Hindawi Publishing Corporation ξ€ e Scientific World Journal Volume 2014, Article ID 560234, 11 pages http://dx.doi.org/10.1155/2014/560234

Research Article Robust 𝐻∞ Filtering for a Class of Complex Networks with Stochastic Packet Dropouts and Time Delays Jie Zhang,1 Ming Lyu,2 Hamid Reza Karimi,3 Pengfei Guo,1 and Yuming Bo1 1

School of Automation, Nanjing University of Science & Technology, Nanjing 210094, China Information Overall Department, North Information Control Group Co., Ltd., Nanjing 211153, China 3 Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway 2

Correspondence should be addressed to Jie Zhang; [email protected] Received 27 December 2013; Accepted 6 March 2014; Published 27 March 2014 Academic Editors: J. Bajo and Z. Wu Copyright Β© 2014 Jie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The robust 𝐻∞ filtering problem is investigated for a class of complex network systems which has stochastic packet dropouts and time delays, combined with disturbance inputs. The packet dropout phenomenon occurs in a random way and the occurrence probability for each measurement output node is governed by an individual random variable. Besides, the time delay phenomenon is assumed to occur in a nonlinear vector-valued function. We aim to design a filter such that the estimation error converges to zero exponentially in the mean square, while the disturbance rejection attenuation is constrained to a given level by means of the 𝐻∞ performance index. By constructing the proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the state detection observer for the discrete systems, and the observer gain is also derived by solving linear matrix inequalities. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.

1. Introduction Over the past decades, the 𝐻∞ filtering problem has drawn particular attention, since 𝐻∞ filters are insensitive to the exact knowledge of the statistics of the noise signals. Up to now, a great deal of effort has been devoted to the design issues of various kinds of filters, for example, the Kalman filters [1–3] and 𝐻∞ filters [4–9]. In real-world applications, the measurements may contain missing measurements (or incomplete observations) due to various reasons such as high maneuverability of the tracked targets, sensor temporal failures or network congestion. In the past few years, the filtering problem with missing measurements has received much attention [10–17]. In [10], a model of multiple missing measurements has been presented by using a diagonal matrix to account for the different missing probabilities for individual sensors. The finite-horizon robust filtering problem has been considered in [11] for discrete-time stochastic systems with probabilistic missing measurements subject to norm-bounded parameter uncertainties. A Markovian jumping process has been employed in [12] to reflect

the measurement missing problem. Moreover, the optimal filter design problem has been tackled in [13] for systems with multiple packet dropouts by solving a recursive difference equation (RDE). On the other hand, the complex networks have been gaining increasing research attention from all fields of the basic science and the technological practice. They have applications in many real-world systems such as the Internet, World Wide Web, food webs, electric power grids, cellular and metabolic networks, scientific citation networks, and social networks [18–25]. Due to randomly occurring incomplete phenomenon which occurs in the signal transfer within complex networks, there may be time delays and packet dropouts [26–33]. For instance, over a finite horizon, the synchronization and state estimation problems for an array of coupled discrete time-varying stochastic complex networks have been studied based on the recursive linear matrix inequalities (RLMIs) approach [26]. In [29], one of the first few attempts has been made to address the synchronization problem for stochastic discrete-time complex networks with time delays. Furthermore, in [31], a new array of coupled

2

The Scientific World Journal

delayed complex networks with stochastic nonlinearities, multiple stochastic disturbances, and mixed time delays in the discrete-time domain has been investigated, and the synchronization stability criteria have been derived by utilizing a novel matrix functional, the properties of the Kronecker product, the free-weighting matrix method, and the stochastic techniques. Summarizing the above discussion, it should be pointed out that, up to now, the general filter results for complex networks with randomly occurring incomplete information have been very few, especially when the networks exhibit both stochastic natures and disturbance inputs. In this paper, we make an attempt to investigate the problems of the robust 𝐻∞ filtering for a class of complex systems with stochastic packet dropouts, time delays, and disturbance inputs. By constructing the proper Lyapunov-Krasovskii functional, we can get sufficient conditions, such that the filter error is exponentially stable in mean-square sense, and acquire gain of the designed observer. The rest of the paper is organized as follows. In Section 2, the problem of complex networks is formulated and some useful lemmas are introduced. In Section 3, some sufficient conditions are established to make sure the robustly exponential stability of the filtering error dynamics. Besides, the gain of observer is also designed by LMI. An illustrated example is given in Section 4 to demonstrate the effectiveness of the proposed method. Finally, we give our conclusions in Section 5. Notation. The notation used here is fairly standard except where otherwise stated. R𝑛 and Rπ‘›Γ—π‘š denote, respectively, the 𝑛 dimensional Euclidean space and the set of all 𝑛 Γ— π‘š real matrices. 𝐼 denotes the identity matrix of compatible dimension. The notation 𝑋 β‰₯ π‘Œ (resp., 𝑋 > π‘Œ), where 𝑋 and π‘Œ are symmetric matrices, means that 𝑋 βˆ’ π‘Œ is positive semidefinite (resp., positive definite). 𝐴𝑇 represents the transpose of 𝐴. πœ† max (𝐴) and πœ† min (𝐴) denote the maximum and minimum eigenvalue of 𝐴, respectively. Sym{𝐴} denotes the symmetric matrix 𝐴 + 𝐴𝑇 . E{π‘₯} stands for the expectation of the stochastic variable π‘₯. β€–π‘₯β€– describes the Euclidean norm of a vector π‘₯. diag{𝐹1 , 𝐹2 , . . .} stands for a block-diagonal matrix whose diagonal blocks are given by 𝐹1 , 𝐹2 , . . .. The symbol βˆ— in a matrix means that the corresponding term of the matrix can be obtained by symmetric property. The symbol βŠ— denotes the Kronecker product. In symmetric block matrices, the symbol βˆ— is used as an ellipsis for terms induced by symmetry.

2. Problem Formulation Consider the following discrete-time complex system with time delays and disturbance: π‘₯𝑖 (π‘˜ + 1) = 𝑓 (π‘₯𝑖 (π‘˜)) + 𝑔 (π‘₯𝑖 (π‘˜ βˆ’ 𝑑 (π‘˜))) 𝑁

+ βˆ‘ 𝑀𝑖𝑗 Ξ“π‘₯𝑗 (π‘˜) + 𝐷1𝑖 V1 (π‘˜) + β„Ž (π‘₯𝑖 (π‘˜)) πœ” (π‘˜) , 𝑗=1

𝑧𝑖 (π‘˜) = 𝑀π‘₯𝑖 (π‘˜) ,

π‘₯𝑖 (𝑗) = πœ‘π‘– (𝑗) ,

𝑗 = βˆ’π‘‘π‘€, βˆ’ 𝑑𝑀 + 1, . . . , 0; 𝑖 = 1, 2, . . . , 𝑁, (1)

where π‘₯𝑖 (π‘˜) ∈ R𝑛 is the state vector of the 𝑖th node, 𝑧𝑖 (π‘˜) ∈ Rπ‘Ÿ is the output of the 𝑖th node, 𝑑(π‘˜) denotes time-varying delay, 𝑓(β‹…) and 𝑔(β‹…) are nonlinear vector-valued functions satisfying certain conditions given later, V1 (π‘˜) is the disturbance input belonging to 𝑙2 ([0, ∞); Rπ‘ž ), πœ”(π‘˜) is a zero mean Gaussian white noise sequence, and β„Ž(β‹…) is the continuous function quantifying the noise intensity. Ξ“ = diag{π‘Ÿ1 , π‘Ÿ2 , . . . , π‘Ÿπ‘› } is the matrix linking the 𝑗th state variable if π‘Ÿπ‘— =ΜΈ 0, and π‘Š = (𝑀𝑖𝑗 )𝑁×𝑁 is the coupled configuration matrix of the network with 𝑀𝑖𝑗 > 0 (𝑖 =ΜΈ 𝑗) but not all zero. As usual, the coupling configuration matrix π‘Š is symmetric (i.e., π‘Š = π‘Šπ‘‡ ) and satisfies 𝑁

𝑁

𝑗=1

𝑗=1

βˆ‘π‘€π‘–π‘— = βˆ‘ 𝑀𝑗𝑖 = 0,

𝑖 = 1, 2, . . . , 𝑁.

(2)

𝐷1𝑖 , 𝐹𝑖 , and 𝑀 are constant matrices with appropriate dimensions, and πœ‘π‘– (𝑗) is a given initial condition sequence. For the system shown in (2), we make the following assumptions throughout the paper. Assumption 1. The variable πœ”(π‘˜) is a scalar Wiener process (Brownian motion) satisfying E {πœ”2 (π‘˜)} = 1,

E {πœ” (π‘˜)} = 0,

E {πœ” (π‘˜) πœ” (𝑗)} = 0

(π‘˜ =ΜΈ 𝑗) .

