Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 536280, 7 pages http://dx.doi.org/10.1155/2013/536280

Research Article Taylor’s Expansion for Composite Functions Le Thi Phuong Ngoc1 and Nguyen Anh Triet2 1 2

Nhatrang Educational College, 01 Nguyen Chanh Street, Nhatrang City, Vietnam Department of Mathematics, University of Architecture of HoChiMinh City, 196 Pasteur Street, District 3, HoChiMinh City, Vietnam

Correspondence should be addressed to Nguyen Anh Triet; [email protected] Received 4 August 2013; Accepted 28 August 2013 Academic Editors: A. Agouzal and J.-S. Chen Copyright Β© 2013 L. T. P. Ngoc and N. A. Triet. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We build a Taylor’s expansion for composite functions. Some applications are introduced, where the proposed technique allows the authors to obtain an asymptotic expansion of high order in many small parameters of solutions.

1. Introduction

where

Let 𝑓 ∈ 𝐢𝑁+1 ([0, 1] Γ— R+ Γ— R3 Γ— R3+ ; R) and 𝑒𝛼 ∈ π‘Š = {V ∈ 𝐿∞ (0, 𝑇; 𝐻2 (0, 1)) : V𝑑 ∈ 𝐿∞ (0, 𝑇; 𝐻1 (0, 1))}, 𝛼 ∈ Z𝑛+ , |𝛼| ≀ 𝑁. Let two functions β„Ž(π‘₯, 𝑑, πœ€) and 𝐹(π‘₯, 𝑑, πœ€), which depend on (π‘₯, 𝑑) and πœ€ = (πœ€1 , . . . , πœ€π‘› ), be defined as follows: 𝛼

β„Ž (π‘₯, 𝑑, πœ€) = βˆ‘ 𝑒𝛼 (π‘₯, 𝑑) πœ€ , |𝛼|≀𝑁

(1)

𝑔1 (πœ€) = β„Ž (π‘₯, 𝑑, πœ€) = βˆ‘ 𝑒𝛼 (π‘₯, 𝑑) πœ€π›Ό , |𝛼|≀𝑁

𝑔2 (πœ€) = β„Žπ‘₯ (π‘₯, 𝑑, πœ€) = βˆ‘ 𝑒𝛼π‘₯ (π‘₯, 𝑑) πœ€π›Ό , |𝛼|≀𝑁

𝑔3 (πœ€) = β„Žπ‘‘ (π‘₯, 𝑑, πœ€) = βˆ‘ 𝑒𝛼𝑑 (π‘₯, 𝑑) πœ€π›Ό , |𝛼|≀𝑁

σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©2 σ΅„©σ΅„© 𝛼󡄩 σ΅„© 𝑔4 (πœ€) = β€–β„Ž (𝑑, πœ€)β€– = σ΅„©σ΅„©σ΅„© βˆ‘ 𝑒𝛼 (𝑑) πœ€ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©|𝛼|≀𝑁 σ΅„© σ΅„©

where

2

𝛼

πœ€π›Ό = πœ€1 1 β‹… β‹… β‹… πœ€π‘›π›Όπ‘› ,

πœ€ = (πœ€1 , . . . , πœ€π‘› ) ∈ R𝑛 ,

= βˆ‘

𝛼 = (𝛼1 , . . . , 𝛼𝑛 ) ∈ Z𝑛+ , |𝛼| = 𝛼1 + β‹… β‹… β‹… + 𝛼𝑛 ,

(2)

|𝛼|≀2𝑁

where notation β€– β‹… β€– stands for the norm in 𝐿2 (0, 1). The function 𝐹(π‘₯, 𝑑, πœ€) has the form of a composite function as follows:

𝑔3 (πœ€) , 𝑔4 (πœ€) , 𝑔5 (πœ€) , 𝑔6 (πœ€)) ,

|𝛿|≀2𝑁 |𝛼|≀𝑁 |𝛽|≀𝑁 𝛼+𝛽=𝛿

= βˆ‘ 𝑔𝛼[4] (𝑑) πœ€π›Ό ,

σ΅„© σ΅„©2 σ΅„© σ΅„©2 𝐹 (π‘₯, 𝑑, πœ€) = 𝑓 (π‘₯, 𝑑, β„Ž, β„Žπ‘₯ , β„Žπ‘‘ , β€–β„Žβ€–2 , σ΅„©σ΅„©σ΅„©β„Žπ‘₯ σ΅„©σ΅„©σ΅„© , σ΅„©σ΅„©σ΅„©β„Žπ‘‘ σ΅„©σ΅„©σ΅„© ) ,

𝐹 (π‘₯, 𝑑, πœ€) = 𝑓 (π‘₯, 𝑑, 𝑔1 (πœ€) , 𝑔2 (πœ€) ,

βˆ‘ βˆ‘ βˆ‘ βŸ¨π‘’π›Ό (𝑑) , 𝑒𝛽 (𝑑)⟩ πœ€π›Ώ

σ΅„©σ΅„©2 σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©2 σ΅„©σ΅„©σ΅„©σ΅„© 𝛼󡄩 𝑔5 (πœ€) = σ΅„©σ΅„©β„Žπ‘₯ (𝑑, πœ€)σ΅„©σ΅„© = σ΅„©σ΅„© βˆ‘ 𝑒𝛼π‘₯ (𝑑) πœ€ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©|𝛼|≀𝑁 σ΅„© σ΅„© = βˆ‘

βˆ‘ βˆ‘ βˆ‘ βŸ¨π‘’π›Όπ‘₯ (𝑑) , 𝑒𝛽π‘₯ (𝑑)⟩ πœ€π›Ώ

|𝛿|≀2𝑁 |𝛼|≀𝑁 |𝛽|≀𝑁 𝛼+𝛽=𝛿

(3)

= βˆ‘ 𝑔𝛼[5] (𝑑) πœ€π›Ό , |𝛼|≀2𝑁

2

The Scientific World Journal σ΅„©σ΅„©2 σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©2 σ΅„©σ΅„©σ΅„©σ΅„© 𝛼󡄩 𝑔6 (πœ€) = σ΅„©σ΅„©β„Žπ‘‘ (𝑑, πœ€)σ΅„©σ΅„© = σ΅„©σ΅„© βˆ‘ 𝑒𝛼𝑑 (𝑑) πœ€ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©|𝛼|≀𝑁 σ΅„© σ΅„© = βˆ‘

2. Solving the Problem 2 We use the following notations. For a multi-index 𝛼 = (𝛼1 , . . . , 𝛼𝑛 ) ∈ Z𝑛+ and π‘₯ = (π‘₯1 , . . . , π‘₯𝑛 ) ∈ R𝑛 , we put

