metal-organic compounds Acta Crystallographica Section C

Structural Chemistry ISSN 2053-2296

Synthesis, crystal structures and characterizations of two homochiral coordination polymers based on a chiral reduced Schiff base ligand Shao-Ming Ying,* Xiao-Hui Huang, Wu-Kui Luo and Yan-Chun Xiao Department of Chemistry, Ningde Normal University, Ningde 352100, People’s Republic of China Correspondence e-mail: [email protected] Received 4 January 2014 Accepted 13 March 2014

Two homochiral coordination polymers based on a chiral reduced Schiff base ligand, namely poly[(5-4-{[(NR,1S)-(1carboxylato-2-phenylethyl)amino]methyl}benzoato)zinc(II)], [Zn(C17H15NO4)]n, (1), and poly[(5-4-{[(NR,1S)-(1-carboxylato-2-phenylethyl)amino]methyl}benzoato)cobalt(II)], [Co(C17H15NO4)]n, (2), have been obtained by hydrothermal methods and studied by single-crystal X-ray diffraction, elemental analyses, powder X-ray diffraction, thermogravimetric analysis, IR spectroscopy and fluorescence spectroscopy. Compounds (1) and (2) are isostructural and crystallize in the P212121 space group. Both display a three-dimensional network structure with a one-dimensional channel, with the benzyl group of the ligand directed towards the channel. An investigation of photoluminescence properties shows that compound (1) displays a strong emission in the purple region.

Radhakrishnan, 2006). A search of the Cambridge Structural Database (Version 5.34; Allen, 2002) shows that the proportion of NCS compounds is approximately 23%. NCS structures are difficult to obtain because inorganic–organic hybrid systems tend to arrange in opposing directions, thus forming a centrosymmetric structure. Chiral or asymmetric ligands are a good choice to obtain NCS structures (Li et al., 2010; Du et al., 2010). Thus, we have focused on reduced Schiff base ligands having a chiral C atom. We can obtain reduced Schiff base ligands of this type by reacting amino acids, having a chiral C atom, with 4-carboxybenzaldehyde to obtain the corresponding Schiff bases and then reducing the C N bond. Up to now, to the best of our knowledge, there are still only a few NCS compounds based on reduced Schiff base ligands of this type (Yang et al., 2011; Ying, 2012; Ying & Huang, 2013). In order to study the form of the NCS compounds which are induced by reduced Schiff base ligands of this type, we have synthesized a chiral reduced Schiff base ligand formed by 4carboxybenzaldehyde with l-phenylalanine, namely 4-{[(1carboxy-2-phenylethyl)amino]methyl}benzoic acid (H2L), and two NCS compounds have been obtained using this ligand, namely poly[(5-4-{[(NR,1S)-(1-carboxylato-2-phenylethyl)amino]methyl}benzoato)zinc(II)], (1), and poly[(5-4-{[(NR,1S)(1-carboxylato-2-phenylethyl)amino]methyl}benzoato)cobalt(II)], (2). Herein, we report their syntheses, characterization and crystal structures.

Keywords: crystal structure; homochiral coordination polymers; 4-{[(1-carboxylato-2-phenylethyl)amino]methyl}benzoate; zinc complex; cobalt complex; photoluminescence properties.

1. Introduction In the past few decades, functional coordination compounds have attracted much attention due to their potential applications in the fields of catalysis, ion exchange, proton conductivity, intercalation chemistry, photochemistry, gas sorption, selective separation, magnetism, electronics, nonlinear optics and materials chemistry (Yaghi et al., 2003; Kitagawa et al., 2004; Zhao et al., 2001). According to their space group, we can divide coordination compounds into two categories, viz. centrosymmetric or noncentrosymmetric (NCS) compounds. NCS compounds are of great interest because of their potential applications in many areas, such as pyroelectricity, ferroelectricity and especially second-order nonlinear optics (NLO) (Evans & Lin, 2002; Jayanty et al., 2002; Prakash & Acta Cryst. (2014). C70, 375–378

2. Experimental 2.1. Synthesis and crystallization

H2L was synthesized according to a previously described procedure (Das & Bharadwaj, 2009, 2010). A mixture of KOH (50 mmol, 2.80 g) and l-phenylalanine (50 mmol, 8.25 g) in CH3OH (50 ml) was stirred for 30 min at room temperature. A mixture of 4-carboxybenzaldehyde (50 mmol, 7.50 g) and KOH (50 mmol, 2.80 g) in CH3OH (50 ml) was also stirred for 30 min at room temperature, and then the latter solution was added slowly to the former. The resulting solution was

doi:10.1107/S2053229614005762

# 2014 International Union of Crystallography

375

metal-organic compounds Table 1 Experimental details.

