research papers Acta Crystallographica Section C

Structural Chemistry ISSN 2053-2296

Synthesis and crystal structure of a novel prochiral ketoimine: (E)-acetophenone O-diphenylphosphoryl oxime Sean H. Majer and Joseph M. Tanski* Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA Correspondence e-mail: [email protected] Received 31 December 2014 Accepted 4 February 2015

about imine addition (Fu et al., 2008; Nishimura et al., 2012). Whereas coordination of a Lewis acid can be sufficient for aldehyde and ketone activation, previously published studies have shown that it is generally only possible to add a nucleophile asymmetrically to the imine C N carbon when the imine is suitably activated (Weinreb & Orr, 2005). Such activation is required as the imine C N bond is less reactive than a carbonyl C O bond, for example, because it is less polar, although it is a weaker and longer bond than carbonyl C O. Activated imine precursors that have proven useful in asymmetric synthesis include (see Scheme 1) (a) N-sulfonylimines, (b) tert-butanesulfinyl ketoimines, and (c) N-phosphorylimines. Adding to the list of activated imine substrates for use in asymmetric organic synthesis, in this paper, we report the synthesis, characterization and crystal structure of a novel activated prochiral ketoimine substrate, namely (E)-acetophenone O-diphenylphosphoryl oxime, (I).

A novel activated prochiral ketoimine, (E)-acetophenone O-diphenylphosphoryl oxime, C20H18NO2P, with an electronwithdrawing substituent on the imine N atom similar to other prochiral ketoimines, has been synthesized and the X-ray crystal stucture determined. The molecules pack together in the solid state via weak intermolecular C—H  O interactions and both face-to-face and edge-to-face -stacking interactions. Keywords: activated ketoimine; crystal structure; p-stacking; asymmetric chemical synthesis; imine addition.

1. Introduction Asymmetric chemical synthesis methodologies that produce chiral resolved organic compounds have been of interest to chemists and chemical industry for many years (Blaser & Elke, 2004; Walsh & Kowzlowski, 2008). Treating compounds that contain prochiral carbonyl and imine carbon centers with nucleophiles, for example, has proven to be a valuable method for the synthesis of compounds with stereogenic centers

(Silverio et al., 2013). Aldehydes and ketones may be used to produce chiral secondary alcohols (Baker-Salisbury et al., 2014) and tertiary alcohols (Garcia et al., 2002), respectively. Aldimine and ketoimine substrates may be used to prepare, respectively, chiral tertiary (Bonnaventure & Charette, 2009; Soai et al., 1992) and quaternary (Cogan & Ellman, 1999) hydrocarbon substituents on amines. In contrast to aldehyde and ketone addition reactions, much less has been reported Acta Cryst. (2015). C71

2. Experimental 2.1. General considerations

Acetophenone oxime (95%), diphenylphosphinic chloride (98%), and triethylamine (99.5%) were obtained from Sigma– Aldrich and were used as received. 1H, 13C{1H} and 31P{1H} NMR spectra were recorded at room temperature using a Bruker Avance DPX 300 MHz spectrometer. 1H chemical shifts are reported in p.p.m. referenced to TMS ( 0.0 p.p.m.). 13 C chemical shifts are reported in p.p.m. referenced to the solvent resonance of  77.0 p.p.m. for chloroform-d. 31P chemical shifts are reported referenced to an internal standard of 85% H3PO4 in water ( 0.0 p.p.m.). IR spectra were recorded neat by ATR on a Thermo Nicolet iS50 FT–IR spectrometer and are reported in cm1. Elemental analyses were carried out by Robertson Microlit Laboratories, Ledgewood, NJ, USA. GC–MS data were obtained with an Agilent 7890 GC/5975 MS in dichloromethane. For LC–MS analysis, the sample dissolved in CHCl3–CH3OH–H2O– NH4OH (600:340:50:5 v/v/v/v) was directly infused using an Agilent 1100 HPLC system into an Agilent 6520 electrospray ionization quadrupole time-of-flight mass spectrometer detecting in the positive ion mode. LC–MS data was obtained using settings described previously (Bulat & Garrett, 2011).

doi:10.1107/S2053229615002351

# 2015 International Union of Crystallography

1 of 4

research papers 2.2. Synthesis and crystallization (see Scheme 2)