βˆ‘ βˆ‘ βˆ‘ βŸ¨π‘’π›Όπ‘‘ (𝑑) , 𝑒𝛽𝑑 (𝑑)⟩ πœ€π›Ώ

|𝛼| = 𝛼1 + β‹… β‹… β‹… + 𝛼𝑛 ,

|𝛿|≀2𝑁 |𝛼|≀𝑁 |𝛽|≀𝑁 𝛼+𝛽=𝛿

= βˆ‘ 𝑔𝛼[6] (𝑑) πœ€π›Ό ,

𝛼, 𝛽 ∈ Z𝑛+ ,

(4) where notation βŸ¨β‹…, β‹…βŸ© stands for the scalar product in 𝐿2 (0, 1). Under the above assumptions, in order to obtain an asymptotic expansion of high order in many small parameters of solutions in recent papers [1–4], we need to solve the following problem.

it means that σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„© 󡄩󡄩𝐹 βˆ’ βˆ‘ 𝐹 πœ€π›Ό σ΅„©σ΅„©σ΅„© ≀ πΆπ‘β€–πœ€β€–π‘+1 , σ΅„©σ΅„© 𝛼 σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©πΏβˆž (0,𝑇,𝐿2 (0,1)) |𝛼|≀𝑁 σ΅„©

(5)

(6)

where the constant 𝐢𝑁 is independent from πœ€. By Taylor’s expansion for 𝐹(π‘₯, 𝑑, πœ€), it implies that 1 𝛼 (7) 𝐷 𝐹 (π‘₯, 𝑑, 0) , |𝛼| ≀ 𝑁. 𝛼! However, for 𝐹(π‘₯, 𝑑, πœ€) which is given in (3), it is very difficult to calculate 𝐷𝛼 𝐹(π‘₯, 𝑑, 0), and so, the Problem 1 cannot proceed. Which method can be used for solving the Problem 1? To answer, let us note that the function 𝐹(π‘₯, 𝑑, πœ€) has the form of a composite function; this view suggests that we need to construct the Taylor-Maclaurin expansion of the composite function. So, first in Section 2 we solve the following problem. 𝐹𝛼 (π‘₯, 𝑑) =

Problem 2. Let Ξ© be an open subset of R𝑛 and 0 ∈ Ξ©. Let 𝑔 = (𝑔1 , . . . , 𝑔𝑝 ) ∈ 𝐢𝑁+1 (Ξ©; R𝑝 ) and 𝑓 ∈ 𝐢𝑁+1 (R𝑝 ; R). Seek the representation formula for π‘“π‘œπ‘”, such that for β€–π‘₯β€– being small enough,

= βˆ‘ 𝑑𝛼 π‘₯𝛼 + 𝑂 (β€–π‘₯‖𝑁+1 ) ,

(8)

|𝛼|≀𝑁

where 𝑑𝛼 , |𝛼| ≀ 𝑁 are calculated from the values of the given functions 𝑓; 𝑔1 , . . . , 𝑔𝑝 and of their derivatives at a suitable point. Next in Section 3, as an application of the method used, we study the Problem 1. This technique is also a great help for the authors to obtain an asymptotic expansion as they want in recent papers [1–4].

βˆ€π‘– = 1, . . . , 𝑛.

The following lemma is useful to solve the Problems 1 and Lemma 3. Let π‘š, 𝑁 ∈ N and π‘Žπ›Ό ∈ R, 𝛼 ∈ Z𝑛+ , 1 ≀ |𝛼| ≀ 𝑁. Then π‘š 𝛼

( βˆ‘ π‘Žπ›Ό π‘₯ ) = 1≀|𝛼|≀𝑁

βˆ‘

(π‘š) 𝑇𝑁 [π‘Ž]𝛼 π‘₯𝛼 ,

(10)

π‘šβ‰€|𝛼|β‰€π‘šπ‘

(π‘š) where the coefficients 𝑇𝑁 [π‘Ž]𝛼 , π‘š ≀ |𝛼| ≀ π‘šπ‘ depending on 𝑛 π‘Ž = (π‘Žπ›Ό ), 𝛼 ∈ Z+ , 1 ≀ |𝛼| ≀ 𝑁 are defined by the recurrent formulas (π‘š) 𝑇𝑁 [π‘Ž]𝛼

1 ≀ |𝛼| ≀ 𝑁, π‘š = 1, 𝑒𝛼 , { { { (π‘šβˆ’1) = { βˆ‘ π‘Žπ›Όβˆ’π›½ 𝑇𝑁 [𝑒]𝛽 , π‘š ≀ |𝛼| ≀ π‘šπ‘, π‘š β‰₯ 2, { (π‘š) { (11) π›½βˆˆπ΄ (𝑁) { 𝛼 󡄨󡄨 󡄨󡄨 𝑝 𝐴(π‘š) 𝛼 (𝑁) = {𝛽 ∈ Z+ : 𝛽 ≀ 𝛼, 1 ≀ 󡄨󡄨𝛼 βˆ’ 𝛽󡄨󡄨 ≀ 𝑁, 󡄨 󡄨 π‘š βˆ’ 1 ≀ 󡄨󡄨󡄨𝛽󡄨󡄨󡄨 ≀ (π‘š βˆ’ 1) 𝑁} .

The proof of Lemma 3 can be found in [2]. Now, using Taylor’s expansion of the function 𝑓 around the point 𝑔 = (𝑔1 , . . . , 𝑔𝑝 ) ∈ R𝑝 , we obtain that 𝑓 (𝑔1 + 𝐻1 , . . . , 𝑔𝑝 + 𝐻𝑝 ) = 𝑓 (𝑔1 , . . . , 𝑔𝑝 ) +

(π‘“π‘œπ‘”) (π‘₯) = 𝑓 (𝑔1 (π‘₯) , . . . , 𝑔𝑝 (π‘₯))

𝛼 ≀ 𝛽 ⇐⇒ 𝛼𝑖 ≀ 𝛽𝑖

(9)

2.

Problem 1. Establish the functions 𝐹𝛼 = 𝐹𝛼 (π‘₯, 𝑑), |𝛼| ≀ 𝑁 (independent of πœ€) such that for β€–πœ€β€– = βˆšπœ€12 + β‹… β‹… β‹… + πœ€π‘›2 being small enough, |𝛼|≀𝑁

𝛼

π‘₯𝛼 = π‘₯1 1 β‹… β‹… β‹… π‘₯𝑛𝛼𝑛 ,

β€–π‘₯β€– = √π‘₯12 + β‹… β‹… β‹… + π‘₯𝑛2 ,

|𝛼|≀2𝑁

𝐹 (π‘₯, 𝑑, πœ€) = βˆ‘ 𝐹𝛼 (π‘₯, 𝑑) πœ€π›Ό + 𝑂 (β€–πœ€β€–π‘+1 ) ;

𝛼! = 𝛼1 ! β‹… β‹… β‹… 𝛼𝑛 !,

1 𝛼 𝐷 𝑓 (𝑔1 , . . . , 𝑔𝑝 ) 𝐻𝛼 𝛼! 1≀|𝛼|≀𝑁 βˆ‘

+ 𝑅𝑁 [𝑓, 𝐻] , 𝐻 = (𝐻1 , . . . , 𝐻𝑝 ) ∈ R𝑝 , ‖𝐻‖ is small enough, 𝑅𝑁 [𝑓, 𝐻] = (𝑁 + 1 ) Γ—

1 𝛼 1 𝐻 ∫ (1 βˆ’ πœƒ)𝑁𝐷𝛼 𝛼! 0 |𝛼|=𝑁+1 βˆ‘

Γ— 𝑓 (𝑔 + πœƒπ») π‘‘πœƒ.