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A ˚ 3) V (A Z Radiation type  (mm 1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters H-atom treatment ˚ 3) max, min (e A Absolute structure Absolute structure parameter

(1)

(2)

[Zn(C17H15NO4)] 362.67 Orthorhombic, P212121 123 5.6649 (11), 14.196 (3), 19.148 (4) 1539.9 (5) 4 Mo K 1.61 0.10  0.09  0.08

[Co(C17H15NO4)] 356.23 Orthorhombic, P212121 123 5.6619 (15), 14.198 (4), 19.180 (5) 1541.8 (7) 4 Mo K 1.13 0.07  0.06  0.05

Bruker APEX CCD area-detector diffractometer Multi-scan (SADABS; Bruker, 2004) 0.855, 0.882 5970, 2901, 2069

Bruker APEX CCD area-detector diffractometer Multi-scan (SADABS; Bruker, 2004) 0.925, 0.946 7783, 3211, 2678

0.081 0.617

0.093 0.639

0.052, 0.078, 0.84 2901 208 H-atom parameters constrained 0.87, 0.69 Flack (1983), with 1184 Friedel pairs 0.01 (2)

0.077, 0.174, 1.08 3211 208 H-atom parameters constrained 0.64, 1.13 Flack (1983), with 1294 Friedel pairs 0.06 (5)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008).

refluxed for 6 h, cooled in an ice bath and excess NaBH4 was added. After 30 min, the solution was acidified with concentrated HCl to a pH of 5.0. The resulting solid was filtered off, washed with water and ethanol, and recrystallized from water– ethanol (1:1 v/v) (yield 80%). ESI–MS (methanol) m/z: 299.9 [M + H]+. A mixture of Zn(NO3)26H2O (0.060 g, 0.2 mmol), H2L (0.060 g, 0.1 mmol), dimethylformamide (1 ml), EtOH (4 ml) and deionized water (4 ml) was sealed in a steel bomb equipped with a Teflon liner (15 ml) and then heated at 383 K for 3 d. Colourless block-shaped crystals of compound (1) were recovered in ca 30% yield based on the H2L ligand. Elemental analysis found for (1), C17H15NO4Zn: C 56.15, H 4.04, N 3.83%; calculated: C 56.25, H 4.14, N 3.86%. IR (KBr, , cm 1): 3314 (m), 2939 (m), 1630 (s), 1606 (s), 1556 (s), 1398 (s), 1323 (m), 1251 (m), 1207 (m), 1175 (m), 1107 (m), 1083 (m), 1017 (m), 950 (m), 891 (m), 858 (s), 828 (m), 799 (m). The synthesis of (2) was similar to (1), but using Co(NO3)26H2O (0.059 g, 0.2 mmol) in place of Zn(NO3)26H2O. Pink block-shaped crystals of compound (2) were recovered in ca 25% yield based on the H2L ligand. Elemental analysis found for (2), C17H15CoNO4: C 57.19, H 4.25, N 3.88%; calculated: C 57.27, H 4.21, N 3.93%. IR (KBr, , cm 1): 3308 (m), 2939 (m), 1627 (s), 1601 (s), 1555 (s), 1401 (s), 1324 (m), 1252 (m), 1208 (m), 1176 (m), 1105 (m), 1083 (m), 1018 (m), 950 (m), 894 (m), 859 (s), 828 (m), 799 (m). 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were gener-

376

Ying et al.



[Zn(C17H15NO4)] and [Co(C17H15NO4)]

˚ and N—H = ated geometrically, with C—H = 0.93–0.98 A ˚ 0.91 A, and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) and 1.2Ueq(N). The high R factor for (2) is due to the poor quality of the crystal, which could not be improved despite repeated experiments. The data were collected at 123 K to maximize the quality of the data.

3. Results and discussion Compounds (1) and (2) are isostructural. The structure of (1) will be discussed in detail as an example. As shown in Fig. 1, (1) contains one ZnII cation and an L2 anion in its asymmetric unit. The ZnII cations are six-coordinated by five O

Figure 1 The molecular structure of compound (1), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The structure of (2) is analogous. [Symmetry codes: (A) x 12, y + 32, z + 2; (B) x 1, y, z; (C) x + 52, y + 2, z + 12; (D) x + 2, y 12, z + 32; 1 (E) x + 12, y + 32, z + 2; (F) x + 1, y, z; (G) x + 52, y + 2, z 2; (H) x + 2, y + 12, z + 32.] Acta Cryst. (2014). C70, 375–378

metal-organic compounds

Figure 4 The TGA curves of compounds (1) and (2).

Figure 2 A view of the structure of (1) down the a axis. The structure of (2) is analogous. H atoms have been omitted for clarity.

atoms and one N atom from five L2 anions in a distorted octahedral geometry. The Zn—O distances range from ˚ and the Zn—N distance is 2.208 (4) A ˚. 2.053 (3) to 2.229 (4) A The reduced Schiff base ligand is pentadentate. The four O atoms in the two COO groups of the reduced Schiff base ligand bridge five ZnII anions, while one of these COO O atoms and an N atom chelate a ZnII cation. By the bridging of the Schiff base ligands, a three-dimensional framework structure with a one-dimensional channel is formed (Fig. 2). There are two kinds of one-dimensional channel in the threedimensional framework and these are occupied by the benzyl groups.

