2013). High energy resolution monochromated EELS–STEM system. Microsc. & Microanal. 19 (Suppl. 2), 1124– 1125. O.L. Krivanek, W. Zhou, M.F. Chisholm, J.C. Idrobo, T.C. Lovejoy, Q. M. Ramasse and N. Dellby (2013). Gentle STEM of single atoms: low keV imaging and analysis at ultimate detection limits. In Low Voltage Electron Microscopy: Principles and Applications (D. C. Bell and N. Erdman, Eds), 119–161 (Wiley, Chichester). O.L. Krivanek, N. Dellby, T.C. Lovejoy, N.J. Bacon, G. J. Corbin, P. Hrncirik, Z. S. Szilagyi, T. Aoki, R. W. Carpenter, P. A. Crozier, J. Zhu, P. Rez, R. F. Egerton and P. E. Batson (2014). Exploring signals made accessible by sub-20 meV resolution EELS. AMTC Lett. 4, 246–247. O.L. Křivánek, T.C. Lovejoy, T. Aoki, P.A. Crozier, P. Rez, R.F. Egerton and N. Dellby (2014). New EM signals made accessible by sub-20 meV resolution EELS. IMC-18, Prague. IT-5-O1653. O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, E. Soignard, J.-t. Zhu, P.E. Batson, M.J. Lagos, R.F. Egerton and P.A. Crozier (2014). Vibrational spectroscopy in the electron microscope. Nature 514, 209–212. O.L. Krivanek, T.C. Lovejoy, M.F. Murfitt, G. Skone, P.E. Batson and N. Dellby (2014). Towards sub-10 meV energy resolution STEM–EELS. J. Phys.: Conf. Ser 522, 012023 (6 pp.). EMAG 2013, York. O.L. Krivanek, T.C. Lovejoy and N. Dellby (2015). Aberrationcorrected STEM for atomic resolution imaging and specroscopy. J. Microscopy (forthcoming).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

S. Lanio and M. Haider (1989). A multipole corrector for a high resolution low voltage scanning electron microscope. Optik 83 (Suppl. 4), 54. S. Lazar, J. Etheridge, C. Dwyer, B. Freitag and G.A. Botton (2011). Atomic resolution imaging using the real-space distribution of electrons scattered by a crystalline material. Acta Cryst. A 67, 487–490. S. Lazar, C. Dwyer, C. Zheng and J. Etheridge (2012). Atomic resolution imaging in scanning transmission electron microscopy using detectors in real space. APMC-10, Perth. 942 (2pp.). R. Leary and R. Brydson (2011). Chromatic aberration correction: the next step in electron microscopy. Adv. Imaging & Electron Phys. 165, 73–130. S. Lee, Y. Oshima, E. Hosono, H. Zhou and K. Takayanagi (2013). Reversible contrast in focus series of annular bright field images of a crystalline LiMn2O4 nanowire. Ultramicroscopy 125, 43–48.

51

J.-y. Liu (2014). The versatile imaging capabilties of aberrationcorrected STEM. Microsc. & Microanal. 20 (Suppl. 3), 88–89. Z.-x. Liu (2004). Improved fifth-order geometric aberration coefficients of electron lenses. J. Phys. D: Appl. Phys. 37, 653– 659. Z.-x. Liu (2007). Exploring third-order chromatic aberrations of electron lenses with computer algebra. Adv. Imaging & Electron Phys. 145, 95–148. S. Lopatin, A. Chuvilin and D. Delille (2014). 5th order aberration correction in the Cs corrected Titan TEM for optimized HRTEM study of low-angle boundaries in graphene-like materials. XV International Conference on Electron Microscopy, Cracow. T.C. Lovejoy, Q.M. Ramasse, M. Falke, A. Kaeppel, R. Terborg, R. Zan, N. Dellby and O.L. Krivanek (2012). Single atom identification by energy dispersive x-ray spectroscopy. Appl. Phys. Lett. 100, 154101 (4 pp.).

Z. Lee, J. Meyer, H. Rose and U. Kaiser (2012). Optimum HRTEM image contrast at 20 kV and 80 kV – exemplified by graphene. Ultramicroscopy 112, 39–49.

T.C. Lovejoy, N. Dellby, G.J. Corbin, P. Hrncirik, M.F. Murfitt, Z.S. Szilagyi and O.L. Krivanek (2013). Improving the spatial resolution of low-keV STEM with a monochromator. Microsc. & Microanal. 19 (Suppl. 2), 312–313.

O. Lehtinen, D. Geiger, Z. Lee, M.B. Whitwick, M.-w. Chen, A. Kis and U. Kaiser (2015). Numerical correction of anti-symmetric aberrations in single HRTEM images of weakly scattering 2Dobjects. Ultramicroscopy 151,130–135.

A.R. Lupini (2011). The electron Ronchigram. In Scanning Transmission Electron Microscopy, Imaging and Analysis (S.J. Pennycook and P.D. Nellist, Eds), 117–161 (Springer, New York).

B. Lencová and J. Zlámal (2008). A new program for the design of electron microscopes. Phys. Procedia 1, 315–324. CPO-7, Cambridge, 2006.

A.R. Lupini (2011). Aberration correction in STEM. Thesis, Cambridge.

M. Lentzen (2006). Progress in aberration-corrected transmission electron microscopy using hardware aberration correction. Microsc. & Microanal. 12, 191–205. M. Lentzen (2008). Contrast transfer and resolution limits for sub-Angstrom high-resolution transmission electron microsopy. Microsc. & Microanal. 14, 16–26. M. Lentzen (2009). Aberration-corrected atomic-resolution transmission electron microscopy. MC-2009, Graz. 1, 9–10. M. Lentzen and A. Thust (2006). Optimum aberration setting for sub-Ångström HRTEM and contrast theory for Wien-filter monochromators. IMC-16, Sapporo. 2, 638. M. Lentzen, B. Jahnen, C.-l. Jia, A. Thust, K. Tillmann and K. Urban (2002). High-resolution imaging with an aberration corrected transmission electron microscope. Ultramicroscopy 92, 233–242. F. Lenz (1996). Towards atomic resolution. Adv. Imaging Electron Phys. 96, 791–803. M. Linck, B. McMorran, J. Pierce and P. Ercius (2014). Aberration-corrected STEM by means of diffraction gratings. Microsc. & Microanal. 20 (Suppl. 3), 946–947. H.-n. Liu, E. Munro, J. Rouse and X. Zhu (2002). Simulation methods for multipole imaging systems and aberration correctors. Ultramicroscopy 93, 271–291. H.-n. Liu, J. Rouse, L.-p. Wang and E. Munro (2008). Software for designing multipole aberration correctors. Phys. Procedia 1, 339–353. CPO-7, Cambridge, 2006.

A.R. Lupini and N. de Jonge (2011). The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc. & Microanal. 17, 817–826. A.R. Lupini and O.L. Krivanek (1998). Design of an objective lens for use in Cs -corrected STEM. ICEM-14, Cancún. 1, 59–60. A. R. Lupini and S. Pennycook (2007). Aberration-corrected imaging in the STEM. Microsc. & Microanal. 13 (Suppl. 2), 1146–1147. A.R. Lupini and S.J. Pennycook (2008). Rapid autotuning for crystalline specimens from an inline hologram. J. Electron Microsc. 57, 195–201. A.R. Lupini and S.J. Pennycook (2010). Rapid methods for dynamic autotuning. Microsc. & Microanal. 16 (Suppl. 2), 244– 245. A. R. Lupini and S. J. Pennycook (2012). Tuning fifth-order aberrations in a quadrupole-octupole corrector. Microsc. & Microanal. 18, 699–704. A.R. Lupini, O.L. Krivanek, N. Dellby, P.D. Nellist and S.J. Pennycook (2001). Developments in Cs-corrected STEM. EMAG 2001, Dundee. 31–34. A.R. Lupini, S.J. Pennycook, O.L. Krivanek, N. Dellby and P.D. Nellist (2002). Initial results from aberration correction in STEM. Microsc. & Microanal. 8 (Suppl. 2), 476–477. A.R. Lupini, M. Varela, K.Y. Borisevich, S.M. Travaglini and S.J. Pennycook (2003). Advances in aberration corrected STEM at ORNL. EMAG 2003, Oxford. 211–214. A.R. Lupini, S.N. Rashkeev, M. Varela, A.Y. Borisevic, M.P. Oxley, K. van Benthem, Y. Peng, N. de Jonge, G.M. Veith, S.T.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

52

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Pantelides, M.F. Chisholm and S.J. Pennycook (2008). Scanning transmission electron microscopy. In Nanocharacterisation (A. I. Kirkland and J.L. Hutchison, Eds) 28–65 (Royal Society of Chemistry, Cambridge). A.R. Lupini, A.Y. Borisevich, J.C. Idrobo, K. Christen, M. Biegalski and S. J. Pennycook (2009). Characterizing the two- and three-dimensional resolution of an improved aberrationcorrected STEM. Microsc. & Microanal. 15, 441–453. A.R. Lupini, P. Wang, P.D. Nellist, A.I. Kirkland and S.J. Pennycook (2010). Aberration measurement using the Ronchigram contrast transfer function. Ultramicroscopy 110, 891–898. D. Maas, S. Henstra, M. Krijn and S. Mentink (2001). Electrostatic aberration correction in low voltage SEM. Proc. SPIE 4510, 205–217. I. Maclaren and Q.M. Ramasse (2014). Aberration-corrected scanning transmission electron microscopy for atomic-resolution studies of functional oxides. Internat. Mater. Rev. 59, 115–131. A. Maiden (2014). Super-resolved ptychographic imaging. Microsc. & Microanal. 20 (Suppl. 3), 372–373. S. Majert and H. Kohl (2015). High-resolution STEM imaging with a quadrant detector – conditions for differential phase contrast microscopy in the weak phase object approximation. Ultramicroscopy 148, 81–86. M. Marko and H. Rose (2010). The contributions of Otto Scherzer (1909–1982) to the development of the electron microscope. Microsc. & Microanal. 16, 366–374. F.W. Martin (2014). Cc, Cs, and parasitic correction in quadrupole probe-forming lenses. Optik 125, 1311–1315 (q.v. for earlier papers by this author). I. Maßmann, S. Uhlemann, H. Müller, P. Hartel, J. Zach, M. Haider, Y. Taniguchi, D. Hoyle and R. Herring (2011). Realization of the first aplanatic transmission electron microscope. Microsc. & Microanal. 17 (Suppl. 2), 1270–1271. Y. Matsui, S. Horiguchi, Y. Bando, Y. Kitami, M. Yokoyama and S. Suehara (1991). Ultra-high-resolution HVEM (H–1500) newly constructed at NIRIM. Ultramicroscopy 39, 8–20. Y. Matsui, S. Horiuchi, Y. Bando, Y. Kitami, M. Yokoyama, S. Suehara, I. Matsui and T. Katsuta (1991). Development of ultra-high-resolution 1300 kV electron microscope (H-1500) and its characteristic features. J. Electron Microsc. 40, 274. A. Mayoral, R. Esparza, F.L. Deepak, G. Casillas, S. Mejía–Rosales, A. Ponce and M. José–Yacamán (2011). Study of nanoparticles at UTSA: one year of using the first JEM–ARM200F installed in USA. JEOL News 46 (1), 1–5. UTSA ¼ University of Texas at San Antonio. D. McGrouther, M.-J. Benitez, S. McFadzean and S. McVitie (2014). Development of aberration corrected differential phase contrast (DPC) STEM. JEOL News 49 (1), 2–10. S.A.M. Mentink, T. Steffen, P.C. Tiemeijer and M.P.C.M. Krijn (1999). Simplified aberration corrector for low-voltage SEM. EMAG 1999, Sheffield. 83–86.

Henstra (2002). Aberration correction in low-voltage SEM. ICEM-15, Durban. 1, 31–32. S.A.M. Mentink, M.J. van der Zande, C. Kok and T.L. van Rooy (2003). Development of a Cs corrector for a Tecnai 20 FEG STEM/TEM. EMAG 2003, Oxford. 165–168. R. Meyer, A.I. Kirkland and W.O. Saxton (2002). A new method for the determination of the wave aberration function for high resolution TEM. I. Measurement of the symmetric aberrations. Ultramicroscopy 92, 89–109. R. Meyer, A.I. Kirkland and W.O. Saxton (2004). A new method for the determination of the wave aberration function for high resolution TEM. II. Measurement of the antisymmetric aberrations. Ultramicroscopy 99, 115–123. W.E. Meyer (1961a). Das Auflösungsvermögen sphärisch korrigierter elektrostatischer Elektronenmikroskope. Optik 18, 69–91 W.E. Meyer (1961b). Das praktische Auflösungsvermögen von Elektronenmikroskopen. Optik 18, 101–114. K. Mitsuishi, M. Takeguchi, Y. Kondo, F. Hosokawa, K. Okamoto, T. Sannomiya, M. Hori, T. Iwama, M. Kawazoe and K. Furuya (2006). Ultrahigh-vacuum third-order spherical aberration (Cs) corrector for a scanning transmission electron microscope. Microsc. & Microanal. 12, 456–460. G. Möbus, J.M. Titchmarsh, J.L. Hutchison, C.J. Hetherington, R. C. Doole and D.J.H. Cockayne (2001). Prospective applications for a double-Cs-corrector TEM/STEM. EMAG 2001, Dundee. 27–30. S. Moriguchi, H. Kurata, S. Isoda and T. Kobayashi (1991). Resolution power of 1 MV electron microscope in Kyoto. J. Electron Microsc. 40, 277. S. Morishita, T. Nakamichi, A. Takano, K. Satoh, T. Sasaki and H. Sawada (2013). Cyclic procedure for aberration correction. 69th Annual meeting of the Japanese Society of Microscopy (not published in Kenbikyo). S. Morishita, T. Nakamichi, A. Takano, K. Satoh, F. Hosokawa, K. Suenaga and H. Sawada (2014). Aberration correction through auto-iteration system utilizing diffractogram analysis by profile fitting technique. IMC-18, Prague. IT-2-P-2594. S. Morishita, T. Nakamichi, A. Takano, K. Satoh, T. Sasaki and H. Sawada (2014). Precision of aberration measurement in diffractogram tableau. Kenbikyo 49 (Supplement), 55. R. W. Moses (1974). Aberration correction for high-voltage electron microscopy. Proc. Roy. Soc. London A 339, 483–512. M. Mukai, J.S. Kim, K. Omoto, H. Sawada, A. Kimura, A. Ikeda, J. Zhou, T. Kaneyama, N.P. Young, J. H. Warner, P. D. Nellist and A. I. Kirkland (2014). The development of a 200 kV monochromated field emission electron source. Ultramicroscopy 140, 37–43. M. Mukai, E. Okunishi, M. Ashino, K. Omoto, T. Fukuda, A. Ikeda, K. Somehara, T. Kaneyama, T. Saitoh, T. Hirayama and Y. Ikuhara (2014). Monochromator for aberration-corrected STEM. Microsc. & Microanal. 20 (Suppl. 3), 606–607.