(3)

Assumption 2. The variable 𝑑(π‘˜) denotes the time-varying delay satisfying 0 < π‘‘π‘š ≀ 𝑑 (π‘˜) ≀ 𝑑𝑀,

(4)

where π‘‘π‘š and 𝑑𝑀 are constant positive integers representing the lower and upper bounds on the communication delay, respectively. Assumption 3. 𝑓(β‹…) and 𝑔(β‹…) are the nonlinear disturbance which satisfies the following sector-bounded conditions: 𝑓

[𝑓 (π‘₯) βˆ’ 𝑓 (𝑦) βˆ’ πœ™1 (π‘₯ βˆ’ 𝑦)]

𝑇

𝑓

Γ— [𝑓 (π‘₯) βˆ’ 𝑓 (𝑦) βˆ’ πœ™2 (π‘₯ βˆ’ 𝑦)] ≀ 0, [𝑔 (π‘₯) βˆ’ 𝑔 (𝑦) βˆ’

𝑔 πœ™1

(π‘₯ βˆ’ 𝑦)]

(5)

𝑇

𝑔

Γ— [𝑔 (π‘₯) βˆ’ 𝑔 (𝑦) βˆ’ πœ™2 (π‘₯ βˆ’ 𝑦)] ≀ 0, 𝑓

𝑓

𝑔

𝑔

for all π‘₯, 𝑦 ∈ R𝑛 , where πœ™1 , πœ™2 , πœ™1 , and πœ™2 are real matrices of appropriate dimensions and 𝑓(0) = 0, 𝑔(0) = 0. Assumption 4. The continuous function β„Ž(π‘₯𝑖 (π‘˜)) satisfies β„Žπ‘‡ (π‘₯𝑖 (π‘˜)) β„Ž (π‘₯𝑖 (π‘˜)) ≀ 󰜚π‘₯𝑖𝑇 (π‘˜) π‘₯𝑖 (π‘˜) , where 󰜚 > 0 is known constant scalars.

(6)

The Scientific World Journal

3

In this paper, we assume that an unreliable network medium is present between the physical plant and the state detection filter, and this means that the output data is subject to randomly missing phenomenon. The signal received by the state detection filter can be described by 𝑦𝑖 (π‘˜) = 𝛼𝑖 (π‘˜) 𝐢π‘₯𝑖 (π‘˜) + 𝐷2𝑖 V2 (π‘˜) ,

(7)

where 𝑦𝑖 (π‘˜) ∈ Rπ‘š is the measurement output of the 𝑖th node and V2 (π‘˜) is the disturbance input which belongs to 𝑙2 ([0, ∞); R𝑝 ). 𝐢 and 𝐷2𝑖 are constant matrices with appropriate dimensions. 𝛼𝑖 (π‘˜) is the Bernoulli distributed white sequences governed by Prob {𝛼𝑖 (π‘˜) = 1} = E {𝛼𝑖 (π‘˜)} = 𝛼𝑖 ,

𝑇

𝑇 π‘§Μ‚π‘˜ = [̂𝑧1𝑇 (π‘˜) 𝑧̂2𝑇 (π‘˜) β‹… β‹… β‹… 𝑧̂𝑁 (π‘˜)] , 𝑇

Vπ‘˜ = [V1𝑇 (π‘˜) V2𝑇 (π‘˜)] ,

𝑇

𝑇

𝑔 (π‘₯π‘˜ ) = [𝑔𝑇 (π‘₯1 (π‘˜)) 𝑔𝑇 (π‘₯2 (π‘˜)) β‹… β‹… β‹… 𝑔𝑇 (π‘₯𝑁 (π‘˜))] , 𝑇

β„Ž (π‘₯π‘˜ ) = [β„Žπ‘‡ (π‘₯1 (π‘˜)) β„Žπ‘‡ (π‘₯2 (π‘˜)) β‹… β‹… β‹… β„Žπ‘‡ (π‘₯𝑁 (π‘˜))] , π‘“Μƒπ‘˜ = 𝑓 (π‘₯π‘˜ ) βˆ’ 𝑓 (π‘₯Μ‚π‘˜ ) ,

Μƒ = 𝐼 βŠ— 𝑀, 𝑀

𝐸𝑖 = diag {0, . . . , 0, 𝐼, ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 0, . . . , 0} . ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ π‘–βˆ’1

π‘βˆ’π‘–

(11) 𝑇

Setting πœ‚π‘˜ = [π‘₯π‘˜π‘‡ π‘’π‘˜π‘‡ ] , we subsequently obtain an augmented system as follows: βƒ— π‘˜ πœ‚π‘˜+1 = Wπœ‚π‘˜ + π‘“π‘˜βƒ— + π‘”π‘˜βˆ’π‘‘ 𝑁

+ 𝐾𝑖 (𝑦𝑖 (π‘˜) βˆ’ 𝐢π‘₯̂𝑖 (π‘˜)) ,

Μƒ π‘˜ + DVπ‘˜ + Hπœ”π‘˜ , + βˆ‘ (π›Όπ‘˜π‘– βˆ’ 𝛼𝑖 ) G𝑖 𝐢Sπœ‚

𝑧̂𝑖 (π‘˜) = 𝑀π‘₯̂𝑖 (π‘˜) ,

π‘§Μƒπ‘˜ = Mπœ‚π‘˜ , where

𝑖 = 1, 2, . . . , 𝑁, where π‘₯̂𝑖 (π‘˜) ∈ R𝑛 is the estimate of the state π‘₯𝑖 (π‘˜), 𝑧̂𝑖 (π‘˜) ∈ Rπ‘Ÿ is the estimate of the output 𝑧𝑖 (π‘˜), and 𝐾𝑖 ∈ Rπ‘›Γ—π‘š is the estimator gain matrix to be designed. Μ‚ Let the estimation error be 𝑒(π‘˜) = π‘₯(π‘˜)βˆ’π‘₯(π‘˜). By using the Kronecker product, the filtering error system can be obtained from (2), (7), and (9) as follows:

𝑇 π‘“π‘˜βƒ— = [𝑓𝑇 (π‘₯π‘˜ ) π‘“Μƒπ‘˜π‘‡] ,

π›Όπ‘˜π‘– = 𝛼𝑖 (π‘˜) ,

Μƒ π‘˜, π‘§Μƒπ‘˜ = 𝑀𝑒 where 𝑇

𝑇 π‘₯π‘˜ = [π‘₯1𝑇 (π‘˜) π‘₯2𝑇 (π‘˜) β‹… β‹… β‹… π‘₯𝑁 (π‘˜)] , 𝑇

𝑇 π‘₯Μ‚π‘˜ = [π‘₯Μ‚1𝑇 (π‘˜) π‘₯Μ‚2𝑇 (π‘˜) β‹… β‹… β‹… π‘₯̂𝑁 (π‘˜)] , 𝑇 𝑇 𝑧𝑁 (π‘˜)] ,

𝛼̃Λ = diag {𝛼1 𝐼, 𝛼2 𝐼, . . . , 𝛼𝑁𝐼} , 𝑇

G𝑖 = [0 βˆ’πΈπ‘–π‘‡ 𝐾𝑇 ] , Μƒ , M = [0 𝑀]

S = [𝐼 0] ,

(13)

W=[

𝑁

𝑖=1

𝑇

π‘”π‘˜βƒ— = [𝑔𝑇 (π‘₯π‘˜ ) π‘”Μƒπ‘˜π‘‡ ] ,

π‘ŠβŠ—Ξ“ 0 Μƒ βˆ’πΎπΆ Μƒ] , π‘Š βŠ— Ξ“ + 𝐾 (𝐼 βˆ’ 𝛼̃Λ ) 𝐢

Μƒ π‘˜ + (π‘Š βŠ— Ξ“ + 𝐾𝐢) Μƒ π‘₯π‘˜ π‘’π‘˜+1 = π‘“Μƒπ‘˜ + π‘”Μƒπ‘˜βˆ’π‘‘π‘˜ βˆ’ 𝐾𝐢𝑒 Μƒ π‘˜) , Μƒ π‘˜ + β„Žπ‘˜ πœ”π‘˜ βˆ’ 𝐾 (βˆ‘π›Όπ‘– (π‘˜) 𝐸𝑖 𝐢π‘₯ + 𝐿V

(12)

𝑖=1

(9)

𝑗 = βˆ’π‘‘π‘€, βˆ’π‘‘π‘€ + 1, . . . , 0;

β‹…β‹…β‹…

Μƒ = [𝐷1 βˆ’πΎπ·2 ] , 𝐷 𝑇

π‘₯̂𝑖 (π‘˜ + 1) = 𝑓 (π‘₯̂𝑖 (π‘˜)) + 𝑔 (π‘₯̂𝑖 (π‘˜ βˆ’ 𝑑 (π‘˜)))