Following a procedure similar to that reported for the synthesis of N-diphenylphosphoryl ketoimines (Huang et al., 2007), the title compound was prepared by the following procedure, as shown in Scheme 2. (E)-Acetophenone oxime (2.028 g, 15 mmol) was dissolved in dry dichloromethane (15 ml) in a Schlenk tube, cooled to 228 K, and treated with anhydrous triethylamine (2.09 ml, 15 mmol) while stirring. Diphenylphosphinic chloride (2.86 ml, 15 mmol) dissolved in dry dichloromethane (5 ml) was then added dropwise by syringe over a period of 10 min. The mixture was allowed to warm to room temperature and was stirred for an additional hour. The solvent was removed on a vacuum line and the residue was redissolved in fresh dry dichloromethane. This solution was washed and extracted from 1 M KHSO4, saturated NaHCO3, and saturated NaCl (2  20 ml each), dried over anhydrous MgSO4, filtered, and the solvent removed on a rotary evaporator. The resulting off-white powder (2.235 g) represented a 43% yield. Crystals of (E)-acetophenone O-diphenylphosphoryl oxime, (I), were grown by slow evaporation from an acetonitrile solution.

Table 1 Experimental details. Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin / )max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters H-atom treatment ˚ 3)  max,  min (e A

C20H18NO2P 335.32 Monoclinic, P21/c 125 18.035 (2), 5.9874 (7), 16.236 (2) 105.133 (3) 1692.4 (4) 4 Cu K 1.53 0.24  0.24  0.18

Bruker APEXII CCD diffractometer Multi-scan (SADABS; Bruker, 2013) 0.65, 0.77 21556, 2983, 2928 0.028 0.595

0.034, 0.091, 1.05 2983 218 H-atom parameters constrained 0.37, 0.41

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXL2014 (Sheldrick, 2015), SHELXTL2014 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009).

1075.7 (w), 1028.1 (w), 985.2 (w), 961.8 (w), 896.2 (s), 851.2 (s), 761.1 (m), 753.3 (m), 728.5 (s), 687.6 (s), 623.7 (m), 614.5 (m), 551.3 (s), 521.6 (s), 455.7 (m), 434.3 (m). Analysis calculated for C20H18NO2P: C 71.63, H 5.41, N 4.18%; found: C 71.37, H 5.35, N 4.01%. GC–MS: M+ 335 (calculated exact mass = 335.11). LC–MS: the m/z observed for the [M  H]+ ion was 336.1149 (calculated exact mass = 336.1148); this value of m/z matches the molecular formula with 0.30 p.p.m. error. 2.4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms on C atoms were included in calculated positions and refined using a riding ˚ and Uiso(H) = 1.2 and 1.5 model, with C—H = 0.95 or 0.98 A times Ueq(C) for the aryl and methyl C atoms, respectively. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

2.3. Spectrosopic and analytical data 1

H NMR (300 MHz, CDCl3):  7.3–7.9 (m, 15H, CarylH), 2.46 (s, 3H, CH3). 13C NMR (13C{1H}, 75.5 MHz, CDCl3):  14.01 (CH3), 126.84 (CarylH), 128.34 (d, CarylH, JC—P = 2 Hz), 128.51 (CarylH), 130.33 (CarylH), 131.61 (d, Caryl, JC—P = 136 Hz), 132.02 (d, CarylH, JC—P = 10 Hz), 132.24 (d, CarylH, JC—P = 3 Hz), 134.55 (Caryl), 163.65 (d, C N, JC—P = 12 Hz). 31 P NMR (31P{1H}, 121.5 MHz, CDCl3):  35.24. IR (neat, cm1): 3050.8 (w, Caryl—H str), 1685.4 (w, C N str), 1591.8 (w), 1570.0 (w), 1495.6 (w), 1485.4 (w), 1438.7 (m), 1374.2 (w), 1305.0 (m), 1223.7 (s), 1186.7 (w), 1129.7 (m), 1115.1 (m),