S.A.M. Mentink, T. Steffen and P.C. Tiemeijer (2001). Fringe fields of the Wien-filter aberration corrector for low-voltage SEM. EMAG 2001, Dundee. 147–150.

M. Mukai, E. Okunishi, M. Ashino, K. Omoto, T. Fukuda, A. Ikeda, K. Somehara, T. Kaneyama, T. Saitoh, T. Hirayama and Y. Ikuhara (2014). Monochromator with double Wien-filter for aberration-corrected STEM. AMTC Lett. 4, 272–273.

S.A.M. Mentink, D.J. Maas, T. Steffen, P.C. Tiemeijer and A.

M. Mukai, K. Omoto, T. Sasaki, Y. Kohno, S. Morishita, A. Kimura,

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

A. Ikeda, K. Somehara, H. Sawada, K. Kimoto and K. Suenaga (2014). Design of a monochromator for aberration-corrected low-voltage S(TEM). IMC-18, Prague. IT-1-P-2578. M. Mukai, E. Okunishi, M. Ashino, K. Omoto, T. Fukuda, A. Ikeda, K. Somehara, T. Kaneyama, T. Saitoh, T. Hirayama and Y. Ikuhara (2015). Development of a monochromator for aberration-corrected scanning transmission electron microscopy. Microscopy 64 (2015) 151–158. D.A. Muller (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Materials 8, 263–270. D.A. Muller and J. Grazul (2001). Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J. Electron Microsc. 50, 219–226. D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby and O. L. Krivanek (2008). Atomic-scale chemical imaging of composition and bonding by aberratiomcorrected microscopy. Science 319, 1073–1076. H. Müller, S. Uhlemann, P. Hartel and M. Haider (2005). Optical design, simulation and adjustment of present-day and future aberration correctors for the transmission electron microscope. Microscopy Conference 2005, Davos. 6. H. Müller, S. Uhlemann, P. Hartel and M. Haider (2006). Advancing the hexapole Cs -corrector for the scanning transmission electron microscope. Microsc. & Microanal. 12, 442– 455. H. Müller, S. Uhlemann, P. Hartel and M. Haider (2008). Aberration-corrected optics: from an idea to a device. Phys. Procedia 1, 167–178. CPO-7, Cambridge, 2006. H. Müller, I. Maßmann, S. Uhlemann, P. Hartel, J. Zach and M. Haider (2011). Aplanatic imaging systems for the transmission electron microscope. Nucl. Instrum. Meth. Phys. Res. A 645, 20–27. CPO-8, Singapore, 2010. H. Müller, I. Maßmann, S. Uhlemann, P. Hartel, J. Zach, M. Haider, Y. Taniguchi, D. Hoyle and R. Herring (2011). Realization of the first aplanatic transmission electron microscope. MC-2011, Kiel. 1, IM1.111. H. Müller, S. Uhlemann, P. Hartel, J. Zach and M. Haider (2014). Overview of commercially available CEOS hexapole-type aberration correctors Microsc. & Microanal. 20 (Suppl. 3), 934–945. E. Munro, X. Zhu, J. Rouse and H. Liu (2001). Aberration correction for charged particle lithography. Proc. SPIE 4510, 218– 224. E. Munro, J. Rouse, H. Liu, L. Wang and X. Zhu (2006). Simulation software for designing electron and ion beam equipment. Microelectron. Eng. 83, 994–1002. E. Munro, H. Liu, J. Rouse and L. Wang (2010). Simulation of aberration correctors for electron microscopy using multipole lenses, Wien filters and electron mirrors. IMC-17, Rio de Janeiro. I1.7. K. Nakamura, M. Konno, T. Yaguchi, T. Kamino, D. Terauchi, H. Inada, H. Tanaka, Y. Taniguchi and S. Isakozawa (2006). Development of a Cs -corrected dedicated STEM. IMC-16, Sapporo. 2, 633.

53

K. Nakamura, H. Inada, H. Tanaka, M. Konno and T. Ogawa (2007). Hitachi's spherical aberration corrected STEM: HD2700. Hitachi Rev. 56 (3), 34–38. T. Nakano, K. Hirose and T. Kawasaki (2011). C3c measurement and dispersion reduction for beam-tilt optics of aberrationcorrected SEM. Nucl. Instrum. Meth. Phys. Res. A 645, 28–32. CPO-8, Singapore, 2010. P.D. Nellist (2005). Seeing with electrons. Phys. World 18 (November) 24–29. P. D. Nellist and P. Wang (2012). Optical sectioning and confocal imaging and analysis in the transmission electron microscope. Ann. Rev. Mater. Res. 42, 125–143. P.D. Nellist, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z. Szilagyi, A.R. Lupini and S.J. Pennycook (2003). Towards sub-0.5 angstrom beams through aberration corrected STEM. EMAG 2003, Oxford. 159–164. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W. H. Sides and S. J. Pennycook (2004). Direct sub-Angstrom imaging of a crystal lattice. Science 305, 1741–1742. P.D. Nellist, M.F. Chisholm, A.R. Lupini, A. Borisevich, W.H. Sides, S. J. Pennycook, N. Dellby, R. Keyse, O.L. Krivanek, M.F. Murfitt and Z. S. Szilagyi (2006). Aberration-corrected STEM: current performance and future directions. J. Phys. Conf. Ser. 26, 7–12. EMAG-NANO 2005, Leeds. R. Nishi, H. Ito and S. Hoque (2014). Wire corrector for aberration corrected electron optics. IMC-18, Prague. IT-1-P-2984. T. Oikawa, E. Okunishi, N. Endo and C. Ricolleau (2009). Structural and elemental analysis under the sub-Angstrom resolution with Cs corrected STEM. MC-2009, Graz. 1, 13–14. S. Okayama (1991). Correction of aperture aberration of a probe-forming quadrupole triplet. J. Electron Microsc. 40, 256. S. Okayama (1992). Correction of aperture aberration by means of 4-stage quadrupole correction-lens. J. Electron Microsc. 41, 287. M.A. O'Keefe and L.F. Allard (2004). A standard for sub-Ångstrom metrology of resolution in aberration-corrected transmission electron microscopes. Microsc. & Microanal. 10 (Suppl. 2), 1002–1003. M.A. O'Keefe, L.F. Allard and D.A. Blom (2005). HRTEM imaging of atoms at sub-Ångström resolution. J. Electron Microsc. 54, 169–180. E. Okunishi, Y. Kohno, T. Sasaki, H. Sawada and Y. Kondo (2012). 2D elemental map at sub-Angstrom resolution using a Cs-corrected STEM equipped with an improved cold field emission gun. EMC-15, Manchester. 2, 687–688. E. Okunishi, H. Sawada and Y. Kondo (2012). Experimental study of annular bright field (ABF) imaging using aberrationcorrected scanning transmission electron microscopy (STEM). Micron 43, 538–544. M.H.F. Overwijk, A.J. Bleeker and A. Thust (1996). Correction of three-fold astigmatism for ultra-high-resolution TEM. EUREM-11, Dublin. 1, I404–I405. G. Patriarche, P. Walker, E. van Elslande, J. Ayache and J. Castaing (2014). Aberration corrected STEM to study an ancient

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

54

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

hair dyeing formula. IMC-18, Prague. ID-7-P-1468.

1–10.

S.J. Pennycook (2011). A scan through the history of STEM. In Scanning Transmission Electron Microscopy (S.J. Pennycook and P.D. Nellist, Eds), 1–90 (Springer, New York).

F. Phillipp, R. Höschen, M. Osaki and M. Rühle (1994). A new high-voltage atomic resolution microscope approaching 1 Ångström resolution. ICEM-13, Paris. 1, 231–232.

S.J. Pennycook (2012). Scanning transmission electron microscopy: seeing the atoms more clearly. MRS Bull. 37, 943–951.

S. Pokrant, G. Benner, A. Orchowski, M. Cheynet, U. GollaSchindler and U. Kaiser (2011). Comparison between 20 kV and 80 kV spectroscopy with monochromation and in-column filter. MC-2011, Kiel.1, IM1.117.

S.J. Pennycook (2015). Fulfilling Feynmann's dream: "Make the electron microscope 100 times better" – are we there yet? MRS Bull. 40, 71–78. S.J. Pennycook and P.D. Nellist, Eds (2011). Scanning Transmission Electron Microscopy (Springer, New York). S.J. Pennycook and M. Varela (2011). New views of materials through aberration-corrected scanning transmission electron microscopy. J. Electron Microsc. 60 (Suppl. 1), 213–223. S. Pennycook, A. Lupini, M. Varela, A. Borisevich, Y. Peng, M. Chisholm, N. Dellby, O. Krivanek, P. Nellist, Z. Szilagyi and G. Duscher (2003). Sub-Angstrom resolution through aberrationcorrected STEM. Microsc. & Microanal. 9 (Suppl. 2), 926–927. S.J. Pennycook, A.R. Lupini, A. Kadavanich, J.R. McBride, S.J. Rosenthal, R.C. Puetter, A. Yahil, O.L. Krivanek, N. Dellby and P. D. Nellist (2003). Aberration-corrected scanning transmission electron microscopy: the potential for nano- and interface science. Z. Metallkde 94, 350–357. S.J. Pennycook, A.R. Lupini, M. Varela, A. Borisevich, M.F. Chisholm, E. Abe, N. Dellby, O.L. Krivanek, P.D. Nellist, L.G. Wang, R. Buczko, X. Fan and S.T. Pantelides (2003). Nanoscale structure/property correlation through aberration-corrected STEM and theory In Spatially Resolved Characterization of Local Phenomena in Materials and Nanostructures (D. A. Bonnell, J. Piqueras, A.P. Shreve and F. Zypman, Eds), Materials Research Society Proceedings 738, G1.1 (Materials Research Society, Warrendale PA). S.J. Pennycook, M.F. Chisholm, M. Varela, A.R. Lupini, A. Borisevich, Y. Peng, K. van Benthem, N. Shibata, V.P. Dravid, P. Prabhumirashi, S.D. Findlay, M.P. Oxley, L.J. Allen, N. Dellby, P. D. Nellist, Z.S. Szilagyi and O.L. Krivanek (2004). Materials applications of aberration-corrected STEM. Microsc. & Microanal. 10 (Suppl. 3), 12–13. S.J. Pennycook, M.F. Chisholm, A.R. Lupini, M. Varela, K. van Benthem, A.Y. Borisevich, M.P. Oxley, W. Luo and S.T. Pantelides (2008). Materials applications of aberration-corrected scanning transmission electron microscopy. Adv. Imaging & Electron Phys. 153, 327–384. S.J. Pennycook, A.R. Lupini, A.Y. Borisevich and M.P. Oxley (2012). Z-contrast imaging. In Handbook of Nanoscopy (G. Van Tendeloo, D. Van Dyck and S.J. Pennycook, Eds), 109–152 (Wiley–VCH, Weinheim). T.J. Pennycook, A.R. Lupini, L. Jones and P.D. Nellist (2014). Maximum efficiency STEM phase contrast imaging. Microsc. & Microanal. 20 (Suppl. 3), 382–383. T.J. Pennycook, A.R. Lupini, H. Yang, M.F. Murfitt, I. Jones and P. D. Nellist (2015). Efficient phase contrast imaging in STEM using a pixelated detector. Part I. Experimental demonstration at atomic resolution. Ultramicroscopy 151, 160–167. F. Phillipp, R. Höschen, M. Osaki, G. Möbus and M. Rühle (1994). New high-voltage atomic resolution microscope approaching 1 Å point resolution installed in Stuttgart. Ultramicroscopy 56,

