DOI: 10.1002/chem.201304925

Communication

& C H Bond Activation

Rhodium(III)-Catalyzed Selective ortho-Olefinations of N-Acyl and N-Aroyl Sulfoximines by C H Bond Activation Kanniyappan Parthasarathy and Carsten Bolm*[a] from Yu et al., Carretero et al., and others.[4] Subsequently, it was demonstrated that RhIII[5] and RuII complexes[6] were also catalytically active, allowing highly selective ortho-olefination of arenes. Making use of the directing power of the sulfoximidoyl group, we recently reported the direct conversion of NH-sulfoximines into 1,2-benzothiazines by rhodium-catalyzed C H/ N H insertions of alkynes [Eq. (4)].[7] The process was well suited to the synthesis of such heterocycles; however, the sulfoximidoyl moiety, which is often a desired functional group for either a specific property[8] or a subsequent targeted derivatization, was not retained.[9] Herein, we disclose two unprecedented oxidative sulfoximine olefinations [Eqs. (5) and (6)], which offer solutions to the aforementioned problem.

Abstract: Two new rhodium-catalyzed oxidative couplings between sulfoximine derivatives and alkenes by regioselective C H activation, affording ortho-olefinated (Hecktype) products, are reported. A synthetic application of the ortho-alkenylated products into the corresponding cyclic derivatives has been demonstrated, and a mechanistic rational for the rhodium catalysis is presented.

The Mirozoki–Heck reaction is a highly appreciated synthetic method for the formation of C C bonds.[1] Generally, palladium catalysts are applied, and molecules with C X moieties (X stands for halogen or triflate) serve as coupling partners for olefins [Eq. (1)].[1] An attractive alternative was pioneered by Moritani and Fujiwara, who developed oxidative Heck-type couplings, allowing the use of simple arenes as starting materials [Eq. (2)].[2] In terms of atom economy and versatility this approach often offers significant advantages over the traditional coupling. Recently, the combination of metal-catalyzed directing group (DG)-assisted C H activation and oxidative alkene coupling became a powerful tool for the construction of functionalized olefins [Eq. (3)].[3] For such transformations, PdII species have shown remarkable activities, with major contributions

Considering rhodium-based systems as the most promising,[10] we decided to apply a combination of 2.0 mol % of [RhCp*Cl2]2 (Cp* = pentamethylcyclopentadiene), 10.0 mol % of AgSbF6, and 2 equivalents of Cu(OAc)2·H2O, in tert-amyl alcohol, in our initial attempts to couple N-acylsulfoximine 1 a and n-butyl acrylate (2 a). To our delight, our hypothesis proved correct, and after 3 h at 120 8C ortho-alkenylated product 3 a was obtained in 90 % yield (Table 1, entry 1). 1H NMR spectroscopy confirmed the expected E stereochemistry of 3 a. The addition of AgSbF6 was not required for rhodium complexes [Cp*Rh(MeCN)3][SbF6]2 and [Cp*Rh(MeCN)3][BF4]2 to be catalytically active, but the yields of 3 a were lower in the absence of this silver salt (Table 1, entries 2 and 3). [Rh(OAc)2]2, [Rh(PPh3)3Cl], and [RhCl(cod)]2 (cod = 1,5-cyclooctadiene) were essentially inactive, providing, at best, only traces of 3 a (Table 1, entries 4–6). A combination of [RuCl2(p-cymene)]2 and

[a] Dr. K. Parthasarathy, Prof. Dr. C. Bolm Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52056 Aachen (Germany) Fax: (+ 49) 241-8092-391 E-mail: [email protected] Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201304925. Chem. Eur. J. 2014, 20, 1 – 6

These are not the final page numbers! ÞÞ

1

 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

&

&

Communication tert-butyl acrylate (2 c) reacted well with 1 a, affording the corresponding Heck-type products 3 i and 3 j in 90 and 79 % yield, respectively (Table 2, entries 9 and 10). In a similar manner, reactions of 1 a with styrene (2 d), 4-chlorostyrene (2 e), and 2-vinylnaphthalene (2 f) gave the ortho-alkenylated products 3 k– m in 64, 56, and 47 % yield, respectively (Table 2, entries 11– 13). Di-olefinated products were not observed under these conditions. The synthetic potential of the ortho-olefinated products was exemplified by base-mediated intramolecular Michael additions of acryl esters 3 a, 3 b, and 3 g (Scheme 1). In all three cases the corresponding products 4 a–c were obtained in high yields (up to 90 %).