2 of 4

Majer and Tanski



C20H18NO2P

3. Results and discussion (E)-Acetophenone O-diphenylphosphoryl oxime, (I), was prepared by treating (E)-acetophenone oxime with diphenylphosphinic chloride in the presence of triethylamine, forming triethylamine hydrochloride as the by-product (Scheme 2). After appropriately washing the product of the crude reaction mixture, it was possible to isolate the compound cleanly without the need for column chromatography. The stability and isolability of activated ketoimine substrates are known to be important features of their utility in organic synthesis (Weinreb & Orr, 2005). 1H, 13C and 31P Acta Cryst. (2015). C71

research papers Table 2 ˚ ,  ). Hydrogen-bond geometry (A D—H  A i

C14—H14A  O2 C20—H20A  O2i

D—H

H  A

D  A

D—H  A

0.95 0.95

2.59 2.62

3.4973 (18) 3.5150 (17)

161 157

Symmetry code: (i) x; y  1; z.

Figure 1 A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

NMR, as well as GC–MS, LC–MS and elemental analysis, are all consistent with the structure of (I). The imine C N stretch can be seen in the IR spectrum at 1685.4 cm1. The syntheses of the analogous O-diphenylphosphoryl oximes prepared from benzophenone (Brown et al., 1976) and acetone (Harger, 1979) have been reported previously. Notably, we found that the method reported for the synthesis of the acetone analog

2-propanone O-diphenylphosphoryl oxime (Harger, 1979), by treating the ketone with O-(diphenylphosphoryl)hydroxylamine, was not effective with acetophenone. The title compound recrystallizes by slow evaporation of its solutions in dichloromethane or acetonitrile, yielding crystals suitable for single-crystal X-ray diffraction analysis. A single independent molecule of (I) is found in the asymmetric unit ˚ . This is in (Fig. 1), with a C N bond length of 1.2835 (19) A close agreement with the analogous bond in other activated ketoimines, such as (i) N-sulfonylimines [see (a) in Scheme 1]: N-tosyl (-methylbenzyl)imine, with a C N bond length of ˚ (Charette & Giroux, 1996), and N-tosyl (-ethyl1.288 A ˚ (Fan et benzyl)imine, with a C N bond length of 1.284 (2) A al., 2008); (ii) tert-butanesulfinyl ketoimines [see (b) in Scheme 1]: (RS,S)-N-(3-hydroxy-1,3-diphenylpropylidene)tert-butanesulfinamide, with a C N bond length of ˚ (Kochi et al., 2002), and N-[1-(4-chlorophenyl)1.288 (3) A ethylidene]-2-methylpropane-2-sulfinamide, with a C N ˚ (Guo et al., 2013); (iii) bond length of 1.283 (2) A N-phosphorylimines [see (c) in Scheme 1]: tert-butyl (Z)-N{(2S)-1-[(diphenylphosphinoyl)imino]-1-phenyl-2-propyl}car˚ (Kohmura & bamate, with a C N bond length of 1.260 (6) A

Figure 2 A view of the molecular packing of (I), showing the weak C—H  O interactions (dashed lines), the edge-to-face -stacking (thin lines indicate centroidto-centroid interactions) and the face-to-face -stacking (the thick line indicates a centroid-to-centroid interaction). See Table 2 for symmetry code (i). Acta Cryst. (2015). C71