π‘§π‘˜ =

Μƒ = 𝐼 βŠ— 𝐢, 𝐢

𝑇 𝑇 𝑇 𝐷2 = [𝐷21 ] , 𝐷22 β‹… β‹… β‹… 𝐷2𝑁

(8)

where 𝛼𝑖 ∈ [0, 1] is known constant. In this paper, we are interested in obtaining 𝑧̂𝑖 (π‘˜), the estimate of the signal 𝑧𝑖 (π‘˜), from the actual measured output 𝑦𝑖 (π‘˜). We adopt the following filter to be considered for node 𝑖:

𝑧2𝑇 (π‘˜)

π‘”Μƒπ‘˜ = 𝑔 (π‘₯π‘˜ ) βˆ’ 𝑔 (π‘₯Μ‚π‘˜ ) ,

𝐾 = diag {𝐾1 , 𝐾2 , . . . , 𝐾𝑁} ,

when data missing,

[𝑧1𝑇 (π‘˜)

π‘€π‘˜ = 𝑀 (π‘˜) ,

𝑓 (π‘₯π‘˜ ) = [𝑓𝑇 (π‘₯1 (π‘˜)) 𝑓𝑇 (π‘₯2 (π‘˜)) β‹… β‹… β‹… 𝑓𝑇 (π‘₯𝑁 (π‘˜))] ,

𝑇

Prob {𝛼𝑖 (π‘˜) = 0} = 1 βˆ’ E {𝛼𝑖 (π‘˜)} = 1 βˆ’ 𝛼𝑖 ,

π‘₯̂𝑖 (𝑗) = 0,

π‘‘π‘˜ = 𝑑 (π‘˜) ,

𝑇 𝑇 𝑇 𝐷1 = [𝐷11 ] , 𝐷12 β‹… β‹… β‹… 𝐷1𝑁

when data received;

π‘§Μƒπ‘˜ = π‘§π‘˜ βˆ’ π‘§Μ‚π‘˜ ,

(10)

D=[

0 𝐷1 ], 𝐷1 βˆ’πΎπ·2

H=[

β„Ž (π‘₯π‘˜ ) ]. β„Ž (π‘₯π‘˜ )

Definition 5 (see [34]). The filtering error system (12) is said to be exponentially stable in the mean square if, in case of Vπ‘˜ = 0, for any initial conditions, there exist constants πœ€ > 0 and 0 < πœ… < 1 such that σ΅„© σ΅„©2 σ΅„© σ΅„©2 E {σ΅„©σ΅„©σ΅„©πœ‚π‘˜ σ΅„©σ΅„©σ΅„© } ≀ πœ€πœ…π‘˜ max E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } , π‘˜ ∈ N, (14) π‘–βˆˆ[βˆ’π‘‘π‘€ , 0]

𝑇 𝑇 (𝑖), πœ‘1𝑇 (𝑖), πœ‘2𝑇 (𝑖), . . . , πœ‘π‘ (𝑖)]𝑇 , where πœ‚π‘– := [πœ‘1𝑇 (𝑖), πœ‘2𝑇 (𝑖), . . . , πœ‘π‘ for all 𝑖 ∈ [βˆ’π‘‘π‘€, 0].

4

The Scientific World Journal 1 𝑔𝑇 𝑔 𝑔 Ξ¦1 = 𝐼 βŠ— Sym { πœ™1 πœ™2 } , 2

Our aim in this paper is to develop techniques to deal with the robust 𝐻∞ filtering problem for a class of complex systems with stochastic packet dropouts, time delays, and disturbance inputs. The augmented observer system (12) satisfies the following requirements (Q1) and (Q2), simultaneously: (Q1) the filter error system (12) with Vπ‘˜ = 0 is exponentially stable in the mean square; (Q2) under the zero initial condition, the filtering error π‘§Μƒπ‘˜ satisfies ∞ 1 ∞ σ΅„©σ΅„© σ΅„©σ΅„©2 σ΅„© σ΅„©2 βˆ‘ E {σ΅„©σ΅„©π‘§Μƒπ‘˜ σ΅„©σ΅„© } ≀ 𝛾2 βˆ‘ σ΅„©σ΅„©σ΅„©Vπ‘˜ σ΅„©σ΅„©σ΅„© 𝑁 π‘˜=0 π‘˜=0

βˆ’π‘† 𝑆 [ 𝑇2 3 ] < 0. 𝑆3 𝑆1

or

Ξ33 = 𝑃1 βˆ’ πœ† 1 𝐼,

Ξ11 = W𝑇 𝑃1 W βˆ’ 𝑃1 + (𝑑𝑀 βˆ’ π‘‘π‘š + 1) 𝑃2 + πœ† 3 𝐴 󰜚 𝑁

𝑓 ̃𝑇 G𝑇 𝑃1 G𝑖 𝐢S, Μƒ βˆ’ πœ† 1 Ξ¦1 + βˆ‘π›ΌΜƒπ‘–βˆ— S𝑇 𝐢 𝑖 𝑖=1

(16)

𝑓𝑇

Ξ13 = W𝑇 𝑃1 + πœ† 1 Ξ¦2 ,

Ξ44 = 𝑃1 βˆ’ πœ† 2 𝐼. (18)

Proof. Choose the following Lyapunov functional for system (12): 𝑉 (π‘˜) = 𝑉1 (π‘˜) + 𝑉2 (π‘˜) + 𝑉3 (π‘˜) ,

(19)

where 𝑉1 (π‘˜) = πœ‚π‘˜π‘‡ 𝑃1 πœ‚π‘˜ ,

3. Main Results In this part, we will construct the Lyapunov-Krasovskii functional and the use of linear matrix inequality to propose sufficient conditions such that the system error model in (12) could be exponentially stable in mean square. Let us first consider the robust exponential stability analysis problem for the filter error system (12) with Vπ‘˜ = 0. Theorem 7. Consider the system (2) and suppose that the estimator parameters 𝐾𝑖 (𝑖 = 1, 2, . . . , 𝑁) are given. The system augmented error model (12) with Vπ‘˜ = 0 is said to be exponentially stable in mean square, if there exist positive definite matrices 𝑄𝑖 (𝑖 = 1, 2, 3, 4) and positive scalars πœ† 𝑗 (𝑗 = 1, 2, 3) satisfying the following inequality: Ξ11 0 Ξ13 W𝑇 𝑃1 ] [ ] [ [ βˆ— Ξ22 0 πœ† 2 Φ𝑔𝑇] 2 ] [ ] [ Ξ 1 = [ ] < 0, [ βˆ— βˆ— Ξ33 𝑃1 ] ] [ ] [ [βˆ— βˆ— βˆ— Ξ44 ] ] [ 𝑃1 ≀ πœ† 3 𝐼, 󰜚𝐼 0 𝐴󰜚 = [ ], 0 0

= 𝛼𝑖 (1 βˆ’ 𝛼𝑖 ) ,

1 𝑓𝑇 𝑓 𝑓 Ξ¦1 = 𝐼 βŠ— Sym { πœ™1 πœ™2 } , 2 𝑓

Ξ¦2 = 𝐼 βŠ—

𝑓

𝑓

(πœ™1 + πœ™2 ) 2

π‘˜βˆ’1

𝑉2 (π‘˜) = βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– , 𝑖=π‘˜βˆ’π‘‘π‘˜

𝑉3 (π‘˜) =

π‘˜βˆ’π‘‘π‘š

βˆ‘

,

(20)

π‘˜βˆ’1

βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– .