D. Preikszas, P. Hartel, R. Spehr and H. Rose (1997). Konstruktion, Bau und Test eines korrigierten Niederspannungs-Elektronenmikroskops. Optik 106 (Suppl. 7), 6. Q. M. Ramasse (2005). Diagnosis of aberrations in the scanning transmission electron microscope. Thesis, Cambridge. Q.M. Ramasse and A.L. Bleloch (2005). Diagnosis of aberrations from crystalline samples in scanning transmission electron microscopy. Ultramicroscopy 106, 37–56. Q. Ramasse and R. Brydson (2015). The SuperSTEM laboratory. Adv. Imaging Electron Phys. (in preparation). Q. M. Ramasse, C. R. Seabourne, D.-M. Kepaptsoglou, R. Zan, U. Bangert and A. J. Scott (2013). Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 13, 4989–4995. C. Ricolleau, J. Nelayah, T. Oikawa, Y. Kohno, N. Braidy, G. Wang, F. Hüe and D. Alloyeau (2012). Performance of a cold FEG microscope with an objective lens aberration-corrector. EMC15, Manchester. 2, 479–480. C. Ricolleau, J. Nelayah, T. Oikawa, Y. Kohno, N. Braidy, G. Wang, F. Hüe and D. Alloyeau (2012). High resolution imaging and spectroscopy using Cs-corrected TEM with cold FEG JEM– ARM200F. JEOL News 47 (1), 2–8. C. Ricolleau, J. Nelayah, T. Oikawa, Y. Kohno, N. Braidy, G. Wang, F. Hüe, L. Florea, V.P. Bohnes and D. Alloyeau (2013). Performance of an 80–200 kV microscope employing a cold-FEG and an aberration-corrected objective lens. Microscopy 62, 283–293. J.M. Rodenburg (2008). Ptychography and related diffractive imaging methods. Adv. Imaging & Electron Phys. 150, 87–184. J.M. Rodenburg and A.R. Lupini (1999). Measuring lens parameters from coherent Ronchigrams in STEM. EMAG-1999, Sheffield. 339–342. H. Rose (1974). Phase contrast in scanning transmission electron microscopy. Optik 39, 416–436. H. Rose (1977). Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251–267. H. Rose (1981). Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl. Instrum. Meth. 187, 187–199. CPO-1, Giessen, 1980. H. Rose (1990). Outline of a spherically corrected semi-aplanatic medium-voltage transmission electron microscope. Optik 85, 19–24. H. Rose (1992). Correction of aberrations, a promising method for improving the performance of electron microscopes. EUREM-10, Granada. 1, 47–48.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

H. Rose (1993). Entwicklungstendenzen in der hochauflösenden Elektronenmikroskopie und Energieanalyse. Optik 94 (Suppl. 5), 16. H. Rose (1999). Prospects for realizing a sub-Å sub-eV resolution EFTEM. Ultramicroscopy 78, 13–25. H. Rose (2002). Correction of aberrations – past, present and future. Microsc. & Microanal. 8 (Suppl. 2), 6–7. H. Rose (2002). Theory of electron-optical achromats and apochromats. Ultramicroscopy 93, 293–303. H. Rose (2003). Advances in electron optics. In High-resolution Imaging and Spectrometry of Materials (F. Ernst and M. Rühle, Eds), 189–270 (Springer, Berlin). H. Rose (2003). Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Microsc. & Microanal. 9 (Suppl. 3), 32–33. H. Rose (2004). Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged particle lenses. Nucl. Instrum. Meth. Phys. Res. A 519, 12–27. CPO-6, College Park, 2002. H. Rose (2005). Prospects for aberration-free electron microscopy. Ultramicroscopy 103, 1–6. H. Rose (2007). Optimum imaging modes in electron microscopy. MCM-8, Prague. 21–24. H. Rose (2008). History of direct aberration correction. Adv. Imaging Electron Phys. 153, 1–37. H. Rose (2008). Optics of high performance electron microscopes. Sci. Technol. Adv. Mater. 9, 014107 (30 pp.). H. Rose (2009). Historical aspects of aberration correction. J. Electron Microsc. 58, 77–85. H. Rose (2009). In memoriam of Otto Scherzer on the occasion of his hundredth birthday. MC-2009, Graz. 1, 1–2. H. Rose (2009). Geometrical Charged-Particle Optics (Springer, Berlin). H.H. Rose (2009). Future trends in aberration-corrected electron microscopy. Phil. Trans. Roy. Soc. London A 367, 3809– 3823. H. Rose (2009). Eine Brille für Elektronen. Physik Journal 8(8/9), 61–66. Robert–Wichard–Pohl Prize lecture. H. Rose (2010). Outline of an aberration-corrected low-voltage phase electron microscope. IMC-17, Rio de Janeiro. I23.4. H. Rose (2010). Theoretical aspects of image formation in the aberration-corrected electron microscope. Ultramicroscopy 110, 488–499. H. Rose (2013). The long-lasting struggle to achieve atomicresolution microscopy by correcting the aberrations of electron lenses. Microsc. & Microanal. 19 (Suppl. 2), 2006–2007.

55

44–48. H. Rose, M. Haider and K. Urban (1998). Elektronenmikroskopie mit atomarer Auflösung. Ein Durchbruch bei der Korrektur von auflösungsbegrenzenden Linsenfehlern. Phys. Bl. 54, 411– 416. M. E. Rudnaya, W. Van den Broeck, R. M. P. Doornbos, R. M. M. Mattheij and J. M. L. Maubach (2011). Defocus and twofold astigmatism correction in HAADF–STEM. Ultramicroscopy 111, 1043–1054. Not specifically for aberration-corrected microscopes, cites several related papers by Rudnaya et al. T. Sannomiya (2012). Method to determine the centre of a Ronchigram for STEM aberration correctors. Kenbikyo 47 (Supplement), 153. T. Sannomiya, H. Sawada, T. Nakamichi, F. Hosokawa, Y. Nakamura and Y. Tanishiro (2013). Aberration centre determination for STEM Ronchigrams. 69th Annual Meeting of the Japanese Society of Microscopy (not published in Kenbikyo). T. Sannomiya, H. Sawada, T. Nakamichi, F. Hosokawa, Y. Nakamura, Y. Tanishiro and K. Takayanagi (2013). Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy. Ultramicroscopy 135, 71–79. T. Sannomiya, H. Sawada, T. Nakamichi, F. Hosokawa, Y. Nakamura, Y. Tanishiro and K. Takayanagi (2013). Determination of aberration center of STEM Ronchigram for fully automated aberration correctors. Microsc. & Microanal. 19 (Suppl. 2), 308–309. T. Sasaki (2013). Development of extra-low voltage aberrationcorrected STEM/TEM. Proceedings of the Annual Meeting of the Japanese Society of Microscopy (Kanto Branch). T. Sasaki, H. Sawada, T. Nakamichi, F. Hosokawa, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2009). Performance of low-voltage electron microscope with new aberration correction system and cold field emission gun. Microsc. & Microanal. 15 (Suppl. 2), 1080–1081. T. Sasaki, H. Sawada, T. Nakamichi, F. Hosokawa, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2009). Development and performance evaluation of 60 kV aberration-corrected TEM/STEM. Kenbikyo 44 (Supplement), 11. T. Sasaki, H. Sawada, F. Hosokawa, M. Kawazoe, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2010). Experimental results of new-type of chromatic aberration corrector mounted on low-voltage transmission electron microscope. IMC-17, Rio de Janeiro. I2.2. T. Sasaki, H. Sawada, F. Hosokawa, Y. Kohno, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto, Y. Sato and K. Suenaga (2010). Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. J. Electron Microsc. 59, S7–S13.

H. Rose (2013). The long-lasting struggle to achieve atomicresolution microscopy by correcting the aberrations of electron lenses. Microsc. & Microanal. 19 (Suppl. 3), 11–12.

T. Sasaki, H. Sawada, F. Hosokawa, Y. Kohno, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto, Y. Sato and K. Suenaga (2010). Development and performance of an aberration-corrected 30–60 kV TEM/STEM with a cold field emission gun. AMTC Lett. 2, 122–123.

H. Rose and W. Wan (2005). Aberration correction in electron microscopy. 2005 Particle Accelerator Conference PAC2005,

T. Sasaki, H. Sawada, F. Hosokawa, Y. Shinizu, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2011).

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

56

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Performance of chromatic/spherical aberration corrected 30 kV TEM. Kenbikyo 46 (Supplement), 3. T. Sasaki, H. Sawada, E. Okunishi, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Evaluation of probe size in STEM imaging at 30 and 60 kV. Micron 43, 551–556. T. Sasaki, H. Sawada, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Atomic resolution capability of 30 kV Cc/Cs - corrected transmission electron microscope and its application. APMC-10, Perth. 385 (2 pp.).

Kawazoe, T. Sannomiya, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, N. Yamamoto and K. Takayanagi (2007). Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Japan. J. Appl. Phys. 46, L568–L570. H. Sawada, F. Hosokawa, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, K. Takayanagi and T. Sannomiya (2007). Development of spherical aberration corrected 300 kV FETEM. Microsc. & Microanal. 13 (Suppl. 2), 880–881.

T. Sasaki, H. Sawada, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Advantage of low-kV aberration-corrected scanning/transmission electron microscopy. AMTC Lett. 3, 156–157.

H. Sawada, F. Hosokawa, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro and K. Takayanagi (2008). Auto-adjustment of aberration correction and experimental evaluation of R005 microscope. Microsc. & Microanal. 14 (Suppl. 2), 802–803.

T. Sasaki, H. Sawada, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Atomic resolution imaging in 30 kV Cc/Cs corrected TEM and its applications. Kenbikyo 47 (Supplement), 26.

H. Sawada, F. Hosokawa, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, N. Yamamoto and K. Takayanagi (2008). Performance of R005 microscope and aberration correction system. EMC-14, Aachen. 1, 47–48.

T. Sasaki, H. Sawada and F. Hosokawa (2014). Evaluation of probe size in 15 kV STEM. Kenbikyo 49 (Supplement), 56.

H. Sawada, F. Hosokawa, T. Nakamichi, T. Tomita, T. Kaneyama, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro and K. Takayanagi (2008). Experimental evaluation and development of autoaberration-tuning system for the spherical aberration corrected microscope (R005). Kenbikyo 43 (Supplement), 86.

T. Sasaki, H. Sawada, F. Hosokawa, Y. Sato and K. Suenaga (2014). Aberration-corrected STEM/TEM imaging at 15 kV. Ultramicroscopy 145, 50–55. T. Sato, H. Matsumoto, M. Konno, Y. Taniguchi and S. Mamishin (2008). Hitachi's high-end analytical electron microscope: HF-3300. Hitachi Rev. 57, 132–135. H. Sawada (2014). Aberration correction in STEM. In Scanning Transmission Electron Microscopy of Nanomaterials (N. Tanaka, Ed.), 283–305 (Imperial College Press, London). H. Sawada (2014). Ronchigram and geometrical aberrations in STEM. In Scanning Transmission Electron Microscopy of Nanomaterials (N. Tanaka, Ed.), 461–485 (Imperial College Press, London). H. Sawada, T. Tomita, T. Kaneyama, F. Hosokawa, M. Naruse, T. Honda, P. Hartel, M. Haider, N. Tanaka, C. J. D. Hetherington, R. C. Doole, A. I. Kirkland, J. L. Hutchison, J. M. Titchmarsh and D. J. H. Cockayne (2004). Cs corrector for imaging. Microsc. & Microanal. 10 (Suppl. 2), 976–977.

H. Sawada, T. Sannomiya, F. Hosokawa, T. Nakamichi, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro and K. Takayanagi (2008). Measurement method of aberration from Ronchigram by autocorrelation function. Ultramicroscopy 108, 1467–1475. H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2009). Correction of higher order geometrical aberration by triple 3-fold astigmatism field. J. Electron Microsc. 58, 341–347. H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama, Y. Kondo and K. Takayanagi (2009). STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300 kV cold field emission gun. J. Electron Microsc. 58, 357–361.

H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider, C.J.D. Hetherington, R.C. Doole, A.I. Kirkland, J.L. Hutchison, J. M. Titchmarsh and D.J.H. Cockayne (2004). Cs corrector for illumination. Microsc. & Microanal. 10 (Suppl. 2), 1004–1005.

H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, K. Omoto, T. Kaneyama, T. Tomita, Y. Kondo, K. Kimoto and K. Suenaga (2009). Correction of spherical aberration and six-fold astigmatism using three dodecapoles. Microsc. & Microanal. 15 (Suppl. 2), 1458–1459.

H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider, C.J.D. Hetherington, R.C. Doole, A.I. Kirkland, J.L. Hutchison, J. M. Titchmarsh and D.J.H. Cockayne (2004). 200 kV TEM with Cs correctors for illumination and imaging. APEM-8, Kanazawa. 20–21.

H. Sawada, T. Sasaki, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2009). Delta type new spherical aberration corrector. Kenbikyo 44 (Supplement), 13.

H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hambridge, P. Hartel, M. Haider, C. Hetherington, R. Doole, A. Kirkland, J. Hutchison, J. Titchmarsh and D. Cockayne (2005). Experimental evaluation of a spherical aberration-corrected TEM and STEM. J. Electron Microsc. 54, 119–121. H. Sawada, T. Sannomiya, F. Hosokawa, T. Kaneyama, Y. Kondo, Y. Tanishiro and K. Takayanagi (2006). Method to measure aberrations from Ronchigram by auto-correlation function. IMC-16, Sapporo. 2, 632. H. Sawada, F. Hosokawa, T. Kaneyama, T. Ishizawa, M. Terao, M.

H. Sawada, F. Hosokawa, T. Nakamichi, T. Tomita, T. Kaneyama, Y. Kondo, T. Tanaka, Y. Tanishiro and K. Takayanagi (2009). Development of auto-tuning system for spherical aberration corrector and achievement of 47 pm resolution. Kenbikyo 44 (Supplement), 33. H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2010). Development of Cc corrector by combination concave lens system. IMC-17, Rio de Janeiro. I20.8 H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, M. Kawazoe, M. Terao, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

(2010). Chromatic aberration correction by combination concave lens. Microsc. & Microanal. 16 (Suppl. 2), 116–117. H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2010). Higher-order aberration corrector for an image-forming system in a transmission electron microscope. Ultramicroscopy 110, 958–961.

57

low-voltage observation with Cc and Cs correction. Kenbikyo 49 (Supplement), 6. H. Sawada, N. Shimura, K. Satoh, E. Okunishi, F. Hosokawa, N. Shibata and Y. Ikuhara (2014). Resolving 45 pm with aberration corrected STEM. Kenbikyo 49 (Supplement), 7.

H. Sawada, T. Sasaki, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2010). Delta type spherical aberration corrector. Kenbikyo 45 (3), 193–197.