Majer and Tanski



C20H18NO2P

3 of 4

research papers Mase, 2004); and (iv) the -ketoimine ester (2-methoxyphenylimino)phenylacetic acid methyl ester, with a C N ˚ (Fu et al., 2008). The structure bond length of 1.271 (3) A confirms that (I) is the E diastereomer of the C N double bond. The molecular packing of (I) is such that phosphoryl atom O2 is on the same side of the molecule as the imine N atom, with an N1—O1—P1—O2 torsion angle of 63.26 (10) . The molecules pack together in the solid state with few strong intermolecular interactions, such that the packing is likely driven to best fit the molecular shape of the molecule. Phosphoryl atom O2 forms two weak long C—H  O interactions (Table 2 and Fig. 2) running parallel to the crystallograhpic b axis, and there are several aromatic -stacking interactions. One of the diphenylphosphoryl phenyl rings forms a pairwise face-to-face -stacking interaction with the equivalent ring at (x + 2, y + 1, z + 1) on a neighboring molecule (Fig. 2). This -stacking is characterized by a centroid-to-centroid ˚ , a plane-to-centroid distance of distance of 3.9530 (10) A ˚ 3.9471 (6) A, and a ring offset or ring-slippage distance of ˚ (Hunter & Saunders, 1990; Lueckheide et al., 0.216 (3) A 2013). There also exist edge-to-face -stacking interactions (Nishio et al., 2009; Lueckheide et al., 2013) of each of the parallel -stacked rings with the other diphenylphosphoryl ring on the neighboring molecule at (x + 2, y + 1, z + 1), characterized by centroid-to-centroid distances of ˚ (Fig. 2). This edge-to-face -stacking interaction 4.8226 (11) A is highly offset, with a dihedral angle between the planes of 64.00 (7) . Combined with the face-to-face -stacking interaction, these edge-to-face interactions lead to the endo-faceto-endo-face assembly shown in Fig. 2. An example of a similar endo-face-to-endo-face assembly can be found in the crystal structure of 1,4,9,12-tetrabromo-6,7,14,15-tetrahydro-6,14methanocycloocta[1,2-b:5,6-b0 ]diquinoline (Marjo et al., 2001). Further, there is an edge-to-face -stacking interaction between the acetophenone ring and one of the diphenylphosphoryl phenyl rings at (x + 1, y  12, z + 12), characterized by a dihedral angle between the planes of ˚. 81.37 (5) and a centroid-to-centroid distance of 4.943 (1) A The edge-to-face interactions found in the structure of (I) are all slightly shorter than the edge-to-face centroid-to˚ found in the herringbone centroid distance of 5.025 A packing motif in the crystal structure of benzene (Bacon et al., 1964). In conclusion, we have prepared and obtained the crystal structure of (E)-acetophenone O-diphenylphosphoryl oxime, a ketoimine with an electron-withdrawing substituent on the imine N atom similar to other prochiral ketoimines used in asymmetric organic synthesis, such as N-sulfonylimines, tertbutanesulfinyl ketoimines, and N-phosphorylimines.

4 of 4

Majer and Tanski



C20H18NO2P

This work was made possible by Vassar College and the US National Science Foundation, to whom we are grateful for support. X-ray facilities were provided by the National Science Foundation (grants Nos. 0521237 and 0911324 to JMT). Thanks are extended to Dr Teresa Garrett for assistance with the LC mass spectrometry, performed using instrumentation supported by a National Science Foundation Major Research Instrumentation grant (No. 1039659, to Teresa A. Garrett P.I.).

References Bacon, G. E., Curry, N. A. & Wilson, S. A. (1964). Proc. R. Soc. London Ser. A, 279, 98–110. Baker-Salisbury, M. G., Starkman, B. S., Frisenda, G. M., Roteta, L. A. & Tanski, J. M. (2014). Inorg. Chim. Acta, 409, 394–398. Blaser, H.-U. & Elke, S. (2004). Editors. In Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions. New York: Wiley. Bonnaventure, I. & Charette, A. B. (2009). Tetrahedron, 65, 4968–4976. Brown, C., Hudson, R. F., Maron, A. & Record, K. A. F. (1976). J. Chem. Soc. Chem. Commun. pp. 663–664. Bruker (2013). APEX2, SAINT and SADABS. Bruxer AXS Inc., Madison, Wisconsin, USA. Bulat, E. & Garrett, T. A. (2011). J. Biol. Chem. 286, 33819–33831. Charette, A. B. & Giroux, A. (1996). Tetrahedron Lett. 37, 6669–6672. Cogan, D. A. & Ellman, J. A. (1999). J. Am. Chem. Soc. 121, 268–269. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Fan, L.-Y., Gao, F.-F., Jiang, W.-H., Deng, M.-Z. & Qian, C.-T. (2008). Org. Biomol. Chem. 6, 2133–2137. Fu, P., Snapper, M. L. & Hoveyda, A. H. (2008). J. Am. Chem. Soc. 130, 5530– 5541. Garcia, C., LaRochelle, L. K. & Walsh, P. J. (2002). J. Am. Chem. Soc. 124, 10970–10971. Guo, T., Song, R., Yuan, B.-H., Chen, X.-Y., Sun, X.-W. & Lin, G.-Q. (2013). Chem. Commun. 49, 5402–5404. Harger, M. J. P. (1979). J. Chem. Soc. Chem. Commun. pp. 768–769. Huang, J., Liu, X., Wen, Y., Qin, B. & Feng, W. (2007). J. Org. Chem. 72, 204– 208. Hunter, C. A. & Saunders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. Kochi, T., Tang, T. P. & Ellman, J. A. (2002). J. Am. Chem. Soc. 124, 6518–6519. Kohmura, Y. & Mase, T. (2004). J. Org. Chem. 69, 6329–6334. Lueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79–84. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Marjo, C. E., Rahman, A. N. M. M., Bishop, R., Scudder, M. L. & Craig, D. C. (2001). Tetrahedron, 57, 6289–6293. Nishimura, T., Noishiki, A., Tsui, G. C. & Hayashi, T. (2012). J. Am. Chem. Soc. 134, 5056–5059. Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Silverio, D. L., Torker, S., Pilyugina, T., Vieira, E. M., Snapper, M. L., Haeffner, F. & Hoveyda, A. H. (2013). Nature, 494, 216–221. Soai, K., Hatanaka, T. & Miyazawa, T. (1992). J. Chem. Soc. Chem. Commun. pp. 1097–1098. Walsh, P. J. & Kowzlowski, M. C. (2008). In Fundamentals of Asymmetric Catalysis. Sausalito, CA, USA: University Science Books. Weinreb, S. M. & Orr, R. K. (2005). Synthesis, 8, 1205–1227.