The simulated and experimental powder X-ray diffraction (PXRD) patterns of (1) and (2) are in good agreement with each other (Fig. 3), indicating the phase purity of the products. The thermal behaviour of (1) and (2) was studied to reveal their thermal stability. The thermogravimetric analysis (TGA) curves of (1) and (2) are similar (Fig. 4). Both compounds are stable to 673 K. The solid-state photoluminescent spectrum of compound (1) at room temperature is depicted in Fig. 5. Compound (1) exhibits an emission peak at 415 nm upon excitation at 313 nm. This band is probably generated from intra-ligand luminescent transitions (Yam & Lo, 1999), suggesting that these types of compound would be good candidates as potential photoactive materials. Compound (2) was tested for second harmonic generation but did not exhibit this characteristic. This work was supported by the Research Program of Ningde Normal University (grant Nos. 2011H103, 2012H1201, 2013F14 and 2013T02) and the Research Program of the

Figure 3

Figure 5

Simulated and experimental PXRD patterns of compounds (1) and (2).

The solid-state photoluminescent spectrum of compound (1).

Acta Cryst. (2014). C70, 375–378

Ying et al.



[Zn(C17H15NO4)] and [Co(C17H15NO4)]

377

metal-organic compounds Department of Education of Fujian Province (grant No. JK2013058). Supporting information for this paper is available from the IUCr electronic archives (Reference: QS3037).

References Allen, F. H. (2002). Acta Cryst. B58, 380–388. Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Das, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942–10949. Das, M. C. & Bharadwaj, P. K. (2010). Chem. Eur. J. 16, 5070–5077. Du, Z.-Y., Sun, Y.-H., Xu, X., Xu, G.-H. & Xie, Y.-R. (2010). Eur. J. Inorg. Chem. pp. 4865–4869. Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.

378

Ying et al.



[Zn(C17H15NO4)] and [Co(C17H15NO4)]

Flack, H. D. (1983). Acta Cryst. A39, 876–881. Jayanty, S., Gangopadhyay, P. & Radhakrishnan, T. P. (2002). J. Mater. Chem. 12, 2792–2797. Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334– 2375. Li, J.-T., Cao, D.-K., Akutagawa, T. & Zheng, L.-M. (2010). Dalton Trans. 39, 8606–8608. Prakash, M. J. & Radhakrishnan, T. P. (2006). Inorg. Chem. 45, 9758–9764. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714. Yam, V. W. W. & Lo, K. K. W. (1999). Chem. Soc. Rev. 28, 323–334. Yang, X.-L., Xie, M.-H., Zou, C. & Wu, C.-D. (2011). CrystEngComm, 13, 6422–6430. Ying, S.-M. (2012). Inorg. Chem. Commun. 22, 82–84. Ying, S.-M. & Huang, X.-H. (2013). Transition Met. Chem. 38, 413–418. Zhao, D., Timmons, D. J., Yuan, D.-Q. & Zhou, H.-C. (2001). Acc. Chem. Res. 44, 123–133.

Acta Cryst. (2014). C70, 375–378

supplementary materials

supplementary materials Acta Cryst. (2014). C70, 375-378

[doi:10.1107/S2053229614005762]

Synthesis, crystal structures and characterizations of two homochiral coordination polymers based on a chiral reduced Schiff base ligand Shao-Ming Ying, Xiao-Hui Huang, Wu-Kui Luo and Yan-Chun Xiao Computing details For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008). (1) poly[(µ5-4-{[(1-carboxylato-2-phenylethyl)amino]methyl}benzoato)zinc(II)] Crystal data [Zn(C17H15NO4)] Mr = 362.67 Orthorhombic, P212121 Hall symbol: P 2ac 2ab a = 5.6649 (11) Å b = 14.196 (3) Å c = 19.148 (4) Å V = 1539.9 (5) Å3

Z=4 F(000) = 744 Dx = 1.564 Mg m−3 Mo Kα radiation, λ = 0.71073 Å µ = 1.61 mm−1 T = 123 K Prism, colourless 0.10 × 0.09 × 0.08 mm

Data collection Bruker APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 2004) Tmin = 0.855, Tmax = 0.882

5970 measured reflections 2901 independent reflections 2069 reflections with I > 2σ(I) Rint = 0.081 θmax = 26.0°, θmin = 1.8° h = −6→6 k = −16→17 l = −23→8

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.052 wR(F2) = 0.078 S = 0.84 2901 reflections 208 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Acta Cryst. (2014). C70, 375-378

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0124P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.019 Δρmax = 0.87 e Å−3 Δρmin = −0.69 e Å−3

sup-1

supplementary materials Absolute structure: Flack (1983), with 1184 Friedel pairs

Absolute structure parameter: −0.01 (2)