H. Sawada, N. Shimura, K. Satoh, E. Okunishi, S. Morishita, T. Sasaki, Y. Jimbo, Y. Kohno, F. Hosokawa, T. Naruse, M. Hamochi, T. Sato, K. Terasaki, T. Suzuki, M. Terao, S. Waki, T. Nakamichi, A. Takano, Y. Kondo and T. Kaneyama (2014). Super high resolution imaging with atomic resolution electron microscope of JEM-ARM300F. JEOL News 49 (1), 51–58.

H. Sawada, F. Hosokawa, T. Sasaki, T. Kaneyama, Y. Kondo and K. Suenaga (2011). Aberration correctors developed under the triple C project. Adv. Imaging & Electron Phys. 168, 297–336.

H. Sawada, N. Shimura, F. Hosokawa, N. Shibata and Y. Ikuhara (2015). Resolving 45-pm-separated Si–Si atomic columns with an aberration-corrected STEM. Microscopy 64, 213–217.

H. Sawada, M. Watanabe, E. Okunishi and Y. Kondo (2011). Auto-tuning of aberrations using high-resolution STEM images by auto-correlation function. Microsc. & Microanal. 17 (Suppl. 2), 1308–1309.

H. Sawada, T. Sasaki, F. Hosokawa and K. Suenaga (2015). Atomic-resolution STEM imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle. Phys. Rev. Lett. 114, 166102 (5 pp.)

H. Sawada, M. Watanabe, E. Okunishi and Y. Kondo (2011). Auto tuning of aberrations using high-resolution STEM images. Kenbikyo 46 (Supplement), 266.

W.O. Saxton (1995). Simple prescriptions for measuring threefold astigmatism. Ultramicroscopy 58, 239–243

H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, M. Terao, M. Kawazoe, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2011). Development of 30 kV Cc/Cs correction tandem system. Kenbikyo 46 (Supplement), 265. H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, M. Kawazoe, M. Terao, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Evaluation of 30-kV microscope with Cc and Cs correction tandem system. EMC-15, Manchester. 2, 531–532. H. Sawada, F. Hosokawa, T. Sasaki, S. Yuasa, M. Terao, M. Kawazoe, T. Kaneyama, Y. Kondo, K. Kimoto and K. Suenaga (2012). Evaluation of 30 kV Cc/Cs correction tandem system. Kenbikyo 47 (Supplement), 23. H. Sawada, M. Watanabe and I. Chiyo (2012). Autotuning of aberrations using high-resolution STEM images. Kenbikyo 47 (Supplement), 25. H. Sawada, M. Watanabe and I. Chiyo (2012). Ad hoc autotuning of aberrations using high-resolution STEM images by autocorrelation function. Microsc. & Microanal. 18, 705–710. H. Sawada, E. Okunishi, N. Shimura, K. Satoh, F. Hosokawa and T. Kaneyama (2014). Sub-angstrom resolution realized with super high-resolution aberration corrected STEM at 300 kV. IMC-18, Prague. IT-2-P-3202. H. Sawada, N. Shimura, K. Satoh, E. Okunishi, F. Hosokawa, N. Shibata and Y. Ikuhara (2014). Resolving 45 pm with 300 kV aberration corrected STEM. Microsc. & Microanal. 20 (Suppl. 3), 124–125. H. Sawada, T. Sasaki, F. Hosokawa and K. Suenaga (2014). Resolution enhancement at low-accelerating-voltage by improvements of diffraction limit and chromatic aberration. Microsc. & Microanal. 20 (Suppl. 3), 380–381. H. Sawada, T. Sasaki, F. Hosokawa and K. Suenaga (2014). Resolution enhancement at a large convergence angle by a delta corrector with a CFEG in a low-accelerating-voltage STEM. Micron 63, 35–39. H. Sawada, T. Sasaki, F. Hosokawa and K. Suenaga (2014). Ultra-

W.O. Saxton (1995). Observation of lens aberations for very high-resolution electron microscopy. I. Theory. J. Microscopy 179, 201–213. W.O. Saxton (2000). A new way of measuring microscope aberrations. Ultramicroscopy 81, 41–45. W.O. Saxton (2015). Observation of lens aberations for highresolution electron microscopy. II. Simple expressions for optimal estimates. Ultramicroscopy 151, 168–177. W.O. Saxton, G. Chand and A.I. Kirkland (1994). Accurate determination and compensation of lens aberrations in high resolution TEM. ICEM-13, Paris. 1, 203–204. B. Schaffer, K. Sader, G. Vaughan and A. Bleloch (2009). SMART approaches to analytical Cs-corrected STEM. MC-2009, Graz. 1, 153–154. O. Scherzer (1936). Über einige Fehler von Elektronenlinsen. Z. Physik 101, 593–603. O. Scherzer (1947). Sphärische und chromatische Korrektur von Elektronen-Linsen. Optik 2, 114–132. R. Schillinger (2012). Monochromated high resolution STEM. EMC-15, Manchester. 2, 513–514. S. M. Schramm, S. J. van der Molen and R. M. Tromp (2012). Intrinsic instability of aberration-corrected electron microscopes. Phys. Rev. Lett. 109, 163901, 5pp. E. Schwan and M. Haider (1993). Set up of a computer-controlled electron-optical test-bench for multipole elements. Optik 94 (Suppl. 5), 101. E. Schwan and M. Haider (1995). Achtpolelement zur Korrektur des dreizähligen Astigmatismus. Optik 100 (Suppl. 6), 4. A. Seeger (1999). Four generations of high-voltage electron microscopes. J. Electron Microsc. 48, 301–315. Z. Shao (1988). On the fifth order aberration in a sextupole corrected probe forming system. Rev. Sci. Instrum. 59, 2429– 2437. Z. Shao (1988). Correction of spherical aberation in the

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

58

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

transmission electron microscope. Optik 80, 61–75. Z. Shao (1992). Canonical theory of multipoles: a critical reanalysis. J. Appl. Phys. 71, 1588–1593. Z. Shao and A.V. Crewe (1987). Spherical aberration of multipoles. J. Appl. Phys. 62, 1149–1153. Z. Shao, V. Beck and A.V. Crewe (1988). A study of octupoles as correctors. J. Appl. Phys. 64, 1646–1651. N. Shibata (2014). Advanced scanning transmission electron microscopy with symmetrical annular all field detector. IMC18, Prague. IT-2-IN-2458. N. Shibata (2014). Development and applications of SAAF detector for atomic-resolution STEM. Kenbikyo 49 (Suppl.) 9. N. Shibata, Y. Kohno, S. D. Findlay, H. Sawada, Y. Kondo and Y. Ikuhara (2010). New area detector for atomic-resolution scanning transmission electron microscopy. J. Electron Microsc. 59, 473–479.

information limit for 1.2 MV holography electron microscopes. 69th Annual Meeting of the Japanese Society of Microscopy (not published in Kenbikyo). A. Takaoka, K. Ura, H. Mori, T. Katsuta, I. Matsui and S. Hayashi (1997). Development of a new 3 MV ultra-high voltage electron microscope at Osaka University. J. Electron Microsc. 46, 447–456. K. Takayanagi (2007). 50 pm ultrahigh resolution microscopy. Kenbikyo 42 (Supplement), 70. K. Takayanagi (2008). Status quo and future trends of aberration correction in electron microscopy. J. Vac. Soc. Japan 51, 691–694. K. Takayanagi, Y. Oshima, T. Tanaka, Y. Tanishiro, H. Sawada, F. Hosokawa, T. Tomita, T. Kaneyama and Y. Kondo (2010). Lithium atom microscopy at sub-50 pm resolution by R005. JEOL News 45 (1), 2–7.

N. Shibata, S.D. Findlay, Y. Kohno, H. Sawada, Y. Kondo and Y. Ikuhara (2012). Differential phase-contrast microscopy at atomic resolution. Nature Physics 8, 611–615

K. Takayanagi, S. Kim, S. Lee, Y. Oshima, T. Tanaka, Y. Tanishiro, H. Sawada, F. Hosokawa, T. Tomita, T. Kaneyama and Y. Kondo (2011). Electron microscopy at a sub-50 pm resolution. J. Electron Microsc. 60 (Suppl. 1), S239–S244.

N. Shibata, S.D. Findlay and Y. Ikuhara (2014). Atomic-resolution scanning transmission electron microscopy with segmented annular all field detector. Microsc. & Microanal. 20 (Suppl. 3), 64–65.

S. Takeda, Y. Kuwauchi and H. Yoshida (2015). Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector. Ultramicroscopy 151, 178– 190.

J. Silcox (2002). The emergence of aberration correctors for electron lenses. Microsc. & Microanal. 8 (Suppl. 2), 2–3.

K. Tamura, S. Okayama and R. Shimizu (2010). Third-order spherical aberration correction using multistage self-aligned quadrupole correction-lens system. J. Electron Microsc. 59, 197–206.

D. J. Smith (2008). Development of aberration-corrected electron microscopy. Microsc. & Microanal. 14, 2–15 E. Snoeck, F. Houdellier, Y. Taniguchi, A. Masseboeuf, C. Gatel, J. Nicolai and M. Hÿtch (2014). Off-axial aberration correction using a B-COR for Lorentz and HREM modes. Microsc. & Microanal. 20 (Suppl. 3), 932–933. T. Steffen, P.C. Tiemeijer, M.P.C. M. Krijn and S.A.M. Mentink (2000). Correction of chromatic and spherical aberration using a Wien filter. EUREM-12, Brno. 3, I151–I152. P.A. Sturrock (1949). The aberrations of magnetic electron lenses due to asymmetries. ICEM-1, Delft. 89–93. P.A. Sturrock (1951). The aberrations of magnetic electron lenses due to asymmetries. Phil. Trans. Roy. Soc. London A 243, 387–429. K. Suenaga and M. Koshino (2010). Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090. K. Suenaga, Y. Sato, Z. Liu, H. Kataura, T. Okazaki, K. Kimoto, H. Sawada, T. Sasaki, K. Omoto, T. Tomita, T. Kaneyama and Y. Kondo (2009). Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nature Chemistry 1, 415–418. K. Suenaga, Y. Iizumi and T. Okazaki (2011). Singe atom spectroscopy with reduced delocalization effect using a 30 kV STEM. Eur. Phys. J.: Appl. Phys. 54, 33508 (4 pp.). K. Suenaga, T. Okazaki, E. Okunishi and S. Matsumura (2012). Detection of photons emitted from single erbium atoms in energy-dispersive x-ray spectroscopy. Nature Photonics 6, 545–548. Y. Takahashi, H. Kasai and T. Kawasaki (2013). Study on

N. Tanaka (2008). Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials. Sci. Technol. Adv. Mater. 9, 014111 (11 pp.). N. Tanaka, Ed. (2014). Scanning Transmission Electron Microscopy of Nanomaterials (Imperial College Press, London). N. Tanaka (2014). Historical survey of the development of STEM instruments. In Scanning Transmission Electron Microscopy of Nanomaterials (N. Tanaka, Ed), 9–38 (Imperial College Press, London). N. Tanaka (2014). Recent topics and future prospects in STEM. In Scanning Transmission Electron Microscopy of Nanomaterials (N. Tanaka, Ed), 425–440 (Imperial College Press, London). M. Texier and J. Thibault-Pénisson (2012). Optimum correction conditions for aberration-corrected HRTEM SiC dumbbells chemical imaging. Micron 43, 516–523. A. Thust and J. Barthel (2010). Ultimate limits of aberration control in HRTEM. IMC-17, Rio de Janeiro. I20.4. A. Thust and J. Barthel (2011). HRTEM beyond frequent idealizations: characterization of the actual contrast-transfer properties of transmission electron microscopes. MC-2011, Kiel. 1, IM2.211. A. Thust, J. Barthel, L. Houben, C. L. Jia, M. Lentzen, K. Tillmann and K. Urban (2005). Strategies for aberration control in subAngstrom HRTEM. Microsc. & Microanal. 11 (Suppl. 2), 58–59. A. Thust, J. Barthel and R.E. Dunin-Borkowski (2012). New concepts for quantifying the optical properties of modern high-resolution transmission electron microscopes. EMC-15, Manchester. 2, 495–496.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

P.C. Tiemeijer, M. Bischoff, B. Freitag and C. Kisielowski (2008). Using a monochromator to improve the resolution in focal-series reconstructed TEM down to 0.5 Å. EMC-14, Aachen. 1, 53–54. P.C. Tiemeijer, M. Bischoff, B. Freitag and C. Kisielowski (2012). Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part I: Creating highly coherent monochromated illumination. Ultramicroscopy 114, 72–81. P.C. Tiemeijer, M. Bischoff, B. Freitag and C. Kisielowski (2012). Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part II: Application to focal series reconstruction. Ultramicroscopy 118, 35–43. K. Tillmann, J. Barthel, L. Houben, C.-l. Jia, M. Lentzen, A. Thust and K. Urban (2008). Progress in aberration-corrected highresolution transmission electron microscopy of crystalline materials. Springer Proceedings in Physics 120 (2008) 133–148 (A.G. Cullis and P.A. Midgley, Eds). Microscopy of Semiconducting Materials 2007. T. Tomita, Y. Tanishiro, F. Hosokawa, Y. Kondo, T. Kaneyama, Y. Oshima, T. Tanaka, N. Yamamoto, H. Sawada and K. Takayanagi (2009). Development of 300 kV cold field emission gun for the microscope of 50 pm resolution. Kenbikyo 44 (Supplement), 35. R.M. Tromp and S.M. Schramm (2013). Optimization and stability of the contrast transfer function in aberration-corrected electron microscopy. Ultramicroscopy 125, 72–80. K. Tsuno (2011). Monochromators in electron microscopy. Nucl. Instrum. Meth. Phys. Res. A 645, 12–19. CPO-8, Singapore, 2010. S. Uhlemann and M. Haider (1997). Residual wave aberrations and point resolution of the first corrected TEM. Optik 106 (Suppl. 7), 7. S. Uhlemann and M. Haider (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109–119. S. Uhlemann and H. Rose (1995). Wie schwer ist die Korrektur eines Mittelspannungs-Elektronenmikroskops? Optik 100 (Suppl. 6), 8. S. Uhlemann, M. Haider and H. Rose (1994). Procedures for adjusting and controlling the alignment of a spherically corrected electron microscope. ICEM-13, Paris. 1, 193–194. S. Uhlemann, M. Haider, E. Schwan and H. Rose (1996). Towards a resolution enhancement in the corrected TEM. EUREM-11, Dublin. 1, I365–I361. S. Uhlemann, H. Müller, P. Hartel, J. Zach and M. Haider (2013). Instrumental resolution limit by magnetic thermal noise from conductive parts. Microsc. & Microanal. 19 (Suppl. 2), 598– 599. S. Uhlemann, H. Müller, P. Hartel, J. Zach and M. Haider (2013). Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys. Rev. Lett. 111, 046101 (5 pp.).