Acta Cryst. (2015). C71

supporting information

supporting information Acta Cryst. (2015). C71

[doi:10.1107/S2053229615002351]

Synthesis and crystal structure of a novel prochiral ketoimine: (E)-acetophenone O-diphenylphosphoryl oxime Sean H. Majer and Joseph M. Tanski Computing details Data collection: APEXII (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009). (E)-Acetophenone O-diphenylphosphoryl oxime Crystal data C20H18NO2P Mr = 335.32 Monoclinic, P21/c a = 18.035 (2) Å b = 5.9874 (7) Å c = 16.236 (2) Å β = 105.133 (3)° V = 1692.4 (4) Å3 Z=4

F(000) = 704 Dx = 1.316 Mg m−3 Cu Kα radiation, λ = 1.54178 Å Cell parameters from 9927 reflections θ = 5.1–71.2° µ = 1.53 mm−1 T = 125 K Block, colourless 0.24 × 0.24 × 0.18 mm

Data collection Bruker APEXII CCD diffractometer Radiation source: Cu IuS micro-focus source Detector resolution: 8.3333 pixels mm-1 φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) Tmin = 0.65, Tmax = 0.77

21556 measured reflections 2983 independent reflections 2928 reflections with I > 2σ(I) Rint = 0.028 θmax = 66.6°, θmin = 2.5° h = −21→21 k = −7→7 l = −19→19

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.034 wR(F2) = 0.091 S = 1.05 2983 reflections 218 parameters 0 restraints

Acta Cryst. (2015). C71

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0506P)2 + 0.8622P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.37 e Å−3 Δρmin = −0.41 e Å−3

sup-1

supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

P1 O1 O2 N1 C1 H1A H1B H1C C2 C3 C4 H4A C5 H5A C6 H6A C7 H7A C8 H8A C9 C10 H10A C11 H11A C12 H12A C13 H13A C14 H14A C15 C16 H16A C17 H17A C18 H18A C19

x

y

z

Uiso*/Ueq

0.79223 (2) 0.73272 (5) 0.78013 (6) 0.65565 (6) 0.63352 (9) 0.6761 0.65 0.5899 0.60996 (8) 0.52946 (8) 0.47876 (9) 0.4943 0.40559 (10) 0.3716 0.38203 (9) 0.3326 0.43081 (9) 0.4141 0.50389 (8) 0.537 0.87870 (7) 0.93634 (8) 0.9305 1.00225 (9) 1.0417 1.01050 (9) 1.055 0.95397 (9) 0.9601 0.88845 (8) 0.8505 0.79263 (7) 0.81433 (8) 0.8283 0.81572 (9) 0.8307 0.79517 (8) 0.7953 0.77453 (8)