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Zn1 O4 O3 O2 O1 N1 H1AA C14 C5 H5A C13 H13A C7 H7A H7B C9 C4 C15 H15A C12 H12A C10 H10A H10B C16 H16A C17 C11 C8 H8A C6 H6A C2 H2A

x

y

z

Uiso*/Ueq

0.93840 (11) 1.1600 (6) 1.4335 (7) 1.6289 (6) 1.3224 (6) 1.0484 (8) 0.9506 1.2162 (9) 1.0150 (9) 0.9099 1.3652 (10) 1.5043 1.2846 (9) 1.1683 1.4372 1.4238 (11) 1.2241 (10) 1.0134 (9) 0.9134 1.3064 (10) 1.4084 1.0321 (10) 0.8714 1.1335 0.9548 (11) 0.8170 1.2740 (10) 1.0973 (11) 1.2920 (9) 1.3749 0.9639 (12) 0.8237 1.3243 (12) 1.4302

0.81450 (4) 1.2257 (2) 1.1202 (2) 0.8897 (2) 0.7936 (2) 0.9269 (2) 0.9772 1.0872 (3) 1.1805 (3) 1.1581 1.0127 (3) 1.0035 1.0430 (3) 1.0329 1.0507 0.8738 (3) 1.1320 (3) 1.0996 (3) 1.1495 0.9525 (4) 0.9036 0.8937 (3) 0.8731 0.8391 1.0382 (3) 1.0482 1.1505 (4) 0.9636 (3) 0.9553 (3) 0.9732 1.2631 (4) 1.2951 1.2491 (4) 1.2718

0.97733 (3) 0.6025 (2) 0.56522 (18) 0.9778 (2) 0.95729 (19) 0.9046 (2) 0.9101 0.6676 (3) 0.9464 (3) 0.9799 0.6847 (3) 0.6599 0.9722 (3) 1.0086 0.9944 0.9563 (3) 0.9331 (3) 0.7055 (3) 0.6949 0.7386 (3) 0.7501 0.8318 (3) 0.8234 0.8268 0.7598 (3) 0.7851 0.6065 (3) 0.7762 (3) 0.9244 (3) 0.8815 0.9092 (3) 0.9178 0.8479 (4) 0.8149

0.01628 (16) 0.0198 (10) 0.0192 (9) 0.0199 (9) 0.0173 (10) 0.0152 (10) 0.018* 0.0162 (13) 0.0286 (15) 0.034* 0.0206 (15) 0.025* 0.0224 (14) 0.027* 0.027* 0.0169 (13) 0.0205 (14) 0.0210 (15) 0.025* 0.0220 (14) 0.026* 0.0219 (14) 0.026* 0.026* 0.0227 (13) 0.027* 0.0194 (14) 0.0183 (13) 0.0167 (13) 0.020* 0.0367 (17) 0.044* 0.046 (2) 0.056*

Acta Cryst. (2014). C70, 375-378

sup-2

supplementary materials C3 H3A C1 H1A

1.3751 (10) 1.5156 1.1186 (12) 1.0844

1.1679 (3) 1.1365 1.2968 (4) 1.3517

0.8838 (3) 0.8745 0.8605 (4) 0.8360

0.0339 (17) 0.041* 0.046 (2) 0.055*

Atomic displacement parameters (Å2)

Zn1 O4 O3 O2 O1 N1 C14 C5 C13 C7 C9 C4 C15 C12 C10 C16 C17 C11 C8 C6 C2 C3 C1

U11

U22

U33

U12

U13

U23

0.0173 (3) 0.030 (2) 0.017 (2) 0.019 (2) 0.020 (2) 0.020 (3) 0.015 (3) 0.027 (4) 0.027 (4) 0.025 (3) 0.022 (3) 0.023 (4) 0.017 (4) 0.024 (3) 0.027 (4) 0.017 (3) 0.028 (4) 0.022 (4) 0.021 (3) 0.036 (4) 0.047 (5) 0.026 (4) 0.060 (5)

0.0173 (3) 0.0121 (18) 0.0186 (17) 0.0233 (18) 0.0134 (19) 0.014 (2) 0.017 (3) 0.026 (3) 0.022 (3) 0.016 (3) 0.021 (3) 0.012 (3) 0.019 (3) 0.021 (3) 0.022 (3) 0.027 (3) 0.014 (3) 0.017 (3) 0.015 (3) 0.027 (3) 0.034 (4) 0.025 (3) 0.035 (4)

0.0142 (3) 0.017 (3) 0.022 (2) 0.018 (2) 0.018 (3) 0.012 (3) 0.016 (4) 0.032 (4) 0.013 (4) 0.026 (4) 0.007 (3) 0.026 (4) 0.026 (4) 0.021 (4) 0.017 (3) 0.023 (4) 0.016 (4) 0.016 (3) 0.015 (4) 0.046 (5) 0.058 (6) 0.050 (5) 0.042 (5)

−0.0011 (3) 0.0023 (17) 0.003 (2) −0.0038 (15) −0.0028 (16) 0.003 (2) 0.001 (2) 0.000 (3) −0.001 (3) 0.001 (2) 0.007 (3) −0.003 (3) 0.006 (2) 0.002 (3) −0.005 (3) 0.002 (3) −0.009 (3) −0.005 (3) −0.005 (2) 0.016 (3) 0.001 (4) −0.005 (3) −0.004 (4)