59

Ultramicroscopy 151, 199–210. K. Urban (2008). Studying atomic structures by aberrationcorrected transmission electron microscopy. Science 321, 506–510. K. Urban (2009). Is science prepared for atomic-resolution electron microscopy? Nature Materials 8, 260–262. K. Urban (2014). Ultra-high precision measurements in the aberration-corrected transmission electron microscope. Kenbikyo 49 (Suppl.) 6. K. Urban (2015). In quest of perfection in electron optics: a biographical sketch of Harald Rose on the occasion of his 80th birthday. Ultramicroscopy 151, 2–10. K. Urban, B. Kabius, M. Haider and H. Rose (1999). A way to higher resolution: spherical-aberration correction in a 200 kV transmission electron microscope. J. Electron Microsc. 48, 821– 826. K. Urban, L. Houben, C.-l. Jia, M. Lentzen, S.-b. Mi, A. Thust and K. Tillmann (2008). Atomic-resolution aberration-corrected transmission electron microscopy. Adv. Imaging Electron Phys. 153, 439–480. K.W. Urban, C.-l. Jia, L. Houben, M. Lentzen, S.-b. Mi and K. Tillmann (2009). Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy. Phil. Trans. Roy. Soc. London A 367, 3735–3753. K.W. Urban, J. Barthel, L. Houben, C.-l. Jia, M. Lentzen, A. Thust and K. Tillmann (2012). Ultrahigh-resolution transmission electron microscopy at negative spherical aberration. In Handbook of Nanoscopy (G. Van Tendeloo, D. Van Dyck and S. J. Pennycook, Eds), 1, 81–107 (Wiley–VCH, Weinheim). K. Urban, J. Mayer and L. Allen (2013). FTEM [sic] at atomic resolution in the chromatic-aberration corrected transmission electron microscope. MC-2013, Regensburg. 1, 164–165. K.W. Urban, J. Mayer, J. R. Jinschek, M.J. Neish, N.R. Lugg and L.J. Allen (2013). Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope. Phys. Rev. Lett. 110, 185507 (5 pp.). M.A. van der Stam, P. Tiemeijer, B. Freitag, M. Stekelenburg and J. Ringnalda (2005). The design and first results of a dedicated corrector (S)TEM Microsc. & Microanal. 11 (Suppl. 2), 2148– 2149. D. Van Dyck, I. Lobato, F.-r. Chen and C. Kisielowski (2014). Do you believe that atoms stay in place when you observe them in HREM? Micron 64, 158–163. M. Varela, A.R. Lupini, K. van Benthem, A.Y. Borisevich, M.F. Chisholm, N. Shibata, E. Abe and S. J. Pennycook (2005). Materials characterization in the scanning transmission electron microscope. Ann. Rev. Mater. Res. 35, 539–569. H.S. von Harrach (2009). Development of the 300-kV Vacuum Generator STEM (1985–1996). Adv. Imaging & Electron Phys. 159, 287–323.

S. Uhlemann, H. Müller, J. Zach, C. Berger and M. Haider (2014). Thermal magnetic field noise and electron optics – more experiments and calculations. IMC-18, Prague. IT-16-IN-1882.

T. Walther and H. Stegmann (2006). Performance evaluation of a new monochromatic and aberration-corrected 200 kV fieldemission scanning transmission electron microscope. IMC-16, Sapporo. 2, 607.

S. Uhlemann, H. Müller, J. Zach and M. Haider (2015). Thermal magnetic field noise: electron optics and decoherence.

T. Walther and H. Stegmann (2006). Preliminary results from the first monochromated and aberration corrected 200 kV

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

60

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

field-emission scanning transmission electron microscope. Microsc. & Microanal. 12, 498–505. W. Wan (2010). Aberration correction in microscopes. Proceedings PAC09, Vancouver (BC), 778–782. P. Wang, M. Gass, M. Falke and A. Bleloch (2008). Performance of a Nion Co. UltraSTEM. Microsc. & Microanal. 14 (Suppl. 2), 1376–1377. P. Wang, D.J. Batey, J.M. Rodenburg, H. Sawada and A.I. Kirkland (2013). Towards sub-Angström ptychographic diffractive imaging. Microsc. & Microanal. 19 (Suppl. 2), 706–707. P. Wang, C.B. Boothroyd, R.E. Dunin-Borkowski, A.I. Kirkland and P.D. Nellist (2014). Towards 4-D EEL spectroscopic scanning confocal electron microscopy (SCAM–EELS) optical sectioning on a Cc and Cs double-corrected transmission electron microscope. IMC-18, Prague. IT-10-O-2435. P. Wang, A.I. Kirkland, P.D. Nellist, A.J. d'Alfonso, A. J. Morgan, L. J. Allen, A. Hashimoto, M. Taneguchi, K. Mitsuishi and M. Shimojo (2014). Atomically resolved scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope. Microsc. & Microanal. 20 (Suppl. 3), 376–377. I.R.M. Wardell and P.E. Bovey (2009). A history of Vacuum Generators' 100-kV scanning transmission electron microscope. Adv. Imaging Electron Phys. 159, 221–285. M. Watanabe and H. Sawada (2012). Development of an ad-hoc aberration auto-tuning procedure on an oriented crystalline specimen in aberration corrected scanning transmission electron microscopy: the SIAM method. Microsc. & Microanal. 18 (Suppl. 2), 334–335.

coma aberrations with a sextupole–round lens–sextupole system. Optik 69, 141–146. J.-y. Ximen, Z.-f. Shao and A.V. Crewe (1985). The wave electron optical properties of a magnetic round lens corrected with sextupoles. Optik 70, 37–42. J. Yamasaki, H. Tamaki, T. Kawai, Y. Kondo and N. Tanaka (2008). A practical solution for elimination of artificial image contrast in Cs -corrected TEM. AMTC Lett. 1, 94–95. T. Yamazaki, Y. Kotaka, Y. Kikuchi and K. Watanabe (2006). Precise measurement of third-order spherical aberration using low-order zone-axis Ronchigrams. Ultramicroscopy 106, 153–163. H. Yang, T.J. Pennycook and P.D. Nellist (2014). Maximising phase contrast in aberration-corrected STEM using pixelated detectors. IMC-18, Prague. IT-1-P-2263. H. Yang, T.J. Pennycook and P.D. Nellist (2015). Efficient phase contrast imaging in STEM using a pixelated detector. Part II. Optimization of the imaging conditions. Ultramicroscopy 151, 232–239. J. Zach (1989). Design of a high-resolution low-voltage scanning electron microscope. Optik 83, 30–40. J. Zach (1989). Niederspannungs-Elektronenmikroskopie. Optik 83 (Suppl. 4), 108. J. Zach (1989). Entwurf und Berechnung eines hochauflösenden Niederspannungs-Rasterelektronenmikroskops. Dissertation, Darmstadt. J. Zach (1993). Magnetic or electrostatic systems for the correction of spherical and chromatic aberration? Optik 94 (Suppl. 5), 102.

M. Watanabe, D.W. Ackland, C.J. Kiely, D.B. Williams, M. Kanno, R. Hynes and H. Sawada (2006). Optimization of a sphericalaberration-corrected scanning transmission electron microscope for atomic-resolution annular dark-field imaging and electron energy-loss spectrometry. IMC-16, Sapporo. 2, 606.

J. Zach (1995). Recent progress in the correction of spherical and chromatic aberrations in a low voltage SEM. Optik 100 (Suppl. 6), 3.

M. Watanabe, D.W. Ackland, C.J. Kiely, D.B. Williams, M. Kanno, R. Hynes and H. Sawada (2006). The aberration corrected JEOL JEM–2200FS FEG–STEM/TEM fitted with an Ω electron energy-filter: performance characterization and selected applications. JEOL News 41 (1), 2–7.

J. Zach (2006). Aberration correction in SEM and FIB – the state of the art. IMC-16, Sapporo. 2, 662.

J.G. Wen, D.J. Miller, N.J. Zaluzec, J.M. Hiller and R.E. Cook (2013). Contribution of Cc-correction to high-resolution TEM at all electron energy loss regimes. Microsc. & Microanal. 19 (Suppl. 2), 594–595. J.G. Wen, D.J. Miller, R.E. Cook and N.J. Zaluzec (2014). Amplitude contrast imaging: high resolution electron microscopy using a spherical and chromatic aberration corrected TEM. Microsc. & Microanal. 20 (Suppl. 3), 942–943. R. Wepf, M. Haider, M. Kroug, D. Mills and J. Zach (1996). Application of a corrected LVSEM in biology: art- & facts in imaging of uncoated biological materials. EUREM-11, Dublin. 1, I95–I96. J.-y. Ximen (1983). The aberration theory of a combined magnetic round lens and sextupoles system. Optik 65, 295–309. J.-y. Ximen (1984). The aberration theory of a combined magnetic round lens and sextupoles system. Acta Phys. Sinica 33, 629–638. J.-y. Ximen and A. V. Crewe (1985). Correction of spherical and

J. Zach (2000). Aspects of aberration correction in LVSEM. EUREM-12, Brno. 3, I.169–I172

J. Zach (2009). Chromatic correction: a revolution in electron microscopy? Phil. Trans. Roy. Soc. London A 367, 3699–3707. J. Zach and M. Haider (1991). Status of the EMBL high-resolution low-voltage SEM project. Optik 88 (Suppl. 4), 95. J. Zach and M. Haider (1992). A high-resolution low voltage scanning electron microscope. EUREM-10, Granada. 1, 49–53. J. Zach and M. Haider (1994). Correction of spherical and chromatic aberrations in a LVSEM. ICEM-13, Paris. 1, 199–200. J. Zach and M. Haider (1995). Aberration correction in a low voltage SEM by a multipole corrector. Nucl. Instrum. Methods Phys. Res. A 363, 316–325. CPO-4, Tsukuba, 1994. J. Zach and M. Haider (1995). Correction of spherical and chromatic aberration in a low voltage SEM. Optik 93, 112–118. J. Zach and H. Rose (1987). Entwurf einer korrigierten Elektronensonde für die Niederspannungs-Rasterelektronenmikroskopie. Optik 77 (Suppl. 3), 63. J. Zach, S. Uhlemann and P. Hartel (2012). Chromatic correction: chances and fundamental limitations of an evolving corrector

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

technology. EMC-15, Manchester. 2, 449–450. N. J. Zaluzec (2015). The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy. Ultramicroscopy 151, 240–249. F. Zemlin (1979). A practical procedure for alignment of a high resolution electron microscope. Ultramicroscopy 4, 241–245. F. Zemlin, K. Weiss, P. Schiske, W. Kunath and K.-H. Herrmann (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 49–60. J. Zemlin and F. Zemlin (2002). Diffractogram tableaux by mouse click. Ultramicroscopy 93, 77–82. C.L. Zheng and J. Etheridge (2012). Measurement of chromatic aberration in scanning transmission electron microscope by

61

coherent convergent beam electron diffraction. APMC-10, Perth. 826 (2pp.). W. Zhou, M.P. Oxley, A.R. Lupini, O.L. Krivanek, S.J. Pennycook and J.-C. Idrobo (2012). Single atom microscopy. Microsc. & Microanal. 18, 1342–1354. Y. Zhu and J. Wall (2008). Aberration-corrected electron microscopes at Brookhaven National Laboratory. Adv. Imaging & Electron Phys. 153, 481–523. Y. Zhu, H. Inada, K. Nakamura and J. Wall (2009). Imaging single atoms using secondary electrons with an aberration-corrected electron microscope. Nature Materials 8, 808–812. Y. Zhu, H. Inada, L. Wu, J. Wall and D. Su (2009). The aberratoncorrected Hitachi HD-2700C at Brookhaven National Laboratory. Hitachi E.M. News 3, 2–13.