Table 1. Effect of various metal complexes on oxidative couplings of N-acylsulfoximine 1 a with alkene 2 a.[a]

Entry

Metal complex

Yield [%]

1 2[b] 3[b] 4[b] 5 6 7 8[b] 9 10 11 12

[RhCp*Cl2]2 [Cp*Rh(MeCN)3][SbF6]2 [Cp*Rh(MeCN)3][BF4]2 [Rh(OAc)2]2 [Rh(PPh3)3Cl] [RhCl(cod)]2 [RuCl2(p-cymene)]2 Pd(OAc)2 [PdCl2(MeCN)2] [PdCl2(PhCN)2] [PdCl2(PPh3)2] –

90 73 57 0 0 trace 69 0 0 0 0 0

[a] Reaction conditions: N-Acylsulfoximine 1 a (0.30 mmol), alkene 2 a (0.45 mmol), metal complex (2.0 mol %), AgSbF6 (10.0 mol %), Cu(OAc)2·H2O (2.0 mmol), and tert-amyl alcohol (2.0 mL) at 120 8C for 3 h. [b] The reaction was carried out in the absence of the silver salt. Cp* = pentamethylcyclopentadiene; cod = 1,5-cyclooctadiene; Ac = acetyl.

AgSbF6 catalyzed the ortho-olefination of 1 a with 2 a, but the yield of 3 a (69 %, Table 1, entry 7) was lower than that obtained with the optimized rhodium-based system. Attempts to apply Pd(OAc)2, [PdCl2(MeCN)2], [PdCl2(PhCN)2], or [PdCl2(PPh3)2] as catalysts remained unsuccessful (Table 1, entries 8– 11). A control experiment confirmed that the presence of a metal catalyst was essential for the formation of 3 a (Table 1, entry 12).[11] Next, the scope of the discovered ortho-olefination of sulfoximines was investigated, applying various combinations of starting materials under the optimized reaction conditions. Accordingly, sulfoximine 1 b, bearing an electron-donating paramethoxy substituent, underwent a smooth C H activation/coupling sequence with acrylate 2 a, affording alkenylation product 3 b in 78 % yield (Table 2, entry 2). The presence of an electron-withdrawing nitro group, as in 1 c, hampered the coupling and the yield of the corresponding product 3 c was low (Table 2, entry 3). 4-Chloro- and 4-bromophenylsulfoximines, 1 d and 1 e, were alkenylated with 2 a, leading to 3 d and 3 e in yields of 74 and 80 %, respectively (Table 2, entries 4 and 5). Switching the commonly used N-protecting group from the easy to cleave acetyl group to a phenyl group, as in 1 f, provided 3 f in 39 % yield (Table 2, entry 6). The reaction of 2-naphthylsulfoximine 1 g with 2 a afforded 3 g in 83 % yield (Table 2, entry 7). This result is noteworthy because 1 g has two potential C H bond activation sites (at C1 and C3) and, presumably because of steric factors induced by the fused aromatic ring, only C3 was selectively alkenylated. Also, the reaction between 2,1-naphthothiazine 1 h and 2 a proceeded smoothly, leading to 3 h in 67 % yield (Table 2, entry 8). Finally, the applicability of various activated olefins and styrenes in the C H activation/alkenes oxidative coupling reaction with sulfoximine 1 a was studied (Table 2, entries 9–13). Both methyl acrylate (2 b) and &

&

Chem. Eur. J. 2014, 20, 1 – 6

www.chemeurj.org

Scheme 1. Intramolecular Michael additions of ortho-olefinated products.

A mechanistic proposal for the rhodium-catalyzed ortho-olefination, based on previously reported related catalysis,[3, 6, 7, 10] is shown in Scheme 2. Most likely, the catalytic cycle is initiated by cationic rhodium(III) complex A, which is formed from [RhCp*Cl2]2 with the aid of the silver salt. Coordination of A to the sulfoximine nitrogen of 1, followed by ortho C H bond ac-

Scheme 2. Mechanistic proposal for rhodium-catalyzed ortho-olefination.

tivation and release of HX, provides five-membered rhodacycle C via complex B. Associative insertion of alkene 2 into the rhodium–carbon bond of intermediate D leads to seven-membered rhodacycle E, which undergoes b-hydrogen elimination to give RhI species F. Oxidation of F with the copper(II) salt regenerates RhIII complex A, and the catalytic cycle is complete. All sulfoximines applied until this stage of the study had Saryl substituents and acetyl or aryl groups on the sulfoximine 2

 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ÝÝ These are not the final page numbers!