0.0001 (4) 0.004 (2) 0.002 (2) −0.002 (2) 0.0000 (18) −0.002 (2) 0.000 (3) −0.001 (3) 0.009 (3) −0.008 (3) 0.009 (3) 0.000 (3) −0.001 (3) −0.001 (3) −0.001 (3) 0.001 (3) 0.000 (3) 0.000 (3) −0.001 (3) −0.010 (4) 0.012 (4) 0.000 (3) −0.017 (4)

0.0005 (3) −0.0006 (17) 0.0034 (16) 0.001 (2) −0.0004 (15) 0.0010 (18) 0.001 (3) −0.006 (3) 0.003 (3) −0.001 (3) 0.003 (2) 0.001 (3) 0.007 (3) 0.004 (3) −0.003 (2) 0.004 (3) 0.000 (3) 0.003 (2) 0.001 (3) −0.007 (3) 0.018 (4) 0.003 (3) 0.013 (3)

Geometric parameters (Å, º) Zn1—O3i Zn1—O4ii Zn1—O2iii Zn1—O1iv Zn1—N1 Zn1—O1 O4—C17 O4—Zn1v O3—C17 O3—Zn1vi O2—C9 O2—Zn1vii O1—C9 O1—Zn1viii N1—C10 N1—C8

Acta Cryst. (2014). C70, 375-378

2.054 (3) 2.058 (4) 2.053 (3) 2.086 (3) 2.208 (4) 2.229 (4) 1.251 (6) 2.058 (4) 1.275 (6) 2.054 (3) 1.253 (6) 2.053 (3) 1.275 (6) 2.086 (3) 1.474 (6) 1.487 (6)

C13—H13A C7—C4 C7—C8 C7—H7A C7—H7B C9—C8 C4—C3 C15—C16 C15—H15A C12—C11 C12—H12A C10—C11 C10—H10A C10—H10B C16—C11 C16—H16A

0.9300 1.508 (7) 1.545 (7) 0.9700 0.9700 1.506 (6) 1.372 (7) 1.396 (6) 0.9300 1.395 (7) 0.9300 1.501 (7) 0.9700 0.9700 1.369 (6) 0.9300

sup-3

supplementary materials N1—H1AA C14—C15 C14—C13 C14—C17 C5—C4 C5—C6 C5—H5A C13—C12

0.9100 1.370 (7) 1.392 (6) 1.511 (7) 1.393 (6) 1.402 (7) 0.9300 1.380 (7)

C8—H8A C6—C1 C6—H6A C2—C1 C2—C3 C2—H2A C3—H3A C1—H1A

0.9800 1.367 (8) 0.9300 1.369 (8) 1.372 (7) 0.9300 0.9300 0.9300

O3i—Zn1—O4ii O3i—Zn1—O2iii O4ii—Zn1—O2iii O3i—Zn1—O1iv O4ii—Zn1—O1iv O2iii—Zn1—O1iv O3i—Zn1—N1 O4ii—Zn1—N1 O2iii—Zn1—N1 O1iv—Zn1—N1 O3i—Zn1—O1 O4ii—Zn1—O1 O2iii—Zn1—O1 O1iv—Zn1—O1 N1—Zn1—O1 C17—O4—Zn1v C17—O3—Zn1vi C9—O2—Zn1vii C9—O1—Zn1viii C9—O1—Zn1 Zn1viii—O1—Zn1 C10—N1—C8 C10—N1—Zn1 C8—N1—Zn1 C10—N1—H1AA C8—N1—H1AA Zn1—N1—H1AA C15—C14—C13 C15—C14—C17 C13—C14—C17 C4—C5—C6 C4—C5—H5A C6—C5—H5A C12—C13—C14 C12—C13—H13A C14—C13—H13A C4—C7—C8 C4—C7—H7A C8—C7—H7A C4—C7—H7B

168.70 (13) 93.64 (15) 95.20 (15) 87.21 (14) 84.83 (13) 96.34 (14) 95.23 (14) 92.91 (15) 82.44 (15) 177.33 (16) 81.74 (14) 93.14 (15) 154.67 (13) 108.22 (11) 73.28 (15) 135.1 (4) 127.4 (3) 134.1 (3) 121.6 (4) 108.9 (3) 107.59 (15) 112.7 (4) 110.3 (3) 107.3 (3) 108.8 108.8 108.8 118.8 (5) 121.0 (5) 120.2 (5) 119.7 (6) 120.1 120.2 120.0 (5) 120.0 120.0 112.8 (5) 109.0 109.0 109.0

O1—C9—C8 C3—C4—C5 C3—C4—C7 C5—C4—C7 C14—C15—C16 C14—C15—H15A C16—C15—H15A C13—C12—C11 C13—C12—H12A C11—C12—H12A N1—C10—C11 N1—C10—H10A C11—C10—H10A N1—C10—H10B C11—C10—H10B H10A—C10—H10B C11—C16—C15 C11—C16—H16A C15—C16—H16A O4—C17—O3 O4—C17—C14 O3—C17—C14 C16—C11—C12 C16—C11—C10 C12—C11—C10 N1—C8—C9 N1—C8—C7 C9—C8—C7 N1—C8—H8A C9—C8—H8A C7—C8—H8A C1—C6—C5 C1—C6—H6A C5—C6—H6A C1—C2—C3 C1—C2—H2A C3—C2—H2A C4—C3—C2 C4—C3—H3A C2—C3—H3A