References [1] (a) T. Akashi, Y. Takahashi, T. Tanigaki, T. Shimakura, T. Kawasaki, T. Furutsu, H. Shinada, H. Müller, M. Haider, N. Osakabe, A. Tonomura, Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution, Appl. Phys. Lett. 106 (2015) 074101 (4 pp.); (b) J. Barthel, A. Thust, On the optical stability of high-resolution transmission electron microscopes, Ultramicroscopy 134 (2013) 6–17. [2] J. Barthel, A. Thust, Lifetime of the aberration-corrected optical state in HRTEM, IMC-18 Prague, IT-2-P 1633 2014. [3] P.E. Batson, First results using the Nion third-order scanning transmission electron microscope, Adv. Imaging Electron. Phys. 153 (2008) 161–194. [4] P.E. Batson, N. Dellby, O.L. Krivanek, Sub-ångström resolution using aberration-corrected electron optics, Nature 418 (2002) 617–620. [5] V.D. Beck, A hexapole spherical aberration corrector, Optik 53 (1979) 241–255. [6] V.D. Beck, Chicago aberration correction work, Ultramicroscopy 123 (2012) 22–27. [7] D.C. Bell, W.K. Thomas, K. Murtagh, W.R. Glover, Albert Crewe's dream realized: sequencing DNA with STEM, Microsc. Microanal. 17 (Suppl. 2) (2011) S1276–S1277. [8] D.C. Bell, W.K. Thomas, K.M. Murtagh, C.A. Dionne, A.C. Graham, J. E. Anderson, W.R. Glover, DNA base identification by electron microscopy, Microsc. Microanal. 18 (2012) 1049–1053. [9] D.C. Bell, C.J. Russo, D.V. Kolmykov, 40 keV atomic resolution TEM, Ultramicroscopy 114 (2012) 31–37. [10] G. Benner, A. Orchowski, M. Haider, P. Hartel, State of the first aberrationcorrected, monochromized 200 kV FEG–TEM, Microsc. Microanal. 9 (Suppl. 2) (2003) S938–S939. [11] G. Benner, E. Essers, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen, M. Haider, P. Hartel, Sub-Ångstrom and sub-eV resolution with the analytical SATEM, Microsc. Microanal. 10 (Suppl. 2) (2004) S108–S109. [12] G. Benner, M. Matijevic, A. Orchowski, P. Schlossmacher, A. Thesen, M. Haider, P. Hartel, Sub-Ångstrom and sub-eV resolution with the analytical SATEM, Microsc. Microanal. 10 (Suppl. 3) (2004) S6–S7. [13] E.D. Boyes, P.L. Gai, Aberration corrected environmental STEM (AC ESTEM) for dynamic in-situ gas reaction studies of nanoparticle catalysts, J. Phys. Conf. Ser. 522 (2014) 012004 (6 pp.). [14] E.D. Boyes, M.R. Ward, L. Lari, P.L. Gai, ESTEM imaging of single atoms under controlled temperature and gas environment conditions in catalyst reaction studies, Ann. Physik 525 (2013) 423–429. [15] L.M. Brown, A synchrotron in a microscope, in: EMAG 1997, Cambridge,1997, pp. 17–30. [16] H.A. Calderon, C. Kisielowski, P. Specht, B. Barton, F. Godinez-Salomon, O. Solorza-Feria, Maintaining the genuine structure of 2D materials and catalytic nanoparticles at atomic resolution, Micron 64 (2014) 164–175. [17] J.N. Chapman, P.E. Batson, E.M. Waddell, R.P. Ferrier, The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy, Ultramicroscopy 3 (1978) 203–214. [18] E. Chen, C. Mu, New development in correction of spherical aberration of electromagnetic round lens, in: K. Kuo, J. Yao (Eds.), International Symposium on Electron Microscopy, World Scientific, Singapore, 1991, pp. 28–35. [19] U. Dahmen, R. Erni, V. Radmilovic, C. Kisielowski, M.D. Rossell, P. Denes, Background, status and future of the Transmission Electron Aberration-corrected Microscope project, Philos. Trans. R. Soc. Lond. A 367 (2009) 3795–3808. [20] N.H. Dekkers, Object wave reconstruction in STEM, Optik 53 (1979) 131–142. [21] N.H. Dekkers, H. de Lang, Differential phase contrast in a STEM, Optik 41 (1974) 452–456. [22] N.H. Dekkers, H. de Lang, A detection method for producing phase and amplitude images simultaneously in a scanning transmission electron microscope, Philips Tech. Rev. 37 (1977) 1–9.

[23] N.H. Dekkers, H. de Lang, A calculation of bright field single-atom images in STEM with half plane detectors, Optik 51 (1978) 83–92. [24] N.H. Dekkers, H. de Lang, K.D. van der Mast, Field emission STEM on a Philips EM 400 with a new detection system for phase and amplitude contrast, J. Microsc. Spectrosc. Electron. 1 (1976) 511–512. [25] N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini, Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50 (2001) 177–185. [26] N. Dellby, O.L. Krivanek, M.F. Murfitt, Optimized quadrupole-octupole C3/C5 aberration corrector for STEM, Phys. Procedia 1 (2008) 179–183. [27] N. Dellby, N.J. Bacon, P. Hrncirik, M.F. Murfitt, G.S. Skone, Z.S. Szilagyi, O. L. Krivanek, Dedicated STEM for 200 to 40 keV operation, Eur. Phys. J.: Appl. Phys. 54 (2011) 33505 (11pp.). [28] N. Dellby, G.J. Corbin, Z. Dellby, T.C. Lovejoy, Z.S. Szilagyi, M.F. Chisholm, O. L. Krivanek, Tuning high order geometric aberrations in quadrupole–octupole correctors, Microsc. Microanal 20 (Suppl. 3) (2014) 928–929. [29] P. Denes The TEAM project, MC-2009, vol. 1, Graz, 2009, pp. 3–8. [30] R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Atomic-resolution imaging with a sub-50-pm electron probe, Phys. Rev. Lett. 102 (2009) 096101 (4 pp.). [31] J. Etheridge, S. Lazar, C. Dwyer, G.A. Botton, Imaging high-energy electrons propagating in a crystal, Phys. Rev. Lett. 106 (2011) 160802 (4 pp.). [32] S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, Y. Ikuhara, Dynamics of annular bright field scanning transmission electron microscopy imaging, AMTC Lett 2 (2010) 102–103. [33] S.D. Findlay, N.R. Lugg, N. Shibata, L.J. Allen, Y. Ikuhara, Prospects for lithium imaging using annular bright field scanning transmission electron microscopy: a theoretical study, Ultramicroscopy 111 (2011) 1144–1154. [34] S.D. Findlay, N. Shibata, Y. Ikuhara, Theory for annular bright field STEM imaging, in: N. Tanaka (Ed.), Scanning Transmission Electron Microscopy of Nanomaterials, Imperial College Press, London, 2014, pp. 217–230. [35] B. Freitag, S. Kujawa, P.M. Mul, P.C. Tiemeijer, First experimental proof of spatial resolution improvement in a monochromized and Cs-corrected TEM, Microsc. Microanal. 10 (Suppl. 3) (2004) 4–5. [36] B. Freitag, S. Kujawa, P.M. Mul, J. Ringnalda, P.C. Tiemeijer, Breaking the spherical and chromatic aberration barrier in transmission electron microscopy, Ultramicroscopy 102 (2005) 209–214. [37] P.L. Gai, E.D. Boyes, Atomic-resolution environmental transmission electron microscopy, in: G. Van Tendeloo, D. Van Dyck, S.J. Pennycook (Eds.), Handbook of Nanoscopy, Wiley-VCH, Weinheim, 2012, pp. 375–403. [38] P.L. Gai, E.D. Boyes, Aberration-corrected environmental electron microscopy, Adv. Imaging Electron. Phys. (2015), in preparation. [39] P.L. Gai, K. Yoshida, C. Shute, X. Jia, M. Walsh, M. Ward, M.S. Dresselhaus, J. R. Weertman, E.D. Boyes, Probing structures of nanomaterials using advanced electron microscopy methods, including aberration-corrected electron microscopy at the angstrom scale, Microsc. Res. Tech. 74 (2011) 664–670. [40] G. Guzzinati, L. Clark, A. Béché, R. Juchtmans, R. van Boxem, M. Mazilu, J. Verbeeck, Prospects for versatile phase manipulation in the TEM: beyond aberration correction, Ultramicroscopy 151 (2015) 85–93. [41] M. Haider, Entwurf, Bau und Erprobung eines korrigierten Elektronen-Energieverlust-Spectrometers mit großer Dispersion und großem Akzeptanz-winkel. Dissertation, Darmstadt, 1987. [42] M. Haider Correctors for electron microscopes: tools or toys for scientists?, in: EUREM-11 Dublin, vol. 1, 1996, pp. I350–I351. [43] M. Haider, W. Bernhardt, H. Rose, Design and test of an electric and magnetic dodecapole lens, Optik 63 (1982) 9–23. [44] M. Haider, G. Braunshausen, E. Schwan, Correction of the spherical aberration of a 200 kV TEM by means of a hexapole corrector, Optik 99 (1995) 167–179. [45] M. Haider, S. Uhlemann, E. Schwan, B. Kabius, Development of a spherical

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

62

[46] [47]

[48]

[49]

[50]

[51]

[52]

[53]

[54] [55] [56] [57] [58] [59]

[60] [61] [62] [63]

[64] [65] [66] [67] [68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76] [77]

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎ corrected 200 kV TEM: current state of the project and results obtained so far, Optik 106 (Suppl. 7) (1997) 7. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Electron microscopy image enhanced, Nature 392 (1998) 768–769. M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban, Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope, J. Electron Microsc. 47 (1998) 395–405. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban, A sphericalaberration-corrected 200 kV transmission electron microscope, Ultramicroscopy 75 (1998) 53–60. M. Haider, H. Müller, S. Uhlemann, Present and future hexapole correctors for high resolution electron microscopy, Adv. Imaging Electron Phys. 153 (2008) 43–120. M. Haider, P. Hartel, H. Müller, S. Uhlemann, J. Zach, Current and future aberration correctors for the improvement of resolution in electron microscopy, Philos. Trans. R. Soc. Lond. A 367 (2009) 3665–3682. M. Haider, P. Hartel, H. Müller, S. Uhlemann, J. Zach, Information transfer in a TEM corrected for spherical and chromatic aberration, Microsc. Microanal. 16 (2010) 393–408. T.W. Hansen, J.B. Wagner, Environmental transmission electron microscopy in an aberration-corrected environment, Microsc. Microanal. 18 (2012) 684–690. T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski, Aberration corrected and monochromated environmental transmission electron microscopy, Mater. Sci. Technol. 26 (2010) 1338–1344. D.F. Hardy, Combined magnetic and electrostatic quadrupole lenses Thesis, Cambridge, 1967. P.W. Hawkes, The geometrical aberrations of general optical systems, Philos. Trans. R. Soc. Lond A 257 (1965) 479–552. P.W. Hawkes, Half-plane apertures in TEM, split detectors in STEM and ptychography, J. Opt. 9 (1978) 235–241. P.W. Hawkes, Improvements in STEM imaging by special probe and detector shaping techniques, Scanning Electron Microsc. (1980) 93–98. P.W. Hawkes, The STEM forms templates, Optik 98 (1995) 81–84. P.W. Hawkes, Electron optics and electron microscopy: conference proceedings and abstracts as source material, Adv. Imaging Electron Phys. 127 (2003) 207–379. P.W. Hawkes, Aberration correction, in: P.W. Hawkes, J.C.H. Spence (Eds.), Science of Microscopy, Springer, New York, 2007, pp. 696–747. P.W. Hawkes, Aberrations, in: J. Orloff (Ed.), Handbook of Charged Particle Optics, CRC Press, Baton Rouge, 2008, pp. 209–339. P.W. Hawkes, Aberration correction past and present, Philos. Trans. R. Soc. Lond. A 367 (2009) 3637–3664. P.W. Hawkes, Electron optics and electron microscopy conference proceedings and abstracts as a source material, Adv. Imaging Electron Phys. 190 (2015) 143–175. P.W. Hawkes, E. Kasper, Principles of Electron Optics, Academic Press, London, 1989, 1994. H. Hely, Technologische Voraussetzungen für die Verbesserung der Korrektur von Elektronenlinsen, Optik 60 (1982) 307–326. H. Hely, Messungen an einem verbesserten korrigierten Elektronenmikroskop, Optik 60 (1982) 353–370. S. Horiuchi, T. Matsui, Theory and practice of 1 Å ultra-high resolution HVEM, J. Electron. Microsc. 40 (1991) 203. F. Hosokawa, H. Sawada, T. Sannomiya, T. Kaneyama, Y. Kondo, M. Hori, S. Yuasa, M. Kawazoe, T. Nakamichi, Y. Tanishiro, N. Yamamoto, K. Takayanagi, Design and development of Cs corrector for a 300 kV TEM and STEM, IMC16, Sapporo, vol. 2, 2006, p. 582. F. Hosokawa, H. Sawada, Y. Kondo, K. Takayanagi, K. Suenaga, Development of Cs and Cc correctors for transmission electron microscopy, Microscopy 62 (2013) 23–41. F. Houdellier, M. Hÿtch, F. Hüe, E. Snoeck, Aberration correction with the SACTEM–Toulouse: from imaging to diffraction, Adv. Imaging Electron. Phys. 153 (2008) 225–259. J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne, R.C. Doole, C.J. D. Hetherington, A.I. Kirkland, H. Sawada, A versatile double aberrationcorrected, energy filtered HREM/STEM for materials science, Ultramicroscopy 103 (2005) 7–15. H. Inada, Y. Zhu, Secondary electron microscopy in STEM, in: N. Tanaka (Ed.), Scanning Transmission Electron Microscopy of Nanomaterials, Imperial College Press, London, 2014, pp. 307–344. H. Inada, Y. Zhu, J. Wall, V. Volkov, K. Nakamura, M. Konno, K. Kaji, K. Jarausch, The newly installed aberration corrected dedicated STEM (Hitachi HD 2700C) at Brookhaven National Laboratory, in EMC-14, Aachen, vol. 1, 2008, pp. 31–32. H. Inada, H. Kakibayashi, S. Isakozawa, T. Hashimoto, T. Yaguchi, K. Nakamura, Hitachi's development of cold-field emission scanning transmission electron microscop, Adv. Imaging Electron Phys. 159 (2009) 123–186. H. Inada, D. Su, R.F. Egerton, M. Konno, L. Wu, J. Ciston, J. Wall, Y. Zhu, Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms, Ultramicroscopy 111 (2011) 865–876. S. Isoda, S. Moriguchi, H. Kurata, T. Kobayashi, N. Uyeda, A new 1000 kV HREM for organic crystal study, Ultramicroscopy 39 (1991) 247–253. T. Ishida, T. Kawasaki, T. Kodama, K. Ogai, T. Ikuta, T. Tanji, Phase

[78]

[79]

[80] [81]

[82] [83] [84]

[85]

[86] [87] [88]

[89]

[90]

[91]

[92] [93]

[94]

[95]

[96] [97] [98] [99]

[100] [101]

[102]

[103]

[104]