𝑗=π‘˜βˆ’π‘‘π‘€ +1 𝑖=𝑗

Then, along the trajectory of system (12) with Vπ‘˜ = 0, we have E {Δ𝑉1 (π‘˜)} = E {𝑉1 (π‘˜ + 1) βˆ’ 𝑉1 (π‘˜)} 𝑇 𝑃1 πœ‚π‘˜+1 βˆ’ πœ‚π‘˜π‘‡ 𝑃1 πœ‚π‘˜ } = E {πœ‚π‘˜+1

= E {πœ‚π‘˜π‘‡W𝑇 𝑃1 Wπœ‚π‘˜ + π‘“π‘˜π‘‡βƒ— 𝑃1 π‘“π‘˜βƒ— 𝑇 βƒ— π‘˜ 𝑃1 π‘”π‘˜βˆ’π‘‘ βƒ— π‘˜ + H𝑇 𝑃1 H + π‘”π‘˜βˆ’π‘‘ 𝑁

(17)

̃𝑇 G𝑇 𝑃1 G𝑖 𝐢Sπœ‚ Μƒ π‘˜ + βˆ‘ π›ΌΜƒπ‘–βˆ— πœ‚π‘˜π‘‡ S𝑇 𝐢 𝑖 𝑖=1

βƒ— π‘˜ + 2πœ‚π‘˜π‘‡ W𝑇 𝑃1 π‘“π‘˜βƒ— + 2πœ‚π‘˜π‘‡ W𝑇 𝑃1 π‘”π‘˜βˆ’π‘‘ βƒ— π‘˜ βˆ’ πœ‚π‘˜π‘‡ 𝑃1 πœ‚π‘˜ } , +2π‘“π‘˜π‘‡βƒ— 𝑃1 π‘”π‘˜βˆ’π‘‘

where π›ΌΜƒπ‘–βˆ—

𝑔

Ξ22 = βˆ’π‘ƒ2 βˆ’ πœ† 2 Ξ¦1 ,

𝑃2 = diag {𝐼 βŠ— 𝑄3 , 𝐼 βŠ— 𝑄4 } ,

(15)

Lemma 6 (the Schur complement). Given constant matrices 𝑆1 , 𝑆2 , and 𝑆3 , where 𝑆1 = 𝑆1𝑇 and 0 < 𝑆2 = 𝑆2𝑇 , then 𝑆1 + 𝑆3𝑇 𝑆2βˆ’1 𝑆3 < 0 if and only if 𝑆1 𝑆3𝑇 ] 0 is a given disturbance attenuation level.

[

𝑔

𝑔

Ξ¦2 = 𝐼 βŠ—

E {H𝑇 𝑃1 H} ≀ πœ† 3 πœ‚π‘˜π‘‡ 𝐴 󰜚 πœ‚π‘˜ . Next, it can be derived that E {Δ𝑉2 (π‘˜)} = E {𝑉2 (π‘˜ + 1) βˆ’ 𝑉2 (π‘˜)} π‘˜ π‘˜βˆ’1 { } = E { βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– βˆ’ βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– } 𝑖=π‘˜βˆ’π‘‘π‘˜ {𝑖=π‘˜βˆ’π‘‘π‘˜+1 +1 }

(21)

The Scientific World Journal

5

{ 𝑇 = E {πœ‚π‘˜π‘‡ 𝑃2 πœ‚π‘˜ βˆ’ πœ‚π‘˜βˆ’π‘‘ π‘ƒπœ‚ π‘˜ 2 π‘˜βˆ’π‘‘π‘˜ { π‘˜βˆ’1

+

βˆ‘

𝑖=π‘˜βˆ’π‘‘π‘˜+1 +1

πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– βˆ’

where Μƒ 11 0 W𝑇 𝑃1 W𝑇 𝑃1 Ξ [ 0 0 ] ], Μƒ 1 = [ βˆ— βˆ’π‘ƒ2 Ξ  [βˆ— βˆ— 𝑃1 ] 𝑃1 βˆ— 𝑃1 ] [βˆ— βˆ—

π‘˜βˆ’1

} βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– } 𝑖=π‘˜βˆ’π‘‘π‘˜ +1 }

π‘˜βˆ’1 { 𝑇 = E {πœ‚π‘˜π‘‡ 𝑃2 πœ‚π‘˜ βˆ’ πœ‚π‘˜βˆ’π‘‘ 𝑃 πœ‚ + βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– 2 π‘˜βˆ’π‘‘ π‘˜ π‘˜ 𝑖=π‘˜βˆ’π‘‘π‘š +1 {

+

π‘˜βˆ’π‘‘π‘š

π‘˜βˆ’1

} πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– βˆ’ βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– } 𝑖=π‘˜βˆ’π‘‘π‘˜+1 +1 𝑖=π‘˜βˆ’π‘‘π‘˜ +1 } βˆ‘

(25)

𝑁

̃𝑇 G𝑇 𝑃1 G𝑖 𝐢S, Μƒ + πœ† 3 𝐴 󰜚 + βˆ‘π›ΌΜƒπ‘–βˆ— S𝑇 𝐢 𝑖 𝑖=1

Notice that (5) implies 𝑇

𝑓 𝑓 [π‘“π‘˜βƒ— βˆ’ (𝐼 βŠ— πœ™1 ) πœ‚π‘˜ ] [π‘“π‘˜βƒ— βˆ’ (𝐼 βŠ— πœ™2 ) πœ‚π‘˜ ] ≀ 0.

{ 𝑇 ≀ E {πœ‚π‘˜π‘‡ 𝑃2 πœ‚π‘˜ βˆ’ πœ‚π‘˜βˆ’π‘‘ π‘ƒπœ‚ π‘˜ 2 π‘˜βˆ’π‘‘π‘˜ { +

Μƒ 11 = W𝑇 𝑃1 W βˆ’ 𝑃1 + (𝑑𝑀 βˆ’ π‘‘π‘š + 1) 𝑃2 Ξ

𝑔

𝑇

𝑔

(26)

[π‘”π‘˜βƒ— βˆ’ (𝐼 βŠ— πœ™1 ) πœ‚π‘˜ ] [π‘”π‘˜βƒ— βˆ’ (𝐼 βŠ— πœ™2 ) πœ‚π‘˜ ] ≀ 0. From (26), it follows that

π‘˜βˆ’π‘‘π‘š

} πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– } , 𝑖=π‘˜βˆ’π‘‘π‘€ +1 }

E {Δ𝑉 (πœ‚π‘˜ )}

βˆ‘

Μƒ 1 πœ‰π‘˜ βˆ’ πœ† 1 [π‘“π‘˜βƒ— βˆ’ (𝐼 βŠ— πœ™π‘“ ) πœ‚π‘˜ ] ≀ E {πœ‰π‘˜π‘‡ Ξ  1

E {Δ𝑉3 (π‘˜)}

𝑇

𝑓 Γ— [π‘“π‘˜βƒ— βˆ’ (𝐼 βŠ— πœ™2 ) πœ‚π‘˜ ]

= E {𝑉3 (π‘˜ + 1) βˆ’ 𝑉3 (π‘˜)}

𝑔

βƒ— π‘˜ βˆ’ (𝐼 βŠ— πœ™1 ) πœ‚π‘˜βˆ’π‘‘π‘˜ ] βˆ’ πœ† 2 [π‘”π‘˜βˆ’π‘‘

π‘˜βˆ’π‘‘π‘š π‘˜βˆ’1 } { π‘˜βˆ’π‘‘π‘š +1 π‘˜ = E{ βˆ‘ βˆ‘πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– βˆ’ βˆ‘ βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘–} 𝑗=π‘˜βˆ’π‘‘π‘€ +1 𝑖=𝑗 } {𝑗=π‘˜βˆ’π‘‘π‘€ +2 𝑖=𝑗 π‘˜βˆ’π‘‘π‘š π‘˜βˆ’1 π‘˜ } { π‘˜βˆ’π‘‘π‘š = E{ βˆ‘ βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– βˆ’ βˆ‘ βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘–} 𝑗=π‘˜βˆ’π‘‘π‘€ +1 𝑖=𝑗 } {𝑗=π‘˜βˆ’π‘‘π‘€ +1 𝑖=𝑗+1

{ π‘˜βˆ’π‘‘π‘š } = E{ βˆ‘ (πœ‚π‘˜π‘‡ 𝑃2 πœ‚π‘˜ βˆ’πœ‚π‘—π‘‡π‘ƒ2 πœ‚π‘— )} {𝑗=π‘˜βˆ’π‘‘π‘€ +1 }

𝑇

𝑔

βƒ— π‘˜ βˆ’ (𝐼 βŠ— πœ™2 ) πœ‚π‘˜βˆ’π‘‘π‘˜ ] } Γ— [π‘”π‘˜βˆ’π‘‘ ≀ E {πœ‰π‘˜π‘‡ Ξ 1 πœ‰π‘˜ } . According to Theorem 7, we have Ξ 1 < 0; there must exist a sufficiently small scalar πœ€0 > 0 such that Ξ 1 + πœ€0 diag {𝐼, 0} < 0.

π‘˜βˆ’π‘‘π‘š

} { = E{(𝑑𝑀 βˆ’ π‘‘π‘š ) πœ‚π‘˜π‘‡ 𝑃2 πœ‚π‘˜ βˆ’ βˆ‘ πœ‚π‘–π‘‡ 𝑃2 πœ‚π‘– } . 𝑖=π‘˜βˆ’π‘‘π‘€ +1 } { (22)

(27)

(28)

Then, it is easy to see from (27) and (28) that the following inequality holds: σ΅„© σ΅„©2 E {Δ𝑉 (πœ‚π‘˜ )} ≀ βˆ’πœ€0 E {σ΅„©σ΅„©σ΅„©πœ‚π‘˜ σ΅„©σ΅„©σ΅„© } .