118.0 (5) 118.2 (5) 120.8 (5) 121.0 (5) 120.9 (5) 119.6 119.6 121.4 (5) 119.3 119.3 116.3 (4) 108.2 108.2 108.2 108.2 107.4 120.9 (5) 119.5 119.5 128.0 (5) 116.3 (5) 115.7 (5) 118.0 (5) 122.0 (5) 120.0 (5) 110.8 (4) 110.1 (4) 113.1 (4) 107.5 107.5 107.5 120.5 (6) 119.8 119.8 120.4 (7) 119.8 119.8 121.7 (6) 119.1 119.1

Acta Cryst. (2014). C70, 375-378

sup-4

supplementary materials C8—C7—H7B H7A—C7—H7B O2—C9—O1 O2—C9—C8

109.0 107.8 125.0 (5) 117.0 (4)

C6—C1—C2 C6—C1—H1A C2—C1—H1A

119.5 (6) 120.2 120.2

Symmetry codes: (i) −x+5/2, −y+2, z+1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) x−1, y, z; (iv) x−1/2, −y+3/2, −z+2; (v) −x+2, y+1/2, −z+3/2; (vi) −x+5/2, −y+2, z−1/2; (vii) x+1, y, z; (viii) x+1/2, −y+3/2, −z+2.

(2) Poly[(µ5-4-{[(1-carboxylato-2-phenylethyl)amino]methyl}benzoato)cobalt(II)] Crystal data [Co(C17H15NO4)] Mr = 356.23 Orthorhombic, P212121 Hall symbol: P 2ac 2ab a = 5.6619 (15) Å b = 14.198 (4) Å c = 19.180 (5) Å V = 1541.8 (7) Å3

Z=4 F(000) = 732 Dx = 1.535 Mg m−3 Mo Kα radiation, λ = 0.71073 Å µ = 1.13 mm−1 T = 123 K Prism, pink 0.07 × 0.06 × 0.05 mm

Data collection Bruker APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Bruker, 2004) Tmin = 0.925, Tmax = 0.946

7783 measured reflections 3211 independent reflections 2678 reflections with I > 2σ(I) Rint = 0.093 θmax = 27.0°, θmin = 1.8° h = −5→7 k = −18→17 l = −24→22

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.077 wR(F2) = 0.174 S = 1.08 3211 reflections 208 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0468P)2 + 7.5189P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.64 e Å−3 Δρmin = −1.13 e Å−3 Absolute structure: Flack (1983), with 1294 Friedel pairs Absolute structure parameter: 0.06 (5)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Acta Cryst. (2014). C70, 375-378

sup-5

supplementary materials Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Co1 O4 O3 O2 O1 N1 H1AA C14 C5 H5A C13 H13A C7 H7A H7B C9 C4 C15 H15A C12 H12A C10 H10A H10B C16 H16A C17 C11 C8 H8A C6 H6A C2 H2A C3 H3A C1 H1A

x

y

z

Uiso*/Ueq

0.94051 (19) 1.1627 (11) 1.4322 (12) 1.6246 (9) 1.3182 (10) 1.0482 (14) 0.9505 1.2189 (14) 1.0161 (15) 0.9107 1.3724 (16) 1.5118 1.2852 (15) 1.1713 1.4391 1.4232 (15) 1.2212 (15) 1.0147 (15) 0.9153 1.3103 (16) 1.4108 1.0310 (16) 0.8684 1.1267 0.9566 (17) 0.8184 1.2791 (14) 1.1080 (15) 1.2915 (14) 1.3751 0.9636 (19) 0.8240 1.324 (2) 1.4278 1.3786 (15) 1.5191 1.1190 (19) 1.0837

0.81432 (7) 1.2274 (4) 1.1209 (3) 0.8885 (4) 0.7941 (3) 0.9270 (4) 0.9773 1.0874 (5) 1.1799 (6) 1.1574 1.0125 (5) 1.0037 1.0425 (5) 1.0320 1.0505 0.8735 (5) 1.1313 (5) 1.1005 (6) 1.1507 0.9522 (6) 0.9026 0.8931 (5) 0.8752 0.8367 1.0392 (5) 1.0482 1.1512 (5) 0.9630 (6) 0.9546 (5) 0.9721 1.2630 (6) 1.2952 1.2500 (7) 1.2733 1.1671 (6) 1.1356 1.2964 (6) 1.3515

0.97654 (5) 0.6035 (3) 0.5653 (2) 0.9791 (3) 0.9578 (2) 0.9047 (3) 0.9103 0.6690 (4) 0.9469 (4) 0.9801 0.6851 (4) 0.6603 0.9722 (4) 1.0092 0.9936 0.9570 (3) 0.9340 (4) 0.7066 (4) 0.6961 0.7388 (4) 0.7499 0.8319 (4) 0.8229 0.8275 0.7600 (4) 0.7854 0.6076 (4) 0.7757 (4) 0.9243 (4) 0.8815 0.9105 (5) 0.9196 0.8476 (6) 0.8142 0.8837 (5) 0.8744 0.8616 (5) 0.8375