(12)

The Scientific World Journal

3

Similarly, we use Maclaurin’s expansion of 𝑔𝑖 as follows:

Applying Lemma 3, with π‘Ž = 𝜎(𝑖) = (πœŽπ›½(𝑖) ), πœŽπ›½(𝑖) = (1/𝛽!)𝐷𝛽 𝑔𝑖 (0), 1 ≀ |𝛽| ≀ 𝑁, it implies that

𝐻𝑖 = 𝑔𝑖 (π‘₯) βˆ’ 𝑔𝑖 (0) =

𝛼𝑖

1 𝛽 𝐷 𝑔𝑖 (0) π‘₯𝛽 + 𝑅𝑁 [𝑔𝑖 , π‘₯] 𝛽! 1≀|𝛽|≀𝑁 βˆ‘

π‘₯ ∈ R𝑛 ,

= 𝑃𝑖 + 𝑅𝑖 ,

β€–π‘₯β€– is small enough, 𝑃𝑖 =

𝛼 𝑃𝑖 𝑖

1 𝛽 𝐷 𝑔𝑖 (0) π‘₯𝛽 , 𝛽! 1≀|𝛽|≀𝑁

1 𝛽 =( βˆ‘ 𝐷 𝑔𝑖 (0) π‘₯𝛽 ) ≑ ( βˆ‘ πœŽπ›½(𝑖) π‘₯𝛽 ) 𝛽! 1≀|𝛽|≀𝑁 1≀|𝛽|≀𝑁 =

(13)

βˆ‘

(𝛼 )

βˆ‘ 𝛼𝑖 ≀|𝛾𝑖 |≀𝛼𝑖 𝑁

𝑇𝑁 1 [𝜎(𝑖) ]𝛾 π‘₯𝛾𝑖 . 𝑖

Hence,

𝑅𝑖 = 𝑅𝑁 [𝑔𝑖 , π‘₯]

𝛼

𝛼

𝑃𝛼 = 𝑃1 1 β‹… β‹… β‹… 𝑃𝑝 𝑝

1 𝛽 1 π‘₯ ∫ (1 βˆ’ πœƒ)𝑁𝐷𝛽 𝑔𝑖 (πœƒπ‘₯) π‘‘πœƒ. 𝛽! 0 |𝛽|=𝑁+1

= (𝑁 + 1) βˆ‘

𝛼1

1 𝛽 =( βˆ‘ 𝐷 𝑔1 (0) π‘₯𝛽 ) 𝛽! 1≀|𝛽|≀𝑁

Substituting (13) into (12), we get 1 𝛽 β‹…β‹…β‹…( βˆ‘ 𝐷 𝑔𝑝 (0) π‘₯𝛽 ) 𝛽! 1≀|𝛽|≀𝑁

𝑓 (𝑔1 (π‘₯) , . . . , 𝑔𝑝 (π‘₯)) = 𝑓 (𝑔1 (0) , . . . , 𝑔𝑝 (0)) +

=

1 𝛼 𝐷 𝑓 (𝑔1 (0) , . . . , 𝑔𝑝 (0)) 𝐻𝛼 βˆ‘ 𝛼! 1≀|𝛼|≀𝑁

β‹…β‹…β‹…

+

1 𝛼 𝐷 𝑓 (𝑔 (0)) 𝑃𝛼 𝛼! 1≀|𝛼|≀𝑁

(14)

=

1

(𝛼 )

βˆ‘

(𝛼 )

𝑇𝑁 1 [𝜎(1) ]𝛾 β‹… β‹… β‹… 𝑇𝑁 𝑝 [𝜎(𝑝) ]𝛾 π‘₯𝛾1 +β‹…β‹…β‹…+𝛾𝑝 1

𝑝

𝛼𝑝 ≀|𝛾𝑝 |≀𝛼𝑝 𝑁

=

1 𝛼 𝐷 𝑓 (𝑔 (0)) 𝑃𝛼 𝛼! 1≀|𝛼|≀𝑁

(𝛼 )

(𝛼 )

βˆ‘ 𝛼1 ≀|𝛾1 |≀𝛼1 𝑁,

𝑇𝑁 1 [𝜎(1) ]𝛾 β‹… β‹… β‹… 𝑇𝑁 𝑝 [𝜎(𝑝) ]𝛾 π‘₯𝛿 1

𝑝

.. .

βˆ‘

(1) + β€–π‘₯‖𝑁+1 𝑅𝑁 [𝑓, 𝑔, 𝐻, 𝑅] ,

𝑝

.. .

1 𝛼 𝐷 𝑓 (𝑔 (0)) (𝐻𝛼 βˆ’ 𝑃𝛼 ) 𝛼! 1≀|𝛼|≀𝑁

+ 𝑅𝑁 [𝑓, 𝐻]

𝑇𝑁 𝑝 [𝜎(𝑝) ]𝛾 π‘₯𝛾𝑝

(𝛼 )

βˆ‘ 𝛼1 ≀|𝛾1 |≀𝛼1 𝑁,

βˆ‘

= 𝑓 (𝑔 (0)) +

(𝛼 )

𝛼𝑝 ≀|𝛾𝑝 |≀𝛼𝑝 𝑁

βˆ‘

𝛼𝑝

𝑇𝑁 1 [𝜎(1) ]𝛾 π‘₯𝛾1

βˆ‘ 𝛼1 ≀|𝛾1 |≀𝛼1 𝑁

+ 𝑅𝑁 [𝑓, 𝐻] = 𝑓 (𝑔 (0)) +

𝛼𝑖

𝛼𝑝 ≀|𝛾𝑝 |≀𝛼𝑝 𝑁

=

where

(𝛼 )

βˆ‘ βˆ‘ 𝑇𝑁 1 [𝜎(1) ]𝛾 1 𝛼1 ≀|𝛾1 |≀𝛼1 𝑁, 𝛾1 +β‹…β‹…β‹…+𝛾𝑝 =𝛿 .. . 𝛼𝑝 ≀|𝛾𝑝 |≀𝛼𝑝 𝑁

(1) [𝑓, 𝑔, 𝐻, 𝑅] β€–π‘₯‖𝑁+1 𝑅𝑁

(𝛼 )

1 𝛼 = βˆ‘ 𝐷 𝑓 (𝑔 (0)) (𝐻𝛼 βˆ’ 𝑃𝛼 ) + 𝑅𝑁 [𝑓, 𝐻] , 𝛼! 1≀|𝛼|≀𝑁

β‹… β‹… β‹… 𝑇𝑁 𝑝 [𝜎(𝑝) ]𝛾 π‘₯𝛿 𝑝

=

βˆ‘

βˆ‘

βˆ‘

|𝛼|≀|𝛿|≀|𝛼|𝑁 𝛼1 ≀|𝛾1 |≀𝛼1 𝑁, 𝛾1 +β‹…β‹…β‹…+𝛾𝑝 =𝛿

(𝛼 )

𝑇𝑁 1 [𝜎(1) ]𝛾

.. .