[105]

reconstruction in annular bright field STEM, IMC-18, Prague. IT-11-P 1790, 2014. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy, Nat. Mater. 10 (2011) 278–281. R. Ishikawa, A.R. Lupini, Y. Hinuma, S.J. Pennycook, Large-angle illumination STEM: toward three-dimensional atom-by-atom imaging, Ultramicroscopy (2015). R. Janzen Concept for electrostatic correctors for reduction of aberrations within miniaturized columns, in: MC-2011, Kiel, vol. 1, IM1 P104 2011. R. Janzen, S. Burkhardt, P. Fehlner, T. Späth, M. Haider, The SPANOCH method: a key to establish aberration correction in miniaturized (multi) column systems? in: MC-20, Regensburg, vol. 1, 2013, pp. 107–108. A.V. Jones, M. Haider, Modular detector system for scanning transmission electron microscope, Scanning Microsc. 3 (1) (1989) 33–42. A.V. Jones, B.M. Unitt, An integrated approach to scanning microscope data acquisition, J. Microsc. 127 (1982) 61–68. A.V. Jones, J.-C. Homo, B.M. Unitt, N. Webster, The CryoSTEM: a STEM with superconducting objective lens, J. Microsc. Spectrosc. Electron. 10 (1985) 361–370. F. Kahl, S. Uhlemann, Z. Zach, H. Müller, Design of a C3/C5 corrector for a subangstrom low-voltage electron-microscope (SALVE), in: MC-2011, Kiel, vol. 1, IM1 115, 2011. U.A. Kaiser Low-voltage TEM – current status and future prospects, in: EMC15, Manchester, vol. 2, 2012, pp. 539–540. U. Kaiser, The SALVE project, Adv. Imaging Electron Phys. (2015), in preparation. U. Kaiser, J. Biskupek, S. Kurasch, U. Golla-Schindler, J.C. Meyer, M. Kinyanjui, L. Lechner, Z. Lee, J. Leschner, G. Algara-Siller, T. Zoberbier, A. Chuvilin, M. Stöger-Pollach, A.N. Khlobystov, E. Bichoutskaia, V. Skakalova, J.H. Smet, K. Kotakoski, A. Krasheninnikov, P. Hartel, H. Müller, M. Haider, A. Orchowski, S. Eyhusen, G. Benner, H. Rose, Transmission electron microscopy at 20 kV and 80 kV for imaging and spectroscopy – current status and future prospects, in: MC-2011, Kiel, vol. 1, IM5 514, 2011. U. Kaiser, J. Biskupek, J.C. Meyer, J. Leschner, L. Lechner, H. Rose, M. StögerPollach, A.N. Khlobystov, P. Hartel, H. Müller, M. Haider, S. Eyhusen, G. Benner, Transmission electron microscopy at 20 kV for imaging and spectroscopy, Ultramicroscopy 111 (2011) 1239–1246. U. Kaiser, J. Biskupec, U. Golla-Schindler, S. Kurasch, Z. Lee, P. Wachsmuth, O. Lehtinen, M. Haider, G. Benner, H. Rose, High-resolution low-voltage electron microscopy and spectroscopy – current status of the SALVE project, in: MC2013, Regensburg, vol. 2, 2013, p. 547. K. Kasuya, T. Kawasaki, N. Moriya, M. Arai, T. Furutsu ,Magnetic-field superimposed cold field emission gun for 1.2-MV transmission electron microscope, in: IMC-18, Prague, IT-1-O-1644, 2014. V.M. Kel'man, S. Ya Yavor, Achromatic quadrupole electron lenses, Zh. Tekh. Fiz. 31 (1961) 1439–1442 , Sov. Phys. Tech. Phys. 6 (1961) 1052–1054. C. Kisielowski, L.-w Wang, P. Specht, H.A. Calderon, B. Barton, B. Jiang, J. H. Kang, R. Cieslinski, Real-time sub-Ångstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene, Phys. Rev. B 88 (2013) 024305 (12 pp.). C. Kisielowski, P. Specht, S.M. Gygax, B. Barton, H.A. Calderon, J.H. Kang, R. Cieslinski, Instrumental requirements for the detection of electron beaminduced excitations at the single atom level in high-resolution transmission electron microscopy, Micron 64 (2014) 186–193. C.T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, M. Matijevic, SESAM: exploring the frontiers of electron microscopy, Microsc. Microanal. 12 (2006) 506–514. O.L. Krivanek, From the Prague Spring to a Spring in electron microscopy, in: IMC-18, Prague, V, Ellis Cosslett Medal speech, 2014. O.L. Krivanek, N. Dellby, L.M. Brown, Spherical aberration corrector for a dedicated STEM, in: EUREM-11, Dublin, vol. 1, 1996, pp. I352–I353. O. Krivanek, N. Dellby, A.J. Spence, R.A. Camps, L.M. Brown Aberration correction in the STEM, in: EMAG 1997, Cambridge, 1997, pp. 35–39. O. Krivanek, N. Dellby, A.J. Spence, R.A. Camps, L.M. Brown, On-line aberration measurement and correction in STEM, Microsc. Microanal. 3 (Suppl. 2) (1997) S1171–S1172. O.L. Krivanek, N. Dellby, A.R. Lupini, Towards sub-Å electron beams, Ultramicroscopy 78 (1999) 1–11. O. Krivanek, N. Dellby, R.J. Keyse, M. Murfitt, C. Own, Z. Szilagyi, Advances in aberration-corrected scanning transmission electron microscopy and electron spectroscopy, Adv. Imaging Electron Phys. 153 (2008) 121–160. O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C. S. Own, Z.S. Szilagyi, J.W. Woodruff, An electron microscope for the aberration-corrected era, Ultramicroscopy 108 (2008) 179–195. O.L. Krivanek, N. Dellby, M. Murfitt, Aberration correction in electron microscopy, in: J. Orloff (Ed.), Handbook of Charged Particle Optics, 2nd edn, CRC Press, Baton Rouge, 2008, pp. 601–640. O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M. F. Murfitt, C.S. Own, Z.S. Szilagyi, High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy, Philos. Trans. R. Soc. Lond. A 367 (2009) 3683–3697. O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga, V. Nicolosi, Gentle STEM: ADF imaging and EELS at low primary energies, Ultramicroscopy 110 (2010) 935–945.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎ [106] O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook, Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 464 (2010) 571–574. [107] O.L. Krivanek, T.C. Lovejoy, N. Dellby, R.W. Carpenter, Monochromated STEM with a 30 meV-wide, atom-sized electron probe, Microscopy 62 (2013) 3–21. [108] O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, E. Soignard, J.-t Zhu, P.E. Batson, M.J. Lagos, R.F. Egerton, P.A. Crozier, Vibrational spectroscopy in the electron microscope, Nature 514 (2014) 209–212. [109] S. Lazar, J. Etheridge, C. Dwyer, B. Freitag, G. Botton, Atomic resolution imaging using the real-space distribution of electrons scattered by crystalline material, Acta Cryst. A 67 (2011) 487–490. [110] S. Lazar, C. Dwyer, C. Zheng, J. Etheridge, Atomic resolution imaging in scanning transmission electron microscopy using detectors in real space, in: APMC-10, Perth, 2012, p. 942 (2pp.). [111] S. Lee, Y. Oshima, E. Hosono, H. Zhou, K. Takayanagi, Reversible contrast in focus series of annular bright field images of a crystalline LiMn2O4 nanowire, Ultramicroscopy 125 (2013) 43–48. [112] B. Lencová, J. Zlámal, A new program for the design of electron microscopes, Phys. Procedia 1 (2008) 315–324. [113] Z.-x Liu, Improved fifth-order geometric aberration coefficients of electron lenses, J. Phys. D: Appl. Phys 37 (2004) 653–659. [114] H. Liu, J. Rouse, L. Wang, E. Munro, Software for designing multipole aberration correctors, Phys. Procedia 1 (2008) 339–353 (CPO-7, Cambridge, 2006). [115] T.C. Lovejoy, Q.M. Ramasse, M. Falke, A. Kaeppel, R. Terborg, R. Zan, N. Dellby, O.L. Krivanek, Single atom identification by energy dispersive x-ray spectroscopy, Appl. Phys. Lett. 100 (2012) 154101 (4 pp.). [116] S. Majert, H. Kohl, High-resolution STEM imaging with a quadrant detector – conditions for differential phase contrast microscopy in the weak phase object approximation, Ultramicroscopy 148 (2015) 81–86. [117] Y. Matsui, S. Horiguchi, Y. Bando, Y. Kitami, M. Yokoyama, S. Suehara, Ultrahigh-resolution HVEM (H–1500) newly constructed at NIRIM, Ultramicroscopy 39 (1991) 8–20. [118] Y. Matsui, S. Horiuchi, Y. Bando, Y. Kitami, M. Yokoyama, S. Suehara, I. Matsui, T. Katsuta, Development of ultra-high-resolution 1300 kV electron microscope (H-1500) and its characteristic features, J. Electron Microsc. 40 (1991) 274. [119] A. Mayoral, R. Esparza, F. Deepak, G. Casillas, S. Mejía–Rosales, A. Ponce, M. José–Yacamán, Study of nanoparticles at UTSA: one year of using the first JEM–ARM200F installed in USA, JEOL News 46 (1) (2011) 1–5 (UTSA¼University of Texas at San Antonio). [120] D. McGrouther, M.-J. Benitez, S. McFadzean, S. McVitie, Development of aberration corrected differential phase contrast (DPC) STEM, JEOL News 49 (1) (2014) 2–10. [121] S.A.M. Mentink, T. Steffen, P.C. Tiemeijer, M.P.C.M. Krijn, Simplified aberration corrector for low-voltage SEM, in: EMAG 1999, Sheffield (1999) pp. 83–86. [122] S.A.M. Mentink, T. Steffen, P.C. Tiemeijer, Fringe fields of the Wien-filter aberration corrector for low-voltage SEM, in: EMAG 2001, Dundee, 2001, pp. 147–150. [123] R. Meyer, A.I. Kirkland, W.O. Saxton, A new method for the determination of the wave aberration function for high resolution TEM. I. Measurement of the symmetric aberrations, Ultramicroscopy 92 (2002) 89–109. [124] R. Meyer, A.I. Kirkland, W.O. Saxton, A new method for the determination of the wave aberration function for high resolution TEM. II. Measurement of the antisymmetric aberrations, Ultramicroscopy 99 (2004) 115–123. [125] S. Moriguchi, H. Kurata, T. Kobayashi, Resolution power of 1 MV electron microscope in Kyoto, J. Electron Microsc. 40 (1991) 277. [126] R.W. Moses, Aberration correction for high-voltage electron microscopy, Proc. R. Soc. Lond. A 339 (1974) 483–512. [127] D.A. Muller, Structure and bonding at the atomic scale by scanning transmission electron microscopy, Nat. Mater. 8 (2009) 263–270. [128] D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microsopy, Science 319 (2008) 1073–1076. [129] H. Müller, S. Uhlemann, P. Hartel, M. Haider, Advancing the hexapole Cs-corrector for the scanning transmission electron microscope, Microsc. Microanal. 12 (2006) 442–455. [130] H. Müller, I. Maßmann, S. Uhlemann, P. Hartel, J. Zach, M. Haider, Aplanatic imaging systems for the transmission electron microscope, Nucl. Instrum. Methods Phys. Res. A 645 (2011) 20–27 (CPO-8, Singapore 2010). [131] H. Müller, S. Uhlemann, P. Hartel, J. Zach, M. Haider, Overview of commercially available CEOS hexapole-type aberration correctors, Microsc. Microanal 20 (Suppl. 3) (2014) 934–945. [132] E. Munro, H. Liu, J. Rouse, L. Wang, Simulation of aberration correctors for electron microscopy, using multipole lenses, Wien filters and electron mirrors, in: IMC-17, Rio de Janeiro, vol. I1 2010, p. 7. [133] K. Nakamura, H. Inada, H. Tanaka, M. Konno, T. Ogawa, Hitachi's spherical aberration corrected STEM: HD2700, Hitachi Rev. 56 (3) (2007) 34–38. [134] P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides, S.J. Pennycook, Direct sub-Angstrom imaging of a crystal lattice, Science 305 (2004) 1741–1742. [135] S. Okayama, Correction of aperture aberration of a probe-forming quadrupole triplet, J. Electron Microsc. 40 (1991) 256. [136] S. Okayama, Correction of aperture aberration by means of 4-stage quadrupole correction-lens, J. Electron Microsc. 41 (1992) 287.