0.0124 (2) 0.0183 (13) 0.0189 (12) 0.0205 (12) 0.0127 (12) 0.0178 (14) 0.021* 0.0130 (16) 0.0246 (19) 0.029* 0.0203 (19) 0.024* 0.0214 (17) 0.026* 0.026* 0.0135 (16) 0.0183 (17) 0.0194 (19) 0.023* 0.0198 (18) 0.024* 0.0186 (17) 0.022* 0.022* 0.0218 (17) 0.026* 0.0150 (16) 0.0155 (17) 0.0133 (15) 0.016* 0.030 (2) 0.037* 0.041 (3) 0.050* 0.027 (2) 0.032* 0.038 (3) 0.045*

Atomic displacement parameters (Å2)

Co1 O4 O3 O2 O1

U11

U22

U33

U12

U13

U23

0.0142 (5) 0.027 (4) 0.024 (3) 0.016 (3) 0.014 (3)

0.0110 (4) 0.011 (3) 0.013 (2) 0.019 (3) 0.013 (3)

0.0120 (4) 0.018 (3) 0.020 (3) 0.026 (3) 0.011 (2)

−0.0006 (5) 0.007 (2) 0.004 (3) −0.002 (2) −0.004 (2)

−0.0003 (4) 0.000 (2) 0.004 (3) −0.003 (3) −0.0016 (19)

0.0008 (4) −0.007 (2) 0.001 (2) −0.002 (3) −0.0016 (18)

Acta Cryst. (2014). C70, 375-378

sup-6

supplementary materials N1 C14 C5 C13 C7 C9 C4 C15 C12 C10 C16 C17 C11 C8 C6 C2 C3 C1

0.020 (4) 0.015 (4) 0.021 (5) 0.023 (5) 0.029 (5) 0.016 (4) 0.022 (5) 0.016 (5) 0.025 (5) 0.019 (5) 0.020 (5) 0.013 (4) 0.012 (5) 0.012 (4) 0.026 (5) 0.039 (7) 0.012 (5) 0.045 (7)

0.013 (3) 0.009 (3) 0.026 (4) 0.014 (4) 0.016 (4) 0.012 (3) 0.007 (4) 0.023 (4) 0.015 (4) 0.015 (4) 0.024 (4) 0.014 (4) 0.022 (4) 0.012 (4) 0.026 (4) 0.032 (5) 0.027 (5) 0.021 (5)

0.021 (3) 0.015 (4) 0.027 (4) 0.024 (4) 0.019 (4) 0.013 (3) 0.026 (4) 0.020 (4) 0.019 (4) 0.022 (4) 0.022 (4) 0.018 (4) 0.012 (3) 0.016 (3) 0.039 (5) 0.054 (6) 0.042 (5) 0.047 (6)

−0.001 (3) −0.004 (3) 0.002 (4) −0.004 (3) −0.003 (3) −0.007 (3) −0.005 (3) 0.003 (3) 0.003 (4) −0.003 (3) 0.003 (4) 0.005 (3) −0.005 (3) 0.003 (3) 0.012 (4) −0.005 (5) −0.007 (4) 0.001 (4)

−0.006 (3) 0.000 (3) 0.002 (3) 0.001 (3) −0.002 (4) −0.005 (3) −0.008 (3) 0.000 (3) −0.003 (3) 0.002 (3) 0.005 (4) −0.004 (3) −0.001 (3) −0.001 (3) −0.006 (4) 0.000 (5) 0.003 (3) −0.012 (5)

0.004 (2) 0.003 (3) 0.001 (4) 0.001 (3) 0.004 (4) −0.005 (3) 0.003 (3) 0.006 (3) 0.002 (3) 0.000 (3) 0.004 (3) −0.001 (3) 0.003 (3) 0.003 (3) 0.002 (4) 0.020 (5) 0.012 (4) 0.009 (4)

Geometric parameters (Å, º) Co1—O3i Co1—O2ii Co1—O4iii Co1—O1iv Co1—N1 Co1—O1 O4—C17 O4—Co1v O3—C17 O3—Co1vi O2—C9 O2—Co1vii O1—C9 O1—Co1viii N1—C10 N1—C8 N1—H1AA C14—C15 C14—C13 C14—C17 C5—C4 C5—C6 C5—H5A C13—C12

2.065 (5) 2.076 (5) 2.055 (5) 2.106 (5) 2.198 (6) 2.187 (6) 1.269 (9) 2.055 (5) 1.262 (9) 2.065 (5) 1.235 (9) 2.076 (5) 1.274 (8) 2.106 (5) 1.480 (9) 1.481 (11) 0.9100 1.376 (11) 1.408 (11) 1.524 (10) 1.373 (11) 1.402 (11) 0.9300 1.384 (11)