𝑅𝑁 [𝑓, 𝐻]

𝛼𝑝 ≀|𝛾𝑝 |≀𝛼𝑝 𝑁

1 𝛼 1 = (𝑁 + 1) βˆ‘ 𝐻 ∫ (1 βˆ’ πœƒ)𝑁𝐷𝛼 𝛼! 0 |𝛼|=𝑁+1 Γ— 𝑓 (𝑔 (0) + πœƒπ») π‘‘πœƒ. (15)

(𝛼 )

β‹… β‹… β‹… 𝑇𝑁 𝑝 [𝜎(𝑝) ]𝛾 π‘₯𝛿 𝑝

≑

βˆ‘ |𝛼|≀|𝛿|≀|𝛼|𝑁

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(𝑝) ] π‘₯𝛿

1

(16)

4

The Scientific World Journal =

βˆ‘ |𝛼|≀|𝛿|≀𝑁

+

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(𝑝) ] π‘₯𝛿 (1)

βˆ‘ 𝑁+1≀|𝛿|≀|𝛼|𝑁

= 𝑓 (𝑔 (0)) + βˆ‘ 𝑑𝛿 π‘₯𝛿 1≀|𝛿|≀𝑁

(𝑝)

𝛿

Φ𝛿 [𝛼, 𝑁, 𝜎 , . . . , 𝜎 ] π‘₯ ,

+

(2) β€–π‘₯‖𝑁+1 𝑅𝑁

[𝑓, 𝑔, 𝐻, 𝑅, π‘₯] . (18)

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(𝑝) ] =

(𝛼 )

βˆ‘ βˆ‘ 𝑇𝑁 1 [𝜎(1) ]𝛾 1 𝛾 +β‹…β‹…β‹…+𝛾 𝛼1 ≀|𝛾1 |≀𝛼1 𝑁, 1 𝑝 =𝛿 .. .

Clearly, the Problem 2 is solved with 𝑑𝛿 =

𝛼𝑝 ≀|𝛾𝑝 |≀𝛼𝑝 𝑁

1 𝛼 𝐷 𝑓 (𝑔 (0)) Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(𝑝) ] . (19) 𝛼! 1≀|𝛼|≀|𝛿| βˆ‘

(𝛼 )

β‹… β‹… β‹… 𝑇𝑁 𝑝 [𝜎(𝑝) ]𝛾 .

3. Solving the Problem 1

𝑝

(17) Consequently, 𝑓 (𝑔 (π‘₯)) = 𝑓 (𝑔 (0)) +

1 𝛼 𝐷 𝑓 (𝑔 (0)) 𝑃𝛼 𝛼! 1≀|𝛼|≀𝑁 βˆ‘

(1) + β€–π‘₯‖𝑁+1 𝑅𝑁 [𝑓, 𝑔, 𝐻, 𝑅]

= 𝑓 (𝑔 (0)) + Γ—

1 𝛼 𝐷 𝑓 (𝑔 (0)) 𝛼! 1≀|𝛼|≀𝑁 βˆ‘

βˆ‘ |𝛼|≀|𝛿|≀|𝛼|𝑁

+

𝑓 (π‘₯, 𝑑, 𝑔 + 𝐻)

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(𝑝) ] π‘₯𝛿

(1) β€–π‘₯‖𝑁+1 𝑅𝑁

= 𝑓 (π‘₯, 𝑑, 𝑔1 + 𝐻1 , . . . , 𝑔6 + 𝐻6 )

[𝑓, 𝑔, 𝐻, 𝑅]

= 𝑓 (π‘₯, 𝑑, 𝑔1 , . . . , 𝑔6 )

= 𝑓 (𝑔 (0)) + Γ—

1 𝛼 𝐷 𝑓 (𝑔 (0)) 𝛼! 1≀|𝛼|≀𝑁 βˆ‘

+ Γ—

(1)

(𝑝)

Φ𝛿 [𝛼, 𝑁, 𝜎 , . . . , 𝜎 ] π‘₯

(1) + ‖𝐻‖𝑁+1 𝑅𝑁 [𝑓, 𝐻] ,

𝛿

(1) [𝑓, 𝐻] ‖𝐻‖𝑁+1 𝑅𝑁

1 𝛼 𝐷 𝑓 (𝑔 (0)) 𝛼! 1≀|𝛼|≀𝑁

1 𝛼 1 𝐻 ∫ (1 βˆ’ πœƒ)𝑁𝐷𝛼 𝛼! 0 |𝛼|=𝑁+1

βˆ‘

βˆ‘ 𝑁+1≀|𝛿|≀|𝛼|𝑁

= (𝑁 + 1) βˆ‘

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(𝑝) ] π‘₯𝛿

Γ—

βˆ‘ |𝛼|≀|𝛿|≀𝑁

𝛼

where 𝐻 = (𝐻1 , . . . , 𝐻6 ) ∈ R6 , ‖𝐻‖ is small enough, 𝐷𝑖 𝑖 𝑓 = πœ•π‘“/πœ•π‘”π‘– , 𝑖 = 1, 2, . . . , 6. Next, the precise structure of the representation formulas for 𝑔1 , . . . , 𝑔6 will be needed below to continue. For each fixed (π‘₯, 𝑑) ∈ [0, 1] Γ— R+ : we have the following. (i) The representation formula for 𝑔𝑖 (πœ€) = 𝑔𝑖 (π‘₯, 𝑑, πœ€), 𝑖 = 1, 2, 3. We rewrite 𝑔1 (πœ€) as follows

1 𝛼 𝐷 𝑓 (𝑔 (0)) 𝛼! 1≀|𝛼|≀𝑁 βˆ‘

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(𝑝) ] π‘₯𝛿

(2) + β€–π‘₯‖𝑁+1 𝑅𝑁 [𝑓, 𝑔, 𝐻, 𝑅, π‘₯]

= 𝑓 (𝑔 (0))

𝑔1 (πœ€) = βˆ‘ 𝑒𝛼 (π‘₯, 𝑑) πœ€π›Ό

1 𝛼 + βˆ‘ 𝐷 𝑓 (𝑔 (0)) βˆ‘ 𝛼! 1≀|𝛿|≀𝑁 1≀|𝛼|≀|𝛿| (1)

|𝛼|≀𝑁

(𝑝)

×Φ𝛿 [𝛼, 𝑁, 𝜎 , . . . , 𝜎 ] π‘₯ (2) + β€–π‘₯‖𝑁+1 𝑅𝑁 [𝑓, 𝑔, 𝐻, 𝑅, π‘₯]

(21)

Γ— 𝑓 (𝑔 + πœƒπ») π‘‘πœƒ,

(1) + β€–π‘₯‖𝑁+1 𝑅𝑁 [𝑓, 𝑔, 𝐻, 𝑅]