(29)

According to the definition of 𝑉(π‘˜), we can derive that π‘˜βˆ’1

σ΅„© σ΅„©2 σ΅„© σ΅„©2 E {𝑉 (π‘˜)} ≀ 𝜌1 E {σ΅„©σ΅„©σ΅„©πœ‚π‘˜ σ΅„©σ΅„©σ΅„© } + 𝜌2 βˆ‘ E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } ,

Letting

(30)

𝑖=π‘˜βˆ’π‘‘π‘€

𝑇

𝑇 𝑇 βƒ— π‘˜] , πœ‰π‘˜ = [πœ‚π‘˜π‘‡ πœ‚π‘˜βˆ’π‘‘ π‘“π‘˜π‘‡βƒ— π‘”π‘˜βˆ’π‘‘ π‘˜

(23)

the combination of (21) and (22) results in

πœ‡π‘˜+1 E {𝑉 (π‘˜ + 1)} βˆ’ πœ‡π‘˜ E {𝑉 (π‘˜)} = πœ‡π‘˜+1 E {Δ𝑉 (π‘˜)} + πœ‡π‘˜ (πœ‡ βˆ’ 1) E {𝑉 (π‘˜)}

E {Δ𝑉 (πœ‚π‘˜ )} = E {𝑉 (π‘˜ + 1) βˆ’ 𝑉 (π‘˜)} 3

= βˆ‘E {Δ𝑉𝑖 (π‘˜)} 𝑖=1

≀

Μƒ 1 πœ‰π‘˜ } , E {πœ‰π‘˜π‘‡ Ξ 

where 𝜌1 = πœ† max (𝑃1 ) and 𝜌2 = (𝑑𝑀 βˆ’ π‘‘π‘š + 1)πœ† max (𝑃2 ). For any scalar πœ‡ > 1, together with (19), the above inequality implies that

(24)

π‘˜βˆ’1

σ΅„© σ΅„©2 σ΅„© σ΅„©2 ≀ πœ–1 (πœ‡) πœ‡ E {σ΅„©σ΅„©σ΅„©πœ‚π‘˜ σ΅„©σ΅„©σ΅„© } + πœ–2 (πœ‡) βˆ‘ πœ‡π‘˜ E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } π‘˜

𝑖=π‘˜βˆ’π‘‘π‘€

with πœ–1 (πœ‡) = (πœ‡ βˆ’ 1)𝜌1 βˆ’ πœ‡πœ€0 and πœ–2 (πœ‡) = (πœ‡ βˆ’ 1)𝜌2 .

(31)

6

The Scientific World Journal

In addition, for any integer π‘š β‰₯ 𝑑𝑀 +1, summing up both sides of (31) from 0 to π‘š βˆ’ 1 with respect to π‘˜, we have

It can be verified that there exists a scalar πœ‡0 > 1 such that πœ–1 (πœ‡0 ) + πœ–2 (πœ‡0 ) = 0.

πœ‡π‘š E {𝑉 (π‘˜ + 1)} βˆ’ E {𝑉 (0)} π‘šβˆ’1

Therefore, from (34)–(37), it is clear to see that

σ΅„© σ΅„©2 ≀ πœ–1 (πœ‡) βˆ‘ πœ‡π‘˜ E {σ΅„©σ΅„©σ΅„©πœ‚π‘˜ σ΅„©σ΅„©σ΅„© }

(32)

π‘˜=0

π‘šβˆ’1

π‘˜βˆ’1

σ΅„© σ΅„©2 E {σ΅„©σ΅„©σ΅„©πœ‚π‘˜ σ΅„©σ΅„©σ΅„© }

σ΅„© σ΅„©2 βˆ‘ πœ‡π‘˜ E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } .

+ πœ–2 (πœ‡) βˆ‘

≀(

π‘˜=0 𝑖=π‘˜βˆ’π‘‘π‘€

Due to 𝑑𝑀 β‰₯ 1, π‘šβˆ’1

βˆ‘

π‘˜βˆ’1

π‘˜=0 𝑖=π‘˜βˆ’π‘‘π‘€

𝑖+𝑑𝑀

π‘šβˆ’1βˆ’π‘‘π‘€ 𝑖+𝑑𝑀

≀( βˆ‘ βˆ‘ + 𝑖=βˆ’π‘‘π‘€ π‘˜=0 π‘šβˆ’1

+

βˆ‘

βˆ‘

βˆ‘

𝑖=0

π‘˜=𝑖+1

Next, we will analyze the performance of the filtering error system (12).

π‘šβˆ’1

σ΅„© σ΅„©2 βˆ‘ ) πœ‡π‘˜ E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© }

𝑖=π‘šβˆ’1βˆ’π‘‘π‘€ π‘˜=𝑖+1 βˆ’1

σ΅„© σ΅„©2 ≀ 𝑑𝑀 βˆ‘ πœ‡π‘–+𝑑𝑀 E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© }

(33)

𝑖=βˆ’π‘‘π‘€

π‘šβˆ’1βˆ’π‘‘π‘€

σ΅„© σ΅„©2 + 𝑑𝑀 βˆ‘ πœ‡π‘–+𝑑𝑀 E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } π‘šβˆ’1

βˆ‘

πœ‡

𝑖=π‘šβˆ’1βˆ’π‘‘π‘€ 𝑑𝑀

≀ π‘‘π‘€πœ‡

𝑖+𝑑𝑀

Theorem 8. Consider the system (2) and suppose that the estimator parameters 𝐾𝑖 (𝑖 = 1, 2, . . . , 𝑁) are given. The system augmented error model (12) is said to be exponentially stable in mean square and satisfies the 𝐻∞ performance constraint (15) for all nonzero Vπ‘˜ and πœ”π‘˜ under the zero initial condition, if there exist positive definite matrices 𝑄𝑖 (𝑖 = 1, 2, 3, 4) and positive scalars πœ† 𝑗 (𝑗 = 1, 2, 3) satisfying the following inequality: Ξžβˆ—11 [ [ [βˆ— [ [ [ [ Ξ 2 = [ βˆ— [ [βˆ— [ [ [ [βˆ— [

𝑖=0

+ 𝑑𝑀

1 π‘˜ 𝜌 (2𝑑𝑀 + 1) + π‘‘π‘€πœ–2 (πœ‡0 ) σ΅„© σ΅„©2 ) max E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } . πœ‡0 𝜌0 βˆ’π‘‘π‘€ ≀𝑖≀0 (38)

The augmented system (12) with Vπ‘˜ = 0 is exponentially mean-square stable according to Definition 5. The proof is complete.

σ΅„© σ΅„©2 βˆ‘ πœ‡π‘˜ E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } βˆ’1

σ΅„© σ΅„©2 E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© }

σ΅„© σ΅„©2 max E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© }

βˆ’π‘‘π‘€ ≀𝑖≀0 π‘šβˆ’1

σ΅„© σ΅„©2 + π‘‘π‘€πœ‡π‘‘π‘€ βˆ‘ πœ‡π‘– E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } . 𝑖=0

Ξ13 W𝑇 𝑃1

0 Ξ22

0

𝑔𝑇 πœ† 2 Ξ¦2

βˆ—

Ξ33

𝑃1

βˆ—

βˆ—

Ξ44

βˆ—

βˆ—

βˆ—

π‘˜βˆ’1

σ΅„© σ΅„©2 πœ‡π‘˜ E {𝑉 (π‘˜)} ≀ E {𝑉 (0)} + (πœ–1 (πœ‡) + πœ–2 (πœ‡)) βˆ‘ πœ‡π‘– E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } 𝑖=0

σ΅„© σ΅„©2 βˆ‘ E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } ,

1

(39)

]

where Ξžβˆ—11 = W𝑇 𝑃1 W βˆ’ 𝑃1 + (𝑑𝑀 βˆ’ π‘‘π‘š + 1) 𝑃2 𝑓

(34) 𝑑𝑀

with πœ–2 (πœ‡) = π‘‘π‘€πœ‡ (πœ‡ βˆ’ 1)𝜌2 . Let 𝜌0 = πœ† min (𝑃1 ) and 𝜌 = max{𝜌1 , 𝜌2 }. It is obvious from (19) that σ΅„© σ΅„©2 (35) E {𝑉 (π‘˜)} β‰₯ 𝜌0 E {σ΅„©σ΅„©σ΅„©πœ‚π‘˜ σ΅„©σ΅„©σ΅„© } . Meanwhile, we can find easily from (30) that βˆ’π‘‘π‘€ ≀𝑖≀0

] ] ] 0 ] ] ] ] 𝑃1 D ] < 0, ] ] 𝑃1 D ] ] ] 𝑇 2 ] D 𝑃Dβˆ’π›Ύ 𝐼

βˆ’ πœ† 1 Ξ¦1 + πœ† 3 𝐴 󰜚

βˆ’π‘‘π‘€ ≀𝑖≀0

σ΅„© σ΅„©2 E {𝑉 (0)} ≀ 𝜌 (2𝑑𝑀 + 1) max E {σ΅„©σ΅„©σ΅„©πœ‚π‘– σ΅„©σ΅„©σ΅„© } .