C13—H13A C7—C4 C7—C8 C7—H7A C7—H7B C9—C8 C4—C3 C15—C16 C15—H15A C12—C11 C12—H12A C10—C11 C10—H10A C10—H10B C16—C11 C16—H16A C8—H8A C6—C1 C6—H6A C2—C1 C2—C3 C2—H2A C3—H3A C1—H1A

0.9300 1.502 (10) 1.550 (10) 0.9700 0.9700 1.509 (10) 1.408 (11) 1.383 (10) 0.9300 1.356 (12) 0.9300 1.529 (10) 0.9700 0.9700 1.413 (11) 0.9300 0.9800 1.372 (14) 0.9300 1.362 (15) 1.399 (12) 0.9300 0.9300 0.9300

O3i—Co1—O2ii O3i—Co1—O4iii O2ii—Co1—O4iii O3i—Co1—O1iv

93.2 (2) 169.4 (2) 94.4 (2) 87.0 (2)

O1—C9—C8 C3—C4—C5 C3—C4—C7 C5—C4—C7

116.7 (7) 118.5 (7) 118.9 (8) 122.6 (8)

Acta Cryst. (2014). C70, 375-378

sup-7

supplementary materials O2ii—Co1—O1iv O4iii—Co1—O1iv O3i—Co1—N1 O2ii—Co1—N1 O4iii—Co1—N1 O1iv—Co1—N1 O3i—Co1—O1 O2ii—Co1—O1 O4iii—Co1—O1 O1iv—Co1—O1 N1—Co1—O1 C17—O4—Co1v C17—O3—Co1vi C9—O2—Co1vii C9—O1—Co1viii C9—O1—Co1 Co1viii—O1—Co1 C10—N1—C8 C10—N1—Co1 C8—N1—Co1 C10—N1—H1AA C8—N1—H1AA Co1—N1—H1AA C15—C14—C13 C15—C14—C17 C13—C14—C17 C4—C5—C6 C4—C5—H5A C6—C5—H5A C12—C13—C14 C12—C13—H13A C14—C13—H13A C4—C7—C8 C4—C7—H7A C8—C7—H7A C4—C7—H7B C8—C7—H7B H7A—C7—H7B O2—C9—O1 O2—C9—C8

94.2 (2) 85.1 (2) 95.5 (2) 83.4 (3) 92.7 (2) 176.6 (3) 81.5 (2) 155.9 (2) 94.4 (2) 108.89 (17) 73.8 (2) 134.8 (5) 128.1 (5) 134.4 (5) 120.0 (5) 110.0 (5) 108.6 (2) 112.8 (7) 109.6 (4) 106.9 (4) 109.1 109.1 109.1 120.4 (7) 120.9 (7) 118.7 (7) 120.9 (8) 119.6 119.6 118.3 (8) 120.9 120.9 113.1 (7) 109.0 109.0 109.0 109.0 107.8 125.4 (7) 117.8 (6)

C14—C15—C16 C14—C15—H15A C16—C15—H15A C13—C12—C11 C13—C12—H12A C11—C12—H12A N1—C10—C11 N1—C10—H10A C11—C10—H10A N1—C10—H10B C11—C10—H10B H10A—C10—H10B C11—C16—C15 C11—C16—H16A C15—C16—H16A O4—C17—O3 O4—C17—C14 O3—C17—C14 C16—C11—C12 C16—C11—C10 C12—C11—C10 N1—C8—C9 N1—C8—C7 C9—C8—C7 N1—C8—H8A C9—C8—H8A C7—C8—H8A C1—C6—C5 C1—C6—H6A C5—C6—H6A C1—C2—C3 C1—C2—H2A C3—C2—H2A C4—C3—C2 C4—C3—H3A C2—C3—H3A C6—C1—C2 C6—C1—H1A C2—C1—H1A

120.2 (8) 119.9 119.9 122.2 (8) 118.9 118.9 115.7 (6) 108.3 108.3 108.3 108.3 107.4 119.7 (8) 120.1 120.1 127.4 (7) 115.9 (7) 116.6 (6) 119.2 (7) 118.4 (7) 122.4 (7) 111.3 (6) 110.0 (6) 112.3 (6) 107.7 107.7 107.7 119.7 (9) 120.2 120.2 119.8 (9) 120.1 120.1 120.2 (8) 119.9 119.9 120.9 (9) 119.5 119.5

Symmetry codes: (i) −x+5/2, −y+2, z+1/2; (ii) x−1, y, z; (iii) −x+2, y−1/2, −z+3/2; (iv) x−1/2, −y+3/2, −z+2; (v) −x+2, y+1/2, −z+3/2; (vi) −x+5/2, −y+2, z−1/2; (vii) x+1, y, z; (viii) x+1/2, −y+3/2, −z+2.

Acta Cryst. (2014). C70, 375-378

sup-8

Synthesis, crystal structures and characterizations of two homochiral coordination polymers based on a chiral reduced Schiff base ligand.

Two homochiral coordination polymers based on a chiral reduced Schiff base ligand, namely poly[(μ5-4-{[(NR,1S)-(1-carboxylato-2-phenylethyl)amino]meth...
560KB Sizes 0 Downloads 3 Views