0.73014 (6) 0.56856 (17) 0.97337 (17) 0.5957 (2) 0.2818 (3) 0.3392 0.1463 0.2466 0.4545 (2) 0.4688 (3) 0.2904 (3) 0.1635 0.2973 (3) 0.175 0.4810 (3) 0.483 0.6620 (3) 0.7907 0.6563 (3) 0.7812 0.6387 (2) 0.7970 (3) 0.9427 0.7425 (3) 0.8504 0.5317 (3) 0.4959 0.3719 (3) 0.2266 0.4231 (2) 0.3121 0.6418 (2) 0.7996 (2) 0.9459 0.7447 (2) 0.8529 0.5311 (2) 0.4935 0.3728 (2)

0.44821 (2) 0.47829 (6) 0.45212 (6) 0.42301 (7) 0.51181 (11) 0.5575 0.4877 0.5351 0.44351 (9) 0.39011 (9) 0.38606 (12) 0.4215 0.33054 (13) 0.3282 0.27875 (11) 0.2396 0.28428 (10) 0.2502 0.33928 (10) 0.3425 0.52316 (8) 0.55111 (10) 0.5271 0.61392 (11) 0.6324 0.64950 (10) 0.6936 0.62099 (10) 0.6453 0.55705 (9) 0.5365 0.34267 (8) 0.29041 (9) 0.3115 0.20781 (9) 0.1725 0.17697 (9) 0.1201 0.22920 (9)

0.01700 (13) 0.0217 (2) 0.0241 (2) 0.0227 (3) 0.0333 (4) 0.05* 0.05* 0.05* 0.0221 (3) 0.0239 (3) 0.0340 (4) 0.041* 0.0418 (4) 0.05* 0.0375 (4) 0.045* 0.0322 (4) 0.039* 0.0265 (3) 0.032* 0.0188 (3) 0.0270 (3) 0.032* 0.0356 (4) 0.043* 0.0325 (4) 0.039* 0.0295 (3) 0.035* 0.0234 (3) 0.028* 0.0174 (3) 0.0204 (3) 0.024* 0.0241 (3) 0.029* 0.0230 (3) 0.028* 0.0226 (3)

Acta Cryst. (2015). C71

sup-2

supporting information H19A C20 H20A

0.761 0.77337 (8) 0.7596

0.2264 0.4256 (2) 0.3159

0.208 0.31232 (9) 0.348

0.027* 0.0207 (3) 0.025*

Atomic displacement parameters (Å2)

P1 O1 O2 N1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

U11

U22

U33

U12

U13

U23

0.0171 (2) 0.0157 (5) 0.0280 (5) 0.0163 (6) 0.0272 (8) 0.0217 (7) 0.0206 (7) 0.0268 (8) 0.0234 (8) 0.0196 (7) 0.0222 (7) 0.0209 (7) 0.0181 (6) 0.0228 (7) 0.0198 (8) 0.0221 (7) 0.0321 (8) 0.0248 (7) 0.0143 (6) 0.0205 (7) 0.0278 (8) 0.0251 (7) 0.0247 (7) 0.0218 (7)

0.0187 (2) 0.0300 (5) 0.0209 (5) 0.0299 (6) 0.0396 (9) 0.0248 (7) 0.0278 (8) 0.0262 (8) 0.0364 (9) 0.0477 (10) 0.0446 (10) 0.0325 (8) 0.0235 (7) 0.0265 (8) 0.0394 (9) 0.0408 (9) 0.0271 (8) 0.0227 (7) 0.0204 (7) 0.0190 (7) 0.0245 (8) 0.0278 (8) 0.0200 (7) 0.0202 (7)

0.01512 (19) 0.0188 (5) 0.0226 (5) 0.0209 (6) 0.0351 (9) 0.0226 (7) 0.0262 (7) 0.0517 (10) 0.0661 (12) 0.0432 (9) 0.0297 (8) 0.0275 (7) 0.0156 (6) 0.0306 (8) 0.0428 (10) 0.0295 (8) 0.0264 (8) 0.0216 (7) 0.0167 (6) 0.0216 (7) 0.0223 (7) 0.0160 (6) 0.0214 (7) 0.0195 (6)