W𝑇 𝑃1 D

𝑃1 ≀ πœ† 3 𝐼,

So, we can obtain from (32) and (33) the following:

+ πœ–2 (πœ‡)

(37)

(36)

+

(40)

𝑁

1 𝑇 ̃𝑇 G𝑇 𝑃1 G𝑖 𝐢S, Μƒ M M + βˆ‘π›ΌΜƒπ‘–βˆ— S𝑇 𝐢 𝑖 𝑁 𝑖=1

and other parameters are defined as in Theorem 7. Proof. It is clear that (39) implies (17). According to Theorem 7, the filtering error system (12) with Vπ‘˜ = 0 is robustly exponentially stable in the mean square. Let us now deal with the performance of the system (15). Construct the same Lyapunov-Krasovskii functional as in

The Scientific World Journal

7

Theorem 7. A similar calculation as in the proof of Theorem 7 leads to E {Δ𝑉 (π‘˜)} ≀ E {πœ‰π‘˜π‘‡ Ξ 1 πœ‰π‘˜ + 2Vπ‘˜π‘‡ D𝑇𝑃1 Wπœ‚π‘˜ βƒ— π‘˜ + 2Vπ‘˜π‘‡ D𝑇 𝑃1 π‘“π‘˜βƒ— + 2Vπ‘˜π‘‡ D𝑇𝑃1 π‘”π‘˜βˆ’π‘‘

(41)

+Vπ‘˜π‘‡ D𝑇 𝑃1 DVπ‘˜ } , where πœ‰π‘˜ and Ξ 1 are defined previously. 𝑇 Setting πœ‰Μƒ = [πœ‰π‘‡ V𝑇 ] , inequality (41) can be rewritten as π‘˜

π‘˜

π‘˜

̃𝑇 D Ξ 1 ] πœ‰Μƒ } , 𝑇 βˆ— D 𝑃1 D π‘˜

E {Δ𝑉 (π‘˜)} ≀ E {πœ‰Μƒπ‘˜π‘‡ [

J (𝑠) = E βˆ‘ { π‘˜=0

1 σ΅„©σ΅„© σ΅„©σ΅„©2 2 σ΅„© σ΅„©2 󡄩𝑧̃ σ΅„© βˆ’ 𝛾 σ΅„©σ΅„©σ΅„©Vπ‘˜ σ΅„©σ΅„©σ΅„© } , 𝑁 σ΅„© π‘˜σ΅„©

(43)

(46) where π‘Œβƒ— = diag {π‘Œ1 , π‘Œ2 , . . . , π‘Œπ‘} ,

Q2 = 𝐼 βŠ— 𝑄2 ,

(47) 𝑇

Ξ 19 = (𝐼 βŠ— 𝐢)𝑇 𝑍𝑇 ,

Ξ 28 = βˆ’(𝐼 βŠ— 𝐢)𝑇 π‘Œβƒ— 𝑇 , Ξ 68 = βˆ’π·2𝑇 π‘Œβƒ— 𝑇 ,

βˆ’ E {𝑉 (𝑠 + 1)}

Ξ 11 = (π‘Šπ‘‡ π‘Š) βŠ— (Ξ“ (𝑄1 + 𝑄2 ) Ξ“)

1 σ΅„©σ΅„© σ΅„©σ΅„©2 2 σ΅„© σ΅„©2 󡄩𝑧̃ σ΅„© βˆ’ 𝛾 σ΅„©σ΅„©σ΅„©Vπ‘˜ σ΅„©σ΅„©σ΅„© + Δ𝑉 (π‘˜)} 𝑁 σ΅„© π‘˜σ΅„©

(44)

+ Sym {(π‘Š βŠ— Ξ“)𝑇 π‘Œβƒ— (𝐼 βˆ’ 𝛼̃Λ ) (𝐼 βŠ— 𝐢)} βˆ’ 𝐼 βŠ— (𝑄1 βˆ’ (𝑑𝑀 βˆ’ π‘‘π‘š + 1) 𝑄4 )

𝑠

≀ E βˆ‘ {πœ‰Μƒπ‘˜π‘‡ Ξ 2 πœ‰Μƒπ‘˜ } < 0.

𝑓

βˆ’ πœ† 1 Ξ¦1 + πœ† 3 𝐴 󰜚 ,

π‘˜=0

According to Theorem 8, we have J(𝑠) ≀ 0. Letting 𝑠 β†’ ∞, we obtain ∞

Ξ 18 Ξ 19 Ξ 28 0 ] ] 0 0 ] ] 0 0 ] < 0, 0 0 ] ] ] Ξ 68 0 ] βˆ’Q2 0 ] βˆ— βˆ’Q2 ]

𝑇 Ξ 18 = (𝐼 βŠ— 𝐢)𝑇 (𝐼 βˆ’ 𝛼̃Λ ) π‘Œβƒ— 𝑇 ,

1 σ΅„© σ΅„©2 σ΅„© σ΅„©2 J (𝑠) = E βˆ‘ { σ΅„©σ΅„©σ΅„©π‘§Μƒπ‘˜ σ΅„©σ΅„©σ΅„© βˆ’ 𝛾2 σ΅„©σ΅„©σ΅„©Vπ‘˜ σ΅„©σ΅„©σ΅„© + Δ𝑉 (π‘˜)} 𝑁 π‘˜=0

π‘˜=0

Ξ 16 Ξ 26 0 Ξ 46 Ξ 56 Ξ 66 βˆ— βˆ—

βˆ— 𝐸 π‘Œβƒ— 𝑇 ] , 𝑍 = [βˆšπ›ΌΜƒ1βˆ— 𝐸1 π‘Œβƒ— 𝑇 βˆšπ›ΌΜƒ2βˆ— 𝐸2 π‘Œβƒ— 𝑇 β‹… β‹… β‹… βˆšπ›ΌΜƒπ‘ 𝑁

𝑠

𝑠

Ξ 15 Ξ 25 Ξ 35 Ξ 45 Ξ 55 βˆ— βˆ— βˆ—

𝑃1 ≀ πœ† 3 𝐼,

where 𝑠 is nonnegative integer. Under the zero initial condition, one has

≀ Eβˆ‘ {

Ξ 11 Ξ 12 0 Ξ 14 [ βˆ— Ξ 22 0 Ξ 24 [ [ βˆ— βˆ— Ξ 33 0 [ [ βˆ— βˆ— βˆ— Ξ 44 Ξ 3 = [ [βˆ— βˆ— βˆ— βˆ— [βˆ— βˆ— βˆ— βˆ— [ [βˆ— βˆ— βˆ— βˆ— [βˆ— βˆ— βˆ— βˆ—

(42)

Μƒ = [D𝑇 𝑃 W 0 D𝑇 𝑃 D𝑇𝑃 ]. where D 1 1 1 In order to deal with the 𝐻∞ performance of the filtering system (12), we introduce the following index: 𝑠

π‘Œπ‘– (𝑖 = 1, 2, . . . , 𝑁), and positive scalars πœ† 𝑗 (𝑗 = 1, 2, 3) satisfying the following inequality:

∞

1 σ΅„© σ΅„©2 σ΅„© σ΅„©2 βˆ‘ E {󡄩󡄩𝑧̃ σ΅„©σ΅„© } ≀ 𝛾2 βˆ‘ σ΅„©σ΅„©σ΅„©Vπ‘˜ σ΅„©σ΅„©σ΅„© , 𝑁 π‘˜=0 σ΅„© π‘˜ σ΅„© π‘˜=0

(45)

and the proof is now complete. We aim at solving the filter design problem for complex network (2). Therefore, we are in a position to consider the 𝐻∞ filter design problem for the complex network (2). The following theorem provides sufficient conditions for the existence of such filters for system (12). The following result can be easily accessible from Theorem 8, and the proof is therefore omitted. Theorem 9. Consider the system (2) and suppose that the disturbance attenuation level 𝛾 > 0 is given. The system augmented error model (12) is said to be exponentially stable in mean square and satisfies the 𝐻∞ performance constraint (15) for all nonzero Vπ‘˜ and πœ”π‘˜ under the zero initial condition, if there exist positive definite matrices 𝑄𝑖 (𝑖 = 1, 2, 3, 4), matrices