= 𝑓 (𝑔 (0)) +

(20)

1 𝛼 𝐷 𝑓 (π‘₯, 𝑑, 𝑔1 , . . . , 𝑔6 ) 𝐻𝛼 + βˆ‘ 𝛼! 1≀|𝛼|≀𝑁

βˆ‘

|𝛼|≀|𝛿|≀𝑁

As an application of the method used in Section 2 for 𝑝 = 6, Ξ© = (0, 1), πœ€ βƒ— = (πœ€1 , . . . , πœ€π‘› ) ∈ R𝑛 , and 𝑓 = 𝑓(π‘₯, 𝑑, 𝑔1 , . . ., 𝑔6 ) ∈ 𝐢𝑁+1 (R3 Γ— R3+ ; R), for each fixed (π‘₯, 𝑑) ∈ [0, 1] Γ— R+ ; 𝑔𝑖 ∈ 𝐢𝑁+1 (Ξ©; R), 𝑖 = 1, 2, 3, for each fixed (π‘₯, 𝑑) ∈ [0, 1]Γ—R+ : 𝑔𝑖 ∈ 𝐢𝑁+1 (Ξ©; R+ ), 𝑖 = 4, 5, 6, for each fixed 𝑑 ∈ R+ , we now investigate the Problem 1. For each fixed (π‘₯, 𝑑) ∈ [0, 1] Γ— R+ , using Taylor’s expansion of the function 𝑓 around the point 𝑔 = (𝑔1 , . . . , 𝑔6 ) ∈ R3 Γ— R3+ up to order 𝑁,we obtain that

𝛿

≑ 𝑔1 (0) +

βˆ‘ 𝑔𝛽[1] (π‘₯, 𝑑) πœ€π›½

1≀|𝛽|≀𝑁

≑ 𝑔1 (0) + 𝐻1 ,

(22)

The Scientific World Journal

5

in which

Similarly, 󡄨󡄨 󡄨󡄨 󡄨󡄨𝛽󡄨󡄨 = 0, 󡄨󡄨 󡄨󡄨 1 ≀ 󡄨󡄨𝛽󡄨󡄨 ≀ 𝑁.

𝑔1 (0) = 𝑔1 (π‘₯, 𝑑) = 𝑒0 (π‘₯, 𝑑) , 𝑔𝛽[1] (π‘₯, 𝑑) = 𝑒𝛽 (π‘₯, 𝑑) ,

σ΅„©σ΅„©2 σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© 𝛼󡄩 σ΅„© 𝑔5 (πœ€) = σ΅„©σ΅„©σ΅„© βˆ‘ 𝑒𝛼π‘₯ (𝑑) πœ€ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©|𝛼|≀𝑁 σ΅„© σ΅„©

(23)

= βˆ‘ βˆ‘ βŸ¨π‘’π›Όπ‘₯ (𝑑) , 𝑒𝛽π‘₯ (𝑑)⟩ πœ€π›Ό+𝛽 |𝛼|≀𝑁 |𝛽|≀𝑁 σ΅„©2 σ΅„©σ΅„© = 󡄩󡄩𝑒0π‘₯ (𝑑)σ΅„©σ΅„©σ΅„© + βˆ‘ 𝐺𝛿 [𝑒π‘₯ (𝑑)] πœ€π›Ώ

It is similar to 𝑔2 (πœ€), 𝑔3 (πœ€); we write 𝑔2 (πœ€) = βˆ‘ 𝑒𝛼π‘₯ (π‘₯, 𝑑) πœ€π›Ό |𝛼|≀𝑁

≑ 𝑔2 (0) +

βˆ‘ 𝑔𝛽[2] (π‘₯, 𝑑) πœ€π›½ ≑ 𝑔2 (0) + 𝐻2 ,

1≀|𝛽|≀𝑁

(1) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝑒π‘₯ , πœ€]

≑ 𝑔5 (0) +

(24)

𝑔3 (πœ€) = βˆ‘ 𝑒𝛼𝑑 (π‘₯, 𝑑) πœ€π›Ό |𝛼|≀𝑁

≑ 𝑔3 (0) +

σ΅„©2 σ΅„© 𝑔5 (0) = 󡄩󡄩󡄩𝑒0π‘₯ (𝑑)σ΅„©σ΅„©σ΅„© ,

𝑔2 (0) = 𝑔2 (π‘₯, 𝑑) = 𝑒0π‘₯ (π‘₯, 𝑑) , 󡄨 󡄨 𝑔3 (0) = 𝑔3 (π‘₯, 𝑑) = 𝑒0𝑑 (π‘₯, 𝑑) , 󡄨󡄨󡄨𝛽󡄨󡄨󡄨 = 0, 𝑔𝛽[2]

(π‘₯, 𝑑) = 𝑒𝛽π‘₯ (π‘₯, 𝑑) , 󡄨 󡄨 𝑔𝛽[3] (π‘₯, 𝑑) = 𝑒𝛽𝑑 (π‘₯, 𝑑) , 1 ≀ 󡄨󡄨󡄨𝛽󡄨󡄨󡄨 ≀ 𝑁.

𝑔𝛿[5] (𝑑) = 𝐺𝛿 [𝑒π‘₯ (𝑑)] = βˆ‘ βˆ‘ βˆ‘ βŸ¨π‘’π›Όπ‘₯ (𝑑) , 𝑒𝛽π‘₯ (𝑑)⟩ , |𝛼|≀𝑁 |𝛽|≀𝑁 𝛼+𝛽=𝛿

(25) 𝑅5 =

≑ 𝑔6 (0) +

(26)

where

βˆ‘ 𝑔𝛽[4] (𝑑) πœ€π›½ + 𝑅4 1≀|𝛽|≀𝑁

σ΅„©2 σ΅„© 𝑔6 (0) = 󡄩󡄩󡄩𝑒0𝑑 (𝑑)σ΅„©σ΅„©σ΅„© ,

≑ 𝑔4 (0) + 𝐻4 ≑ 𝑔4 (0) + 𝑃4 + 𝑅4 , σ΅„© σ΅„©2 𝑔4 (0) = 󡄩󡄩󡄩𝑒0 (𝑑)σ΅„©σ΅„©σ΅„© ,

𝑔𝛿[6] (𝑑) = 𝐺𝛿 [𝑒𝑑 (𝑑)] = βˆ‘ βˆ‘ βˆ‘ βŸ¨π‘’π›Όπ‘‘ (𝑑) , 𝑒𝛽𝑑 (𝑑)⟩ , |𝛼|≀𝑁 |𝛽|≀𝑁 𝛼+𝛽=𝛿

(𝑑) = 𝐺𝛿 [𝑒 (𝑑)] 𝑅6 = (27)

(1) β€–πœ€β€–π‘+1 𝑅𝑁

[𝑒𝑑 , πœ€] =

𝑁+1≀|𝛿|≀2𝑁

βˆ‘

𝐺𝛿 [𝑒𝑑 (𝑑)] πœ€π›Ώ .