0.00034 (12) −0.0003 (4) 0.0030 (4) 0.0007 (5) 0.0010 (7) 0.0005 (6) −0.0014 (6) −0.0023 (6) −0.0091 (7) 0.0005 (7) 0.0030 (7) −0.0024 (6) 0.0013 (5) −0.0031 (6) −0.0044 (7) 0.0096 (7) 0.0102 (6) 0.0005 (6) 0.0019 (5) 0.0001 (5) 0.0017 (6) 0.0050 (6) 0.0005 (6) −0.0009 (5)

0.00400 (13) 0.0034 (4) 0.0052 (4) 0.0031 (5) 0.0116 (7) 0.0107 (5) 0.0114 (6) 0.0150 (7) 0.0129 (8) 0.0046 (7) 0.0067 (6) 0.0089 (6) 0.0057 (5) 0.0051 (6) −0.0006 (7) −0.0024 (6) 0.0027 (6) 0.0041 (5) 0.0025 (5) 0.0054 (5) 0.0108 (6) 0.0053 (5) 0.0030 (5) 0.0044 (5)

−0.00044 (12) 0.0036 (4) −0.0016 (4) 0.0020 (5) 0.0120 (7) −0.0014 (6) −0.0043 (6) −0.0019 (7) −0.0158 (9) −0.0155 (8) −0.0009 (7) 0.0003 (6) −0.0030 (5) −0.0001 (6) −0.0070 (7) −0.0075 (7) −0.0007 (6) −0.0031 (6) 0.0008 (5) 0.0008 (5) 0.0047 (5) 0.0004 (6) −0.0032 (5) 0.0027 (5)

Geometric parameters (Å, º) P1—O2 P1—O1 P1—C9 P1—C15 O1—N1 N1—C2 C1—C2 C1—H1A C1—H1B C1—H1C C2—C3 C3—C4 C3—C8 C4—C5

Acta Cryst. (2015). C71

1.4764 (11) 1.6124 (10) 1.7949 (14) 1.7951 (13) 1.4535 (14) 1.2835 (19) 1.495 (2) 0.98 0.98 0.98 1.4863 (19) 1.396 (2) 1.399 (2) 1.391 (2)

C9—C10 C9—C14 C10—C11 C10—H10A C11—C12 C11—H11A C12—C13 C12—H12A C13—C14 C13—H13A C14—H14A C15—C16 C15—C20 C16—C17

1.392 (2) 1.396 (2) 1.388 (2) 0.95 1.380 (3) 0.95 1.386 (2) 0.95 1.388 (2) 0.95 0.95 1.3922 (19) 1.3965 (19) 1.388 (2)

sup-3

supporting information C4—H4A C5—C6 C5—H5A C6—C7 C6—H6A C7—C8 C7—H7A C8—H8A

0.95 1.382 (3) 0.95 1.384 (3) 0.95 1.386 (2) 0.95 0.95

C16—H16A C17—C18 C17—H17A C18—C19 C18—H18A C19—C20 C19—H19A C20—H20A

0.95 1.388 (2) 0.95 1.386 (2) 0.95 1.391 (2) 0.95 0.95

O2—P1—O1 O2—P1—C9 O1—P1—C9 O2—P1—C15 O1—P1—C15 C9—P1—C15 N1—O1—P1 C2—N1—O1 C2—C1—H1A C2—C1—H1B H1A—C1—H1B C2—C1—H1C H1A—C1—H1C H1B—C1—H1C N1—C2—C3 N1—C2—C1 C3—C2—C1 C4—C3—C8 C4—C3—C2 C8—C3—C2 C5—C4—C3 C5—C4—H4A C3—C4—H4A C6—C5—C4 C6—C5—H5A C4—C5—H5A C5—C6—C7 C5—C6—H6A C7—C6—H6A C6—C7—C8 C6—C7—H7A C8—C7—H7A C7—C8—C3 C7—C8—H8A C3—C8—H8A C10—C9—C14

117.47 (6) 112.56 (6) 98.10 (6) 111.66 (6) 106.34 (6) 109.76 (6) 110.53 (8) 109.96 (11) 109.5 109.5 109.5 109.5 109.5 109.5 113.98 (13) 124.80 (13) 121.17 (13) 118.37 (14) 120.77 (14) 120.77 (13) 120.44 (16) 119.8 119.8 120.47 (16) 119.8 119.8 119.62 (15) 120.2 120.2 120.26 (16) 119.9 119.9 120.78 (15) 119.6 119.6 119.62 (13)