Ξ 12 = βˆ’(π‘Š βŠ— Ξ“)𝑇 π‘Œβƒ— (𝐼 βŠ— 𝐢) , 𝑓𝑇

Ξ 14 = [π‘Šπ‘‡ βŠ— (Γ𝑄1 ) + πœ† 1 Ξ¦2 π‘Šπ‘‡ βŠ— (Γ𝑄2 ) +(𝐼 βŠ— 𝐢)𝑇 (𝐼 βˆ’ 𝛼̃Λ ) π‘Œβƒ— 𝑇 ] , Ξ 15 = [π‘Šπ‘‡ βŠ— (Γ𝑄1 ) π‘Šπ‘‡ βŠ— (Γ𝑄2 ) +(𝐼 βŠ— 𝐢)𝑇 (𝐼 βˆ’ 𝛼̃Λ ) π‘Œβƒ— 𝑇 ] , Ξ 16 = [π‘Šπ‘‡ βŠ— (Ξ“ (𝑄1 + 𝑄2 )) 𝐷1 + (𝐼 βŠ— 𝐢)𝑇 (𝐼 βˆ’ 𝛼̃Λ ) π‘Œβƒ— 𝑇 𝐷2 βƒ— 2] , βˆ’(π‘Š βŠ— Ξ“)𝑇 π‘Œπ· Ξ 22 = βˆ’πΌ βŠ— (𝑄2 βˆ’ (𝑑𝑀 βˆ’ π‘‘π‘š + 1) 𝑄4 ) 𝑓

βˆ’ πœ† 1 Ξ¦1 +

1 (𝐼 βŠ— (𝑀𝑇 𝑀)) , 𝑁

Ξ 24 = [0 (𝐼 βŠ— 𝐢)𝑇 π‘Œβƒ— 𝑇 + πœ† 1 Φ𝑓𝑇 ], 2 Ξ 25 = [0 (𝐼 βŠ— 𝐢)𝑇 π‘Œβƒ— 𝑇 ] ,

8

The Scientific World Journal Ξ 26 = [βˆ’(𝐼 βŠ— 𝐢)𝑇 π‘Œβƒ— 𝑇 𝐷1 0] ,

β„Ž (π‘₯𝑖 (π‘˜)) = 0.15π‘₯𝑖 (π‘˜) ,

𝑑 (π‘˜) = 2 + sin (

𝑔

Ξ 33 = βˆ’ diag {𝐼 βŠ— 𝑄3 , 𝐼 βŠ— 𝑄4 } βˆ’ πœ† 2 Ξ¦1 , Ξ 35 =

πœ‹π‘˜ ), 2

V1 (π‘˜) = 3 exp (βˆ’0.3π‘˜) cos (0.2π‘˜) ,

𝑔𝑇 πœ† 2 Ξ¦2 ,

V2 (π‘˜) = 2 exp (βˆ’0.2π‘˜) sin (0.1π‘˜) .

Ξ 44 = diag {𝐼 βŠ— 𝑄1 , 𝐼 βŠ— 𝑄2 } βˆ’ πœ† 1 𝐼,

(50) Then, it is easy to see that the constraint (26) can be met with βˆ’0.6 0.3 βˆ’0.3 0.3 𝑓 𝑓 ], πœ™2 = [ ], πœ™1 = [ 0 0.4 0 0.6 (51) 0.02 0.06 0.02 0.06 𝑔 𝑔 ], πœ™2 = [ ]. πœ™1 = [ βˆ’0.03 0.02 βˆ’0.02 0.02

Ξ 45 = diag {𝐼 βŠ— 𝑄1 , 𝐼 βŠ— 𝑄2 } , Ξ 55 = diag {𝐼 βŠ— 𝑄1 , 𝐼 βŠ— 𝑄2 } βˆ’ πœ† 2 𝐼, Ξ 46 = Ξ 56 = [ Ξ 66 = [

(𝐼 βŠ— 𝑄2 ) 𝐷1 0 βƒ— 2] , (𝐼 βŠ— 𝑄2 ) 𝐷1 βˆ’π‘Œπ·

βƒ— 2 𝐷1𝑇 (𝐼 βŠ— (𝑄1 + 𝑄2 )) 𝐷1 βˆ’ 𝛾2 𝐼 βˆ’π·1𝑇 π‘Œπ· ], 2 βˆ— βˆ’π›Ύ 𝐼 (48)

and other parameters are defined as in Theorem 7. Moreover, if the above inequality is feasible, the desired state estimator gains can be determined by 𝐾𝑖 = 𝑄2βˆ’1 π‘Œπ‘– .

(49)

In this section, we present an illustrative example to demonstrate the effectiveness of the proposed theorems. Considering the system model (2) with three sensors, the system data are given as follows:

𝐷13 = [

𝐷12 = [

0.1 ], βˆ’0.05

𝑀 = [0.5 0.7] ,

𝐷21 = [ 𝐷23 = [

Ξ“ = diag {0.1, 0.1} ,

0.14 ], βˆ’0.15

𝐷11 = [

0.1 ], βˆ’0.1

0.2 ], βˆ’0.15

𝐷22 = [ 𝐢=[

0.1 ], 0.12

βˆ’0.1 ], 0.2

0.8 0.5 ], 0.9 βˆ’0.3

𝑓 (π‘₯𝑖 (π‘˜)) βˆ’0.6π‘₯𝑖1 (π‘˜) + 0.3π‘₯𝑖2 (π‘˜) + tanh (0.3π‘₯𝑖1 (π‘˜)) ], =[ 0.6π‘₯𝑖2 (π‘˜) βˆ’ tanh (0.2π‘₯𝑖2 (π‘˜)) 𝑔 (π‘₯𝑖 (π‘˜)) =[

πœ† 1 = 23.9040,

πœ† 2 = 50.2256,

πœ† 3 = 14.0023,

9.1446 3.8908 𝑄1 = [ ], 3.8908 3.5213 9.0768 3.7262 𝑄2 = [ ], 3.7262 6.7169

4. Numerical Simulations

βˆ’0.4 0.4 0 π‘Š = [ 0.4 βˆ’0.6 0.2 ] , 0.2 βˆ’0.2] [ 0

Let the disturbance attenuation level be 𝛾 = 0.96. Assume that the initial values πœ‘π‘– (π‘˜) (𝑖 = 1, 2, 3; π‘˜ = βˆ’3, βˆ’2, βˆ’1, 0) are generated that obey uniform distribution over [βˆ’1.5, 1.5], 𝛼1 = 0.88, 𝛼2 = 0.85, and 𝛼3 = 0.87, and the delay parameters are chosen as π‘‘π‘š = 1 and 𝑑𝑀 = 3. By applying Theorem 9 with help from MATLAB, we can obtain the desired filter parameters as follows:

0.02π‘₯𝑖1 (π‘˜) + 0.06π‘₯𝑖2 (π‘˜) ], βˆ’0.03π‘₯𝑖1 (π‘˜) + 0.02π‘₯𝑖2 (π‘˜) + tanh (0.01π‘₯𝑖1 (π‘˜))

𝑄3 = [

0.7093 βˆ’0.1693 ], βˆ’0.1693 0.2576

𝑄4 = [

0.8390 βˆ’0.3283 ], βˆ’0.3283 0.8284

(52)

0.5154 βˆ’0.9270 π‘Œ1 = [ ], 0.9371 βˆ’0.6966 0.6617 βˆ’1.1042 ], π‘Œ2 = [ 1.0172 βˆ’0.8178 π‘Œ3 = [

0.2943 βˆ’0.7441 ]. 0.8713 βˆ’0.6346

(53)

Then, according to (49), the desired estimator parameters can be designed as βˆ’0.0006 βˆ’0.0771 ], 𝐾1 = [ 0.1399 βˆ’0.0609 𝐾2 = [

0.0139 βˆ’0.0928 ], 0.1437 βˆ’0.0703

(54)

βˆ’0.0270 βˆ’0.0559 𝐾3 = [ ]. 0.1447 βˆ’0.0635 Simulation results are shown in Figures 1, 2, 3, and 4, where Figures 1–3 plot the missing measurements and ideal measurements for sensors 1–3, respectively, and Figure 4 depicts the output errors. From those figures, we can confirm the superiority of the designed 𝐻∞ filter.

The Scientific World Journal

9

1

0.6 0.4 0.2 0

0

Sensor 3

Sensor 1

0.5

βˆ’0.5

βˆ’0.2 βˆ’0.4 βˆ’0.6 βˆ’0.8

βˆ’1

βˆ’1 βˆ’1.5

0

5

10

15

20

25

30

35

βˆ’1.2

40

0

5

10

15

Time (k)

20 25 Time (k)

30

35

40

Missing measurements y31 Ideal measurements y31 Missing measurements y32 Ideal measurements y32

Missing measurements y11 Ideal measurements y11 Missing measurements y12 Ideal measurements y12

Figure 1: The ideal measurements and the missing measurements of 𝑦1 (π‘˜).

Figure 3: The ideal measurements and the missing measurements of 𝑦3 (π‘˜).