𝑁+1≀|𝛿|≀2𝑁

Then (22), (24), (26), (28), and (30) imply that 𝑔𝑖 (πœ€) βˆ’ 𝑔𝑖 (0) = 𝐻𝑖 = 𝑃𝑖 + 𝑅𝑖 =

1 ≀ |𝛿| ≀ 2𝑁, 𝐺𝛿 [𝑒 (𝑑)] πœ€π›Ώ .

(31)

1 ≀ |𝛿| ≀ 𝑁,

= βˆ‘ βˆ‘ βˆ‘ βŸ¨π‘’π›Ό (𝑑) , 𝑒𝛽 (𝑑)⟩ , |𝛼|≀𝑁 |𝛽|≀𝑁 𝛼+𝛽=𝛿

βˆ‘

βˆ‘ 𝑔𝛽[6] (𝑑) πœ€π›½ + 𝑅6 1≀|𝛽|≀𝑁

≑ 𝑔6 (0) + 𝐻6 ≑ 𝑔6 (0) + 𝑃6 + 𝑅6 ,

1≀|𝛿|≀𝑁

[𝑒, πœ€] =

(30)

(1) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝑒𝑑 , πœ€]

(1) + βˆ‘ 𝐺𝛿 [𝑒 (𝑑)] πœ€π›Ώ + β€–πœ€β€–π‘+1 𝑅𝑁 [𝑒, πœ€]

𝑅4 =

𝑁+1≀|𝛿|≀2𝑁

1≀|𝛿|≀𝑁

|𝛼|≀𝑁 |𝛽|≀𝑁

𝐺𝛿 [𝑒 (𝑑)] = βˆ‘ βˆ‘ βˆ‘ βŸ¨π‘’π›Ό (𝑑) , 𝑒𝛽 (𝑑)⟩ , |𝛼|≀𝑁 |𝛽|≀𝑁 𝛼+𝛽=𝛿

𝐺𝛿 [𝑒π‘₯ (𝑑)] πœ€π›Ώ ,

βˆ‘

= βˆ‘ βˆ‘ βŸ¨π‘’π›Όπ‘‘ (𝑑) , 𝑒𝛽𝑑 (𝑑)⟩ πœ€π›Ό+𝛽 |𝛼|≀𝑁 |𝛽|≀𝑁 σ΅„©2 σ΅„© = 󡄩󡄩󡄩𝑒0𝑑 (𝑑)σ΅„©σ΅„©σ΅„© + βˆ‘ 𝐺𝛿 [𝑒𝑑 (𝑑)] πœ€π›Ώ

= βˆ‘ βˆ‘ βŸ¨π‘’π›Ό (𝑑) , 𝑒𝛽 (𝑑)⟩ πœ€π›Ό+𝛽

1 ≀ |𝛿| ≀ 𝑁,

[𝑒π‘₯ , πœ€] =

σ΅„©σ΅„©2 σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 𝑔6 (πœ€) = σ΅„©σ΅„©σ΅„©σ΅„© βˆ‘ 𝑒𝛼𝑑 (𝑑) πœ€π›Ό σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©|𝛼|≀𝑁 σ΅„© σ΅„©

σ΅„©σ΅„©2 σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© 𝛼󡄩 σ΅„© 𝑔4 (πœ€) = σ΅„©σ΅„©σ΅„© βˆ‘ 𝑒𝛼 (𝑑) πœ€ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©|𝛼|≀𝑁 σ΅„© σ΅„©

σ΅„© σ΅„©2 = 󡄩󡄩󡄩𝑒0 (𝑑)σ΅„©σ΅„©σ΅„©

(29)

1 ≀ |𝛿| ≀ 𝑁, (1) β€–πœ€β€–π‘+1 𝑅𝑁

For each fixed 𝑑 ∈ R+ : we have the following. (ii) The representation formula for 𝑔𝑖 (πœ€) = 𝑔𝑖 (𝑑, πœ€), 𝑖 = 4, 5, 6. Write

(1) β€–πœ€β€–π‘+1 𝑅𝑁

1≀|𝛽|≀𝑁

in which

1≀|𝛽|≀𝑁

≑ 𝑔4 (0) +

βˆ‘ 𝑔𝛽[5] (𝑑) πœ€π›½ + 𝑅5

≑ 𝑔5 (0) + 𝐻5 ≑ 𝑔5 (0) + 𝑃5 + 𝑅5 ,

βˆ‘ 𝑔𝛽[3] (π‘₯, 𝑑) πœ€π›½ ≑ 𝑔3 (0) + 𝐻3 ,

where

𝑔𝛿[4]

(28)

1≀|𝛿|≀𝑁

𝑅𝑖 = 0,

𝑖 = 1, 2, 3,

βˆ‘ 𝑔𝛽[𝑖] πœ€π›½ + 𝑅𝑖 , 1≀|𝛽|≀𝑁

𝑅𝑗 = 𝑂 (β€–πœ€β€–π‘+1 ) ,

𝑗 = 4, 5, 6. (32)

6

The Scientific World Journal We also need the following lemma.

Combining (35) and (36) yields

Lemma 4. For all 𝛼 = (𝛼1 , . . . , 𝛼𝑛 ) ∈ Z𝑛+ , |𝛼| β‰₯ 1, then 𝛼

𝛼

𝛼

𝛼

𝛼

𝛼

𝛼

𝐻𝛼 = 𝐻1 1 𝐻2 2 𝐻3 3 𝐻4 4 𝐻5 5 𝐻6 6 =

βˆ‘ |𝛼|≀|𝛿|≀𝑁

=

Φ𝛿 [𝛼, 𝑁, 𝜎 , . . . , 𝜎 ] 1

𝜎

=

πœŽπ›½(𝑖)

=

𝛼

𝛼

βˆ‘

βˆ‘

𝛼

𝛼

𝛼

𝛼

𝛼

𝛼

𝛼

𝛼6

𝛼

𝛼5

𝛼6

βˆ’ 𝑃4 4 (𝑃5 + 𝑅5 ) 5 (𝑃6 + 𝑅6 )

𝛼

=

+

𝛼

𝛼

𝛼 𝛼 𝛼 + 𝑅6 ) βˆ’ 𝑃4 4 𝑃5 5 𝑃6 6 𝛼 𝛼 βˆ’ 𝑃4 4 ] (𝑃5 + 𝑅5 ) 5 (𝑃6

+

𝛼 𝛼 𝑃4 4 𝑃5 5

[(𝑃5 + 𝑅5 ) βˆ’

𝛼 𝑃5 5 ] (𝑃6

𝛼6

[(𝑃6 + 𝑅6 ) βˆ’

+ 𝑅6 )

+ 𝑅6 )

where (2) β€–πœ€β€–π‘+1 𝑅𝑁 [𝐻, 𝛼, πœ€]

=

𝑁+1≀|𝛿|≀|𝛼|𝑁

𝑗 𝛼 βˆ’1βˆ’π‘— ]

𝑗 𝛼 βˆ’1βˆ’π‘—

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] πœ€π›Ώ

(38)

]

𝐹 (π‘₯, 𝑑, πœ€π›Ό )