C10—C9—P1 C14—C9—P1 C11—C10—C9 C11—C10—H10A C9—C10—H10A C12—C11—C10 C12—C11—H11A C10—C11—H11A C11—C12—C13 C11—C12—H12A C13—C12—H12A C12—C13—C14 C12—C13—H13A C14—C13—H13A C13—C14—C9 C13—C14—H14A C9—C14—H14A C16—C15—C20 C16—C15—P1 C20—C15—P1 C17—C16—C15 C17—C16—H16A C15—C16—H16A C16—C17—C18 C16—C17—H17A C18—C17—H17A C19—C18—C17 C19—C18—H18A C17—C18—H18A C18—C19—C20 C18—C19—H19A C20—C19—H19A C19—C20—C15 C19—C20—H20A C15—C20—H20A

117.14 (11) 123.15 (11) 120.20 (15) 119.9 119.9 120.04 (15) 120.0 120.0 120.12 (14) 119.9 119.9 120.36 (15) 119.8 119.8 119.59 (14) 120.2 120.2 119.83 (12) 116.99 (10) 123.18 (10) 120.48 (13) 119.8 119.8 119.78 (13) 120.1 120.1 119.89 (13) 120.1 120.1 120.83 (13) 119.6 119.6 119.18 (13) 120.4 120.4

O2—P1—O1—N1 C9—P1—O1—N1

63.26 (10) −176.03 (8)

C15—P1—C9—C14 C14—C9—C10—C11

−81.80 (12) −1.7 (2)

Acta Cryst. (2015). C71

sup-4

supporting information C15—P1—O1—N1 P1—O1—N1—C2 O1—N1—C2—C3 O1—N1—C2—C1 N1—C2—C3—C4 C1—C2—C3—C4 N1—C2—C3—C8 C1—C2—C3—C8 C8—C3—C4—C5 C2—C3—C4—C5 C3—C4—C5—C6 C4—C5—C6—C7 C5—C6—C7—C8 C6—C7—C8—C3 C4—C3—C8—C7 C2—C3—C8—C7 O2—P1—C9—C10 O1—P1—C9—C10 C15—P1—C9—C10 O2—P1—C9—C14 O1—P1—C9—C14

−62.60 (9) 175.14 (9) −179.77 (11) −2.34 (19) 160.60 (14) −16.9 (2) −16.02 (19) 166.44 (14) 2.1 (2) −174.57 (15) −0.1 (3) −2.1 (3) 2.2 (2) −0.2 (2) −2.0 (2) 174.72 (13) −23.40 (13) −147.71 (11) 101.62 (12) 153.18 (11) 28.87 (12)

P1—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C14 C12—C13—C14—C9 C10—C9—C14—C13 P1—C9—C14—C13 O2—P1—C15—C16 O1—P1—C15—C16 C9—P1—C15—C16 O2—P1—C15—C20 O1—P1—C15—C20 C9—P1—C15—C20 C20—C15—C16—C17 P1—C15—C16—C17 C15—C16—C17—C18 C16—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C15 C16—C15—C20—C19 P1—C15—C20—C19

175.03 (12) −0.7 (2) 1.8 (3) −0.5 (2) −1.8 (2) 2.9 (2) −173.61 (11) 26.35 (12) 155.67 (10) −99.19 (11) −154.43 (11) −25.11 (12) 80.04 (12) 1.1 (2) −179.65 (11) 0.1 (2) −1.0 (2) 0.6 (2) 0.6 (2) −1.46 (19) 179.34 (10)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

C14—H14A···O2i C20—H20A···O2i

0.95 0.95

2.59 2.62

3.4973 (18) 3.5150 (17)

161 157

Symmetry code: (i) x, y−1, z.

Acta Cryst. (2015). C71

sup-5

Synthesis and crystal structure of a novel prochiral ketoimine: (E)-acetophenone O-diphenylphosphoryl oxime.

A novel activated prochiral ketoimine, (E)-acetophenone O-diphenylphosphoryl oxime, C(20)H(18)NO(2)P, with an electron-withdrawing substituent on the ...
622KB Sizes 2 Downloads 24 Views