1.5

1

0.5

0.5 Filtering errors

Sensor 2

1

0

βˆ’0.5

βˆ’1

0

βˆ’0.5

βˆ’1 0

5

10

15

20 25 Time (k)

30

35

40

Missing measurements y21 Ideal measurements y21 Missing measurements y22 Ideal measurements y22

Figure 2: The ideal measurements and the missing measurements of 𝑦2 (π‘˜).

βˆ’1.5

0

5

10

15

20 25 Time (k)

30

35

40

Filtering error z̃1 of filter 1 Filtering error z̃2 of filter 2 Filtering error z̃3 of filter 3

Figure 4: The estimator errors 𝑧̂𝑖 (π‘˜) (𝑖 = 1, 2, 3).

5. Conclusions In this paper, we have studied the robust 𝐻∞ filtering problem for a class of complex systems with stochastic packet dropouts, time delays, and disturbance inputs. The discretetime system under study involves multiplicative noises, timevarying delays, sector-bounded nonlinearities, and stochastic packet dropouts. By means of LMIs, sufficient conditions for the robustly exponential stability of the filtering error

dynamics have been obtained and, at the same time, the prescribed disturbance rejection attenuation level has been guaranteed. Then, the explicit expression of the desired filter parameters has been derived. A numerical example has been provided to show the usefulness and effectiveness of the proposed design method.

10

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments This work has been supported by the National Natural Science Foundation of China (Grant no. 61104109), the Natural Science Foundation of Jiangsu Province of China (Grant no. BK2011703), the Support of Science and Technology and Independent Innovation Foundation of Jiangsu Province of China (Grant no. BE2012178), the NUST Outstanding Scholar Supporting Program, and the Doctoral Fund of Ministry of Education of China (Grant no. 20113219110027).

References [1] J. Hu, Z. Wang, H. Gao, and L. K. Stergioulas, β€œExtended Kalman filtering with stochastic nonlinearities and multiple missing measurements,” Automatica, vol. 48, no. 9, pp. 2007– 2015, 2012. [2] Z. Wang, X. Liu, Y. Liu, J. Liang, and V. Vinciotti, β€œAn extended kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 6, no. 3, pp. 410–419, 2009. [3] F. Yang, Z. Wang, and Y. S. Hung, β€œRobust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises,” IEEE Transactions on Automatic Control, vol. 47, no. 7, pp. 1179–1183, 2002. [4] L. Wu, P. Shi, H. Gao, and C. Wang, β€œH∞ filtering for 2D Markovian jump systems,” Automatica, vol. 44, no. 7, pp. 1849– 1858, 2008. [5] L. Wu and D. W. C. Ho, β€œFuzzy filter design for ItΛ†o stochastic systems with application to sensor fault detection,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 1, pp. 233–242, 2009. [6] X. Su, P. Shi, L. Wu, and Y. Song, β€œA novel approach to filter design for T-S fuzzy discretetime systems with time-varying delay,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1114–1129, 2012. [7] X. Su, L. Wu, and P. Shi, β€œSenor networks with random link failures: distributed filtering for T-S fuzzy systems,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1739– 1750, 2013. [8] X. Su, P. Shi, L. Wu, and S. K. Nguang, β€œInduced l2 filtering of fuzzy stochastic systems with time-varying delays,” IEEE Transactions on Cybernetics, vol. 43, no. 4, pp. 1251–1264, 2013. [9] X. Yao, L. Wu, and W. X. Zheng, β€œFault detection filter design for Markovian jump singular systems with intermittent measurements,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp. 3099–3109, 2011. [10] G. Wei, Z. Wang, and H. Shu, β€œRobust filtering with stochastic nonlinearities and multiple missing measurements,” Automatica, vol. 45, no. 3, pp. 836–841, 2009. [11] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, β€œRobust finitehorizon filtering for stochastic systems with missing measurements,” IEEE Transactions on Signal Processing, vol. 12, no. 6, pp. 137–440, 2005.

The Scientific World Journal [12] P. Shi, M. Mahmoud, S. K. Nguang, and A. Ismail, β€œRobust filtering for jumping systems with mode-dependent delays,” Signal Processing, vol. 86, no. 1, pp. 140–152, 2006. [13] S. Sun, L. Xie, and W. Xiao, β€œOptimal full-order and reducedorder estimators for discrete-time systems with multiple packet dropouts,” IEEE Transactions on Signal Processing, vol. 56, no. 8, pp. 4031–4038, 2008. [14] H. Dong, Z. Wang, and H. Gao, β€œDistributed 𝐻∞ filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks,” IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4665–4672, 2013. [15] H. Dong, Z. Wang, and H. Gao, β€œDistributed filtering for a class of time varying systems over sensor networks with quantization errors and successive packet dropouts,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3164–3173, 2012. [16] H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, β€œRobust H∞ filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation: the finite-horizon case,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp. 3048– 3057, 2011. [17] Z. Wang, H. Dong, B. Shen, and H. Gao, β€œFinite-horizon 𝐻∞ filtering with missing measurements and quantization effects,” IEEE Transactions on Automatic Control, vol. 58, no. 7, pp. 1707– 1718, 2013. [18] B. Shen, Z. Wang, and X. Liu, β€œSampled-data synchronization control of complex dynamical networks with stochastic sampling,” IEEE Transactions on Automatic Control, vol. 57, no. 10, pp. 2644–2650, 2012. [19] Y. Tang, Z. Wang, and J.-A. Fang, β€œPinning control of fractionalorder weighted complex networks,” Chaos, vol. 19, no. 1, Article ID 013112, 2009. [20] X. Li, X. Wang, and G. Chen, β€œPinning a complex dynamical network to its equilibrium,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 10, pp. 2074–2087, 2004. [21] C. Lin, Z. Wang, and F. Yang, β€œObserver-based networked control for continuous-time systems with random sensor delays,” Automatica, vol. 45, no. 2, pp. 578–584, 2009. [22] Y. Liu, Z. Wang, J. Liang, and X. Liu, β€œSynchronization and state estimation for discrete-time complex networks with distributed delays,” IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, vol. 38, no. 5, pp. 1314–1325, 2008. [23] Q. Song and J. Cao, β€œOn pinning synchronization of directed and undirected complex dynamical networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 3, pp. 672–680, 2010. [24] L. Wu, Z. Feng, and W. X. Zheng, β€œExponential stability analysis for delayed neural networks with switching parameters: average dwell time approach,” IEEE Transactions on Neural Networks, vol. 21, no. 9, pp. 1396–1407, 2010. [25] L. Wu, Z. Feng, and J. Lam, β€œStability and synchronization of discrete-time neural networks with switching parameters and time-varying delays,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 12, pp. 1957–1972, 2013. [26] B. Shen, Z. Wang, and X. Liu, β€œBounded 𝐻∞ synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon,” IEEE Transactions on Neural Networks, vol. 22, no. 1, pp. 145–157, 2011. [27] B. Shen, Z. Wang, D. Ding, and H. Shu, β€œπ»βˆž state estimation for complex networks with uncertain inner coupling and incomplete measurements,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 12, pp. 2027–2037, 2013.

The Scientific World Journal [28] D. Ding, Z. Wang, B. Shen, and H. Shu, β€œπ»βˆž state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 5, pp. 725–736, 2012. [29] Y. Liu, Z. Wang, J. Liang, and X. Liu, β€œSynchronization and state estimation for discrete-time complex networks with distributed delays,” IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, vol. 38, no. 5, pp. 1314–1325, 2008. [30] Y. Wang, Z. Wang, and J. Liang, β€œGlobal synchronization for delayed complex networks with randomly occurring nonlinearities and multiple stochastic disturbances,” Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 13, Article ID 135101, 2009. [31] Z. Wang, Y. Wang, and Y. Liu, β€œGlobal synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 11–25, 2010. [32] Y. Liu, Z. Wang, and X. Liu, β€œExponential synchronization of complex networks with Markovian jump and mixed delays,” Physics Letters A: General, Atomic and Solid State Physics, vol. 372, no. 22, pp. 3986–3998, 2008. [33] Y. Wang, Z. Wang, and J. Liang, β€œA delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances,” Physics Letters A: General, Atomic and Solid State Physics, vol. 372, no. 39, pp. 6066–6073, 2008. [34] Z. Wang, D. W. C. Ho, Y. Liu, and X. Liu, β€œRobust 𝐻∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements,” Automatica, vol. 45, no. 3, pp. 684–691, 2009.

11

Robust H∞ filtering for a class of complex networks with stochastic packet dropouts and time delays.

The robust H∞ filtering problem is investigated for a class of complex network systems which has stochastic packet dropouts and time delays, combined ...
739KB Sizes 0 Downloads 3 Views