63

[137] E. Okunishi, H. Sawada, Y. Kondo, Experimental study of annular bright field (ABF) imaging using aberration-corrected scanning transmission electron microscopy (STEM), Micron 43 (2012) 538–544. [138] G. Patriarche, P. Walker, E. van Elslande, J. Ayache, J. Castaing, Aberration corrected STEM to study an ancient hair dyeing formula, in: IMC-18, Prague, ID-7- P-1468, 2014. [139] S.J. Pennycook, P.D. Nellist (Eds.), Scanning Transmission Electron Microscopy, Springer, New York, 2011. [140] S.J. Pennycook, M.F. Chisholm, A.R. Lupini, M. Varela, K. van Benthem, A. Y. Borisevich, M.P. Oxley, W. Luo, S.T. Pantelides, Materials applications of aberration-corrected scanning transmission electron microscopy, Adv. Imaging Electron Phys. 153 (2008) 327–384. [141] T.J. Pennycook, A.R. Lupini, H. Yang, M.F. Murfitt, I. Jones, P.D. Nellist, Efficient phase contrast imaging in STEM using a pixelated detector. Part I. Experimental demonstration at atomic resolution, Ultramicroscopy 151 (2015) 160–167. [142] F. Phillipp, R. Höschen, M. Osaki, G. Möbus, M. Rühle, New high-voltage atomic resolution microscope approaching 1 Å point resolution installed in Stuttgart, Ultramicroscopy 56 (1994) 1–10. [143] Q. Ramasse, R. Brydson, The SuperSTEM laboratory, Adv. Imaging. Electron Phys. (2015), in preparation. [144] Q.M. Ramasse, C.R. Seabourne, D.-M. Keepaptsoglou, R. Zan, U. Bangert, A. J. Scott, Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy, Nano Lett. 13 (2013) 4989–4995. [145] C. Ricolleau, J. Nelayah, T. Oikawa, Y. Konno, N. Braidy, G. Wang, F. Hüe, D. Alloyeau, High resolution imaging and spectroscopy using Cs-corrected TEM with cold FEG JEM–ARM200F, JEOL News 47 (1) (2012) 2–8. [146] C. Ricolleau, J. Nelayah, T. Oikawa, Y. Kohno, N. Braidy, G. Wang, F. Hüe, L. Florea, V.P. Bohnes, D. Alloyeau, Performance of an 80–200 kV microscope employing a cold-FEG and an aberration-corrected objective lens, Microscopy 62 (2013) 283–293. [147] J.M. Rodenburg, Ptychography and related diffractive imaging methods, Adv. Imaging Electron Phys. 150 (2008) 87–184. [148] H. Rose, Phase contrast in scanning transmission electron microscopy, Optik 39 (1974) 416–436. [149] H. Rose, Nonstandard imaging methods in electron microscopy, Ultramicroscopy 2 (1977) 251–267. [150] H. Rose, Correction of aperture aberrations in magnetic systems with threefold symmetry, Nucl. Instrum. Methods 187 (1981) 187–199 (CPO-1, Giessen, 1980). [151] H. Rose, Outline of a spherically corrected semi-aplanatic medium-voltage transmission electron microscope, Optik 85 (1990) 19–24. [152] H. Rose Correction of aberrations, a promising method for improving the performance of electron microscopes, in: EUREM-10, Granada, vol. 1, 1992, pp. 47–48. [153] H. Rose, Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged particle lenses, Nucl. Instrum. Methods Phys. Res. A 519 (2004) 12–27 (CPO-6, College Park 2002). [154] H. Rose, Prospects for aberration-free electron microscopy, Ultramicroscopy 103 (2005) 1–6. [155] H. Rose, History of direct aberration correction, Adv. Imaging Electron Phys. 153 (2008) 1–37. [156] H. Rose, Optics of high performance electron microscopes, Sci. Technol. Adv. Mater. 9 (2008) 014107 (30 pp.). [157] H. Rose, Historical aspects of aberration correction, J. Electron Microsc. 58 (2009) 77–85. [158] H.H. Rose, Future trends in aberration-corrected electron microscopy, Philos. Trans. R. Soc. Lond. A 367 (2009) 3809–3823. [159] H. Rose, Geometrical Charged-particle Optics, Springer, Berlin, 2009: 2nd edn., 2012. [160] T. Sasaki, H. Sawada, F. Hosokawa, Y. Sato, K. Suenaga, Aberration-corrected STEM/TEM imaging at 15 kV, Ultramicroscopy 145 (2014) 50–55. [161] T. Sato, H. Matsumoto, M. Konno, Y. Taniguchi, S. Mamishin, Hitachi's highend analytical electron microscope: HF-3300, Hitachi Rev. 57 (2008) 132–135. [162] H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hambridge, P. Hartel, M. Haider, C. Hetherington, R. Doole, A. Kirkland, J. Hutchison, J. Titchmarsh, D. Cockayne, Experimental evaluation of a spherical aberration-corrected TEM and STEM, J. Electron Microsc. 54 (2005) 119–121. [163] H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto, K. Suenaga, Correction of higher order geometrical aberration by triple 3-fold astigmatism field, J. Electron Microsc. 58 (2009) 341–347. [164] H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Takayanagi, STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300 kV cold field emission gun, J. Electron Microsc. 58 (2009) 357–361. [165] H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, K. Omoto, T. Kaneyama, T. Tomita, Y. Kondo, K. Kimoto, K. Suenaga, Correction of spherical aberration and six-fold astigmatism using three dodecapoles, Microsc. Microanal. 15 (Suppl. 2) (2009) 1458–1459. [166] H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto, K. Suenaga, Higher-order aberration corrector for an image-forming system in a transmission electron microscope, Ultramicroscopy 110 (2010) 958–961.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

64

P.W. Hawkes / Ultramicroscopy ∎ (∎∎∎∎) ∎∎∎–∎∎∎

[167] H. Sawada, F. Hosokawa, T. Sasaki, T. Kaneyama, Y. Kondo, K. Suenaga, Aberration correctors developed under the triple C project, Adv. Imaging Electron Phys. 168 (2011) 297–336. [168] H. Sawada, N. Shimura, K. Satoh, E. Okunishi, S. Morishita, T. Sasaki, Y. Jimbo, Y. Kohno, F. Hosokawa, T. Naruse, M. Hamochi, T. Sato, K. Terasaki, T. Suzuki, M. Terao, S. Waki, T. Nakamichi, A. Takano, Y. Kondo, T. Kaneyama, Super high resolution imaging with atomic resolution electron microscope of JEMARM300F, JEOL News 49 (1) (2014) 51–58. [169] W.O. Saxton, Observation of lens aberrations for very high-resolution electron microscopy. I. Theory, J. Microscopy 179 (1995) 201–213. [170] W.O. Saxton, Observation of lens aberrations for high-resolution electron microscopy. II. Simple expressions for optimal estimates, Ultramicroscopy 151 (2015) 168–177. [171] S.M. Schramm, S.J. van der Molen, R.M. Tromp, Intrinsic instability of aberration-corrected electron microscopes, Phys. Rev. Lett. 109 (2012) 163901 (5 pp.). [172] A. Seeger, Four generations of high-voltage electron microscopes, J. Electron Microsc. 48 (1999) 301–315. [173] N. Shibata, Y. Kohno, S.D. Findlay, H. Sawada, Y. Kondo, Y. Ikuhara, New area detector for atomic-resolution scanning transmission electron microscopy, J. Electron Microsc. 59 (2010) 473–479. [174] N. Shibata, S.D. Findlay, Y. Kohno, H. Sawada, Y. Kondo, Y. Ikuhara, Differential phase-contrast microscopy at atomic resolution, Nature Physics 8 (2012) 611–615. [175] N. Shibata, Advanced scanning transmission electron microscopy with symmetrical all field detector, in: IMC-18, Prague, IT-2-IN-2458, 2014. [176] T. Steffen, P.C. Tiemeijer, M.P.C.M. Krijn, S.A.M. Mentink, Correction of chromatic and spherical aberration using a Wien filter, in: EUREM-12, Brno, vol. 3, 2000, I151–I152. [177] K. Suenaga, Y. Sato, Z. Liu, H. Kataura, T. Okazaki, K. Kimoto, H. Sawada, T. Sasaki, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo, Visualizing and identifying single atoms using energy-loss spectroscopy with low accelerating voltage, Nat. Chem. 1 (2009) 415–418. [178] K. Suenaga, Y. Iizumi, T. Okazaki, Single atom spectroscopy with reduced delocalization effect using a 30 kV STEM, Eur. Phys. J.: Appl. Phys. 54 (2011) 33508 (4 pp.). [179] K. Suenaga, T. Okazaki, E. Okunishi, S. Matsumura, Detection of photons emitted from single erbium atoms in energy-dispersive x-ray spectroscopy, Nat. Photonics 6 (2012) 545–548. [180] A. Takaoka, K. Ura, H. Mori, T. Katsuta, I. Matsui, S. Hayashi, Development of a new 3 MV ultra-high voltage electron microscope at Osaka University, J. Electron Microsc. 46 (1997) 447–456. [181] S. Takeda, Y. Kuwauchi, H. Yoshida, Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector, Ultramicroscopy (2015). [182] K. Tamura, S. Okayama, R. Shimizu, Third-order spherical aberration correction using multistage self-aligned quadrupole correction-lens system, J. Electron Microsc. 59 (2010) 197–206. [183] N. Tanaka (Ed.). Scanning Transmission Electron Microscopy of Materials. Basics of Imaging and Analysis. Imperial College Press, London, 2014. [184] P.C. Tiemeijer, M. Bischoff, B. Freitag, C. Kisielowski, Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part I: creating highly coherent monochromated illumination, Ultramicroscopy 114 (2012) 72–81. [185] P.C. Tiemeijer, M. Bischoff, B. Freitag, C. Kisielowski, Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part II: application to focal series reconstruction, Ultramicroscopy 118 (2012) 35–43. [186] R.M. Tromp, S.M. Schramm, Optimization and stability of the contrast transfer function in aberration-corrected electron microscopy, Ultramicroscopy 125 (2013) 72–80. [187] S. Uhlemann, M. Haider, E. Schwan, H. Rose, Towards a resolution enhancement in the corrected TEM, in: EUREM-11, Dublin, vol. 1 1996, pp. I365–I361. [188] S. Uhlemann, M. Haider, Residual wave aberrations in the first spherical aberration corrected transmission electron microcope, Ultramicroscopy 72 (1998) 109–119.

[189] S. Uhlemann, H. Müller, P. Hartel, J. Zach, M. Haider, Thermal magnetic field noise limits resolution in transmission electron microscopy, Phys. Rev. Lett. 111 (2013) 046101 (5 pp.). [190] S. Uhlemann, H. Müller, P. Hartel, J. Zach, M. Haider, Instrumental resolution limit by magnetic thermal noise from conductive parts, Microsc. Microanal. 19 (Suppl. 2) (2013) S598–S599. [191] S. Uhlemann, H. Müller, J. Zach, C. Berger, M. Haider, Thermal magnetic field noise and electron optics – more experiments and calculations, in: IMC-18, Prague, IT-16-IN-1882, 2014. [192] S. Uhlemann, H. Müller, J. Zach, M. Haider, Thermal magnetic field noise: electron optics and decoherence, Ultramicroscopy 151 (2015) 199–210. [193] K. Urban, In quest of perfection in electron optics: a biographical sketch of Harald Rose on the occasion of his 80th birthday, Ultramicroscopy 151 (2015) 2–10. [194] K. Urban, B. Kabius, M. Haider, H. Rose, A way to higher resolution: sphericalaberration correction in a 200 kV transmission electron microscope, J. Electron Microsc. 48 (1999) 821–826. [195] K.W. Urban, C.-l Jia, L. Houben, M. Lentzen, S.-b Mi, K. Tillmann, Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy, Philos. Trans. R. Soc. Lond. A 367 (2009) 3735–3753. [196] K.W. Urban, J. Mayer, J.R. Jinschek, M.J. Neish, N.R. Lugg, L.J. Allen, Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope, Phys. Rev. Lett. 100 (2013) 185507 (5 pp.). [197] M.A. van der Stam, P. Tiemeijer, B. Freitag, M. Stekelenburg, J. Ringnalda, The design and first results of a dedicated corrector (S)TEM, Microsc. Microanal 11 (Suppl. 2) (2005) S2148–S2149. [198] D. Van Dyck, I. Lobato, F.-r Chen, C. Kisielowski, Do you believe that atoms stay in place when you observe them in HREM? Micron 64 (2014) 158–163. [199] H.S. von Harrach, Development of the 300-kV Vacuum Generator STEM (1985–1996), Adv. Imaging Electron Phys. 159 (2009) 287–323. [200] I.R.M. Wardell, P.E. Bovey, A history of Vacuum Generators' 100-kV scanning transmission electron microsco, Adv. Imaging Electron Phys. 159 (2009) 221–285. [201] H. Yang, T.J. Pennycook, P.D. Nellist, Maximising phase contrast in aberrationcorrected STEM using pixelated detectors, in: IMC-18, Prague, IT-1- P-2263, 2014. [202] H. Yang, T.J. Pennycook, P.D. Nellist, Efficient phase contrast imaging in STEM using a pixelated detector. Part II. Optimization of the imaging conditions, Ultramicroscopy 151 (2015) 232–239. [203] J. Zach, Design of a high-resolution low-voltage scanning electron microscope, Optik 83 (1989) 30–40. [204] J. Zach, Entwurf und Berechnung eines hochauflösenden NiederspannungsRasterelektronenmikroskops (Dissertation), Darmstadt (1989). [205] J. Zach, Chromatic correction: a revolution in electron microscopy, Philos. Trans. R. Soc. Lond. A 367 (2009) 3699–3707. [206] J. Zach, M. Haider, Correction of spherical and chromatic aberrations in a LVSEM, in: ICEM-13, Paris, vol. 1, 1994, pp. 199–200. [207] J. Zach, M. Haider, Correction of spherical and chromatic aberration in a low voltage SEM, Optik 93 (1995) 112–118. [208] J. Zach, M. Haider, Aberration correction in a low voltage SEM by a multipole corrector, Nucl. Instrum. Methods Phys. Res. A 363 (1995) 316–325 (CPO-4, Tsukuba 1994). [209] J. Zach, H. Rose, Entwurf einer korrigierten Elektronensonde für die Niederspannungs-Rasterelektronenmikroskopie, Optik 77 (Suppl. 3) (1987) S63. [210] F. Zemlin, K. Weiss, P. Schiske, W. Kunath, K.-H. Herrmann, Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms, Ultramicroscopy 3 (1978) 49–60. [211] Y. Zhu, J. Wall, Aberration-corrected electron microscopes at Brookhaven National Laboratory, Adv. Imaging Electron Phys. 153 (2008) 481–523. [212] Y. Zhu, H. Inada, K. Nakamura, J. Wall, Imaging single atoms using secondary electrons with an aberration-corrected electron microscope, Nat. Mater. 8 (2009) 808–812.

Please cite this article as: P.W. Hawkes, The correction of electron lens aberrations, Ultramicroscopy (2015), http://dx.doi.org/10.1016/j. ultramic.2015.03.007i

The correction of electron lens aberrations.

The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and relat...
8MB Sizes 54 Downloads 24 Views