= 𝑓 (π‘₯, 𝑑, 𝑔1 (0) + 𝐻1 , . . . , 𝑔6 (0) + 𝐻6 ) = 𝑓 (π‘₯, 𝑑, 𝑔 (0)) 1 𝛼 (1) [𝑓, 𝐻] 𝐷 𝑓 (π‘₯, 𝑑, 𝑔 (0)) 𝐻𝛼 + ‖𝐻‖𝑁+1 𝑅𝑁 + βˆ‘ 𝛼! 1≀|𝛼|≀𝑁

𝛼4 βˆ’1

𝛼6 βˆ’1

βˆ‘

= 𝑓 (π‘₯, 𝑑, 𝑔 + 𝐻) = 𝑓 (π‘₯, 𝑑, 𝑔 (0) + 𝐻)

𝛼6

𝑗 𝛼 βˆ’1βˆ’π‘— ] = 𝑅4 [ βˆ‘ (𝑃4 + 𝑅4 ) 𝑃4 4 [ 𝑗=0 ] 𝛼 𝛼 Γ— (𝑃5 + 𝑅5 ) 5 (𝑃6 + 𝑅6 ) 6 𝛼5 βˆ’1

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] πœ€π›Ώ

σ΅„© σ΅„©2 σ΅„© σ΅„©2 = 𝑓 (π‘₯, 𝑑, β„Ž, β„Žπ‘₯ , β„Žπ‘‘ , β€–β„Žβ€–2 , σ΅„©σ΅„©σ΅„©β„Žπ‘₯ σ΅„©σ΅„©σ΅„© , σ΅„©σ΅„©σ΅„©β„Žπ‘‘ σ΅„©σ΅„©σ΅„© )

𝛼6

𝛼 𝑃6 6 ]

+ 𝑅5 [ βˆ‘ (𝑃5 + 𝑅5 ) 𝑃5 5 [ 𝑗=0

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] πœ€π›Ώ

Substituting (37) into (20), we obtain 𝛼6

𝛼6

𝛼5

𝛼 𝑃4 4

(37)

Lemma 4 is proved.

𝛼6

+ 𝑃4 4 (𝑃5 + 𝑅5 ) (𝑃6 + 𝑅6 ) βˆ’ 𝑃4 4 𝑃5 5 (𝑃6 + 𝑅6 ) 𝛼 𝛼 + 𝑃4 4 𝑃5 5 (𝑃6 𝛼 [(𝑃4 + 𝑅4 ) 4

𝛼6

β‹… β‹… β‹… ( βˆ‘ 𝑔𝛽(6) πœ€π›½ ) 1≀|𝛽|≀𝑁

(1) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝐻, 𝛼, πœ€] .

(𝑃4 + 𝑅4 ) 4 (𝑃5 + 𝑅5 ) 5 (𝑃6 + 𝑅6 ) 6 βˆ’ 𝑃4 4 𝑃5 5 𝑃6 6 = (𝑃4 + 𝑅4 ) 4 (𝑃5 + 𝑅5 ) 5 (𝑃6 + 𝑅6 )

𝛼

(2) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝐻, 𝛼, πœ€] ,

Note that 𝑅𝑗 = 𝑂(β€–πœ€β€–π‘+1 ), 𝑗 = 4, 5, 6, so 𝛼

𝛼6

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] πœ€π›Ώ

βˆ‘

|𝛼|≀|𝛿|≀𝑁

(35)

𝛼

𝛼

(1) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝐻, 𝛼, πœ€]

𝛼

𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝑃1 1 𝑃2 2 𝑃3 3 (𝑃4 + 𝑅4 ) 4 (𝑃5 + 𝑅5 ) 5 (𝑃6 + 𝑅6 ) 6 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝑃1 1 𝑃2 2 𝑃3 3 𝑃4 4 𝑃5 5 𝑃6 6 + 𝑃1 1 𝑃2 2 𝑃3 3 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 Γ— [(𝑃4 + 𝑅4 ) 4 (𝑃5 + 𝑅5 ) 5 (𝑃6 + 𝑅6 ) 6 βˆ’ 𝑃4 4 𝑃5 5 𝑃6 6 ] .

𝛼

𝛼

( βˆ‘ 𝑔𝛽(1) πœ€π›½ ) 1≀|𝛽|≀𝑁

≑

𝛼

𝛼

𝛼

𝑁+1≀|𝛿|≀|𝛼|𝑁

𝐻𝛼 = 𝐻1 1 𝐻2 2 𝐻3 3 𝐻4 4 𝐻5 5 𝐻6 6 =

𝛼

+

󡄨 󡄨 1 ≀ 󡄨󡄨󡄨𝛽󡄨󡄨󡄨 ≀ 𝑁, 𝑖 = 1, 2, . . . , 6. (34)

𝑔𝛽[𝑖] ,

Proof of Lemma 4. We have

=

𝛼

|𝛼|≀|𝛿|≀𝑁

(πœŽπ›½(𝑖) ) ,

𝛼

𝛼

=

6

.. .

𝛼6 ≀|𝛾6 |≀𝛼6 𝑁 (𝑖)

𝛼

(1) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝐻, 𝛼, πœ€]

(𝛼 )

(𝛼 )

𝑇𝑁 1 [𝜎(1) ]𝛾 β‹… β‹… β‹… 𝑇𝑁 6 [𝜎(6) ]𝛾 ,

𝛼1 ≀|𝛾1 |≀𝛼1 𝑁, 𝛾1 +β‹…β‹…β‹…+𝛾6 =𝛿

𝛼

𝛼1

(6)

βˆ‘

𝛼

(1) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝐻, 𝛼, πœ€]

where

βˆ‘

𝛼

= 𝑃1 1 𝑃2 2 𝑃3 3 𝑃4 4 𝑃5 5 𝑃6 6

(33)

=

𝛼

𝛼

= 𝑃1 1 𝑃2 2 𝑃3 3 (𝑃4 + 𝑅4 ) 4 (𝑃5 + 𝑅5 ) 5 (𝑃6 + 𝑅6 )

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] πœ€π›Ώ + 𝑂 (β€–πœ€β€–π‘+1 ) ,

(1)

𝛼

𝛼

𝐻𝛼 = 𝐻1 1 𝐻2 2 𝐻3 3 𝐻4 4 𝐻5 5 𝐻6 6

= 𝑓 (π‘₯, 𝑑, 𝑔 (0)) 1 𝛼 𝐷 𝑓 (π‘₯, 𝑑, 𝑔 (0)) + βˆ‘ 𝛼! 1≀|𝛼|≀𝑁

𝛼6

𝛼

𝑃4 4 (𝑃6 + 𝑅6 )

Γ— [ βˆ‘ |𝛼|≀|𝛿|≀𝑁

] 𝑃 4𝑃 5 + 𝑅6 [ βˆ‘ (𝑃6 + 𝑅6 ) 𝑃6 6 4 5 [ 𝑗=0 ] (1) = β€–πœ€β€–π‘+1 𝑅𝑁 [𝐻, 𝛼, πœ€] = 𝑂 (β€–πœ€β€–π‘+1 ) . 𝛼

𝛼

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] πœ€π›Ώ

(2) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝐻, 𝛼, πœ€] ]

(36)

(1) + ‖𝐻‖𝑁+1 𝑅𝑁 [𝑓, 𝐻]

The Scientific World Journal

7

= 𝑓 (π‘₯, 𝑑, 𝑔 (0)) +

Remark 5. (i) This result improves the one in [1], for 𝑛 = 1. (ii) In case of 𝐹(π‘₯, 𝑑, πœ€) = πœ‡(π‘₯, 𝑑, β„Ž, β€–β„Žπ‘₯ β€–2 ), where πœ‡ ∈ 𝑁+1 𝐢 ([0, 1]Γ—R+ Γ—RΓ—R+ ; R), 𝑛 = 𝑝, this result is also obtained in [3].

1 𝛼 𝐷 𝑓 (π‘₯, 𝑑, 𝑔 (0)) 𝛼! 1≀|𝛼|≀𝑁 βˆ‘

Γ—[ βˆ‘ |𝛼|≀|𝛿|≀𝑁

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] πœ€π›Ώ ]

Acknowledgments

1 𝛼 (2) 𝐷 𝑓 (π‘₯, 𝑑, 𝑔 (0)) 𝑅𝑁 [𝐻, 𝛼, πœ€] 𝛼! 1≀|𝛼|≀𝑁

The authors wish to express their sincere thanks to the referees for their valuable comments and important remarks. This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under Grant no. B2013-1805.

+ β€–πœ€β€–π‘+1 βˆ‘

(1) + ‖𝐻‖𝑁+1 𝑅𝑁 [𝑓, 𝐻]

= 𝑓 (π‘₯, 𝑑, 𝑔 (0)) +

1 𝛼 𝐷 𝑓 (π‘₯, 𝑑, 𝑔 (0)) 𝛼! 1≀|𝛼|≀𝑁 Γ—

βˆ‘ |𝛼|≀|𝛿|≀𝑁

+

References

βˆ‘

(3) β€–πœ€β€–π‘+1 𝑅𝑁

[1] N. T. Long, β€œOn the nonlinear wave equation 𝑒𝑑𝑑 βˆ’ 𝐡(𝑑, ‖𝑒‖2 , ‖𝑒π‘₯ β€–2 )𝑒π‘₯π‘₯ = 𝑓(π‘₯, 𝑑, 𝑒, 𝑒π‘₯ , 𝑒𝑑 , ‖𝑒‖2 , ‖𝑒π‘₯ β€–2 ) associated with the mixed homogeneous conditions,” Journal of Mathematical Analysis and Applications, vol. 306, no. 1, pp. 243–268., 2005. [2] N. T. Long and L. X. Truong, β€œExistence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition,” Nonlinear Analysis: Theory, Methods and Applications, vol. 67, no. 3, pp. 842–864, 2007. [3] L. T. P. Ngoc, N. A. Triet, and N. T. Long, β€œOn a nonlinear wave equation involving the term βˆ’(πœ•/πœ•π‘₯)(πœ‡(π‘₯, 𝑑, 𝑒, ‖𝑒π‘₯ β€–2 )𝑒π‘₯ ): linear approximation and asymptotic expansion of solution in many small parameters,” Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp. 2479–2501, 2010. [4] N. A. Triet, L. T. P. Ngoc, and N. T. Long, β€œA mixed DirichletRobin problem for a nonlinear Kirchhoff-Carrier wave equation,” Nonlinear Analysis: Real World Applications, vol. 13, no. 2, pp. 817–839, 2012.

Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] πœ€π›Ώ

[𝑓, 𝑔, 𝐻, πœ€]

= 𝑓 (π‘₯, 𝑑, 𝑔 (0)) 1 𝛼 𝐷 𝑓 (π‘₯, 𝑑, 𝑔 (0)) Φ𝛿 𝛼! 1≀|𝛿|≀𝑁 |𝛼|≀|𝛿|

+ βˆ‘

βˆ‘

Γ— [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] πœ€π›Ώ (3) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝑓, 𝑔, 𝐻, πœ€]βƒ—

= 𝑓 (π‘₯, 𝑑, 𝑔 (0)) + βˆ‘ 𝐹𝛿 (π‘₯, 𝑑) πœ€π›Ώ 1≀|𝛿|≀𝑁

(3) + β€–πœ€β€–π‘+1 𝑅𝑁 [𝑓, 𝑔, 𝐻, πœ€] ,

(39) where (3) [𝑓, 𝑔, 𝐻, πœ€] β€–πœ€β€–π‘+1 𝑅𝑁

1 𝛼 (2) 𝐷 𝑓 (π‘₯, 𝑑, 𝑔 (0)) 𝑅𝑁 [𝐻, 𝛼, πœ€] 𝛼! 1≀|𝛼|≀𝑁

= β€–πœ€β€–π‘+1 βˆ‘

(1) + ‖𝐻‖𝑁+1 𝑅𝑁 [𝑓, 𝐻] ,

1 𝛼 𝐷 𝑓 (π‘₯, 𝑑, 𝑔 (0)) Φ𝛿 [𝛼, 𝑁, 𝜎(1) , . . . , 𝜎(6) ] , 𝛼! |𝛼|≀|𝛿|

𝐹𝛿 (π‘₯, 𝑑) = βˆ‘

𝛿 ∈ Z6+ , 1 ≀ |𝛿| ≀ 𝑁. (40) Since 𝑒𝛼 ∈ π‘Š = {V ∈ 𝐿∞ (0, 𝑇, 𝐻2 (0, 1)) : V𝑑 ∈ 𝐿 (0, 𝑇, 𝐻1 (0, 1))}, 𝛼 ∈ Z𝑛+ , |𝛼| ≀ 𝑁, hence 𝑒𝛼 , 𝑒𝛼π‘₯ , 𝑒𝛼𝑑 ∈ 𝐿∞ (0, 𝑇, 𝐻1 (0, 1)) βŠ‚ 𝐿∞ (𝑄𝑇 ). Then from (39) and (40)1 , we get ∞

σ΅„©σ΅„© σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 󡄩󡄩𝐹(πœ€) βˆ’ βˆ‘ 𝐹 πœ€π›Ώ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 𝛿 σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©πΏβˆž (0,𝑇,𝐿2 (0,1)) |𝛿|≀𝑁 (41) σ΅„© σ΅„© σ΅„© (3) = β€–πœ€β€–π‘+1 󡄩󡄩󡄩󡄩𝑅𝑁 [𝑓, 𝑔, 𝐻, πœ€]σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž (0,𝑇,𝐿2 (0,1)) ≀ πΆπ‘β€–πœ€β€–π‘+1 , for β€–πœ€β€– is small enough; consequently the Problem 1 is solved.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Taylor's expansion for composite functions.

We build a Taylor's expansion for composite functions. Some applications are introduced, where the proposed technique allows the authors to obtain an ...
2MB Sizes 0 Downloads 0 Views