Communication Table 2. Results of rhodium-catalyzed oxidative coupling of N-acylsulfoximines and alkenes.[a]

Entry

Educts

Product

Yield [%] 1

1 2 3[b] 4 5

1 a/2 a 1 b/2 a 1 c/2 a 1 d/2 a 1 e/2 a

3 a: 3 b: 3 c: 3 d: 3 e:

6[b]

1 f/2 a

3f

39

7

1 g/2 a

3g

83

R =H R1 = OMe R1 = NO2 R1 = Cl R1 = Br

90 78 26 74 80

late 8 gave access to doubly functionalized 9 in 80 % yield (Scheme 4, bottom). In conclusion, we have developed a rhodium-catalyzed C H activation/oxidative coupling protocol for ortho olefinations of two types of sulfoximine derivatives. Synthetically relevant is the fact that the sulfoximidoyl moiety is retained during the catalysis, distinguishing this new approach from previous sulfoximine conversions. A synthetic application of the ortho-alkenylated products has been demonstrated by conversion into the corresponding cyclic derivatives, and a mechanistic proposal for the rhodium catalysis is presented.

Experimental Section 8[b]

1 h/2 a

3h

General procedure for the rhodium-catalyzed orthoolefination

67

A Schlenk tube (20 mL) was charged with sulfoximine 3 i: R = CO2Me 90 9 1 a/2 b 1 (0.50 mmol), alkene 2 79 10 1 a/2 c 3 j: R3 = CO2tBu (0.75mmol), [RhCp*Cl2]2 1 a/2 d 3 k: R3 = C6H5 64 11[b] 1 a/2 e 3 l: R3 = 4-ClC6H4 56 12[b] (2.0 mol %), AgSbF6 (10.0 mol %), 1 a/2 f 3 m: R3 = 2-Naphthyl 47 13[b] (2.0 mmol). and Cu(OAc)2·H2O Then, tert-amyl alcohol (3 mL) was [a] Reaction conditions: Sulfoximine 1 (0.5 mmol), alkene 2 (0.75 mmol), [RhCp*Cl2]2 (2.0 mol %), AgSbF6 added by syringe, and the reaction (10.0 mol %), Cu(OAc)2·H2O (2.0 mmol), and tert-amyl alcohol (3.0 mL) at 120 8C for 3 h. [b] Reaction time of mixture was stirred at 120 8C for 12 h. 3 h. When the reaction was complete, the mixture was cooled and diluted with CH2Cl2 (10 mL). Filtration through a Celite pad was folnitrogen. In using N-aroyl-protected derivatives we envisaged lowed by washing with CH2Cl2 (3  20 mL). The combined filtrate additional opportunities.[12] For this purpose, S,S-dimethyl sulwas concentrated, and the product was purified by silica-gel column chromatography, using hexane/EtOAc as the eluent, to foximine was converted into a,b-unsaturated carbonyl com[13] give pure product 3. pounds 5 a–e by using standard protocols. Under similar re3

action conditions as previously, aroyl-substituted sulfoximines 5 a and 5 b reacted well with 2 a, affording alkenylated products 6 a and 6 b in yields of 92 and 73 %, respectively (Scheme 3). The same was true for 2-furyl derivative 5 c and cinnamic acid derived 5 d, which gave 6 c and 6 d in 90 and 58 % yield, respectively. Also, [2.2]paracyclophane 5 e underwent rhodium-catalyzed alkenylations with n-butyl acrylate and styrene providing ortho-substituted products 6 e and 6 f in 56 and 38 % yield, respectively. It is worth noting that these transformations are rare examples of DG-assisted C H functionalizations of [2.2]paracyclophanes.[14] With an excess of olefin (3 equiv), diolefinations occurred as shown by the conversions of 5 f–h into Heck-type products 7 a–c in yields of up to 98 % (Scheme 4, top). Applying diacryChem. Eur. J. 2014, 20, 1 – 6

www.chemeurj.org

These are not the final page numbers! ÞÞ

Acknowledgements K. P. greatly acknowledges support by the Alexander von Humboldt foundation. The authors thank S. Grnebaum and P. Winandy for synthetic contributions. W.-R. Dong and P. Lennartz kindly provided samples of a sulfoximine and a [2.2]paracyclophane, respectively. Keywords: alkenes · C H bond activation · olefination · orthoalkenylation · rhodium catalysis

3

 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

&

&

Communication

[4]

Scheme 3. Results of rhodium-catalyzed oxidative coupling of N-aroylsulfoximines and alkenes.

[5]

Scheme 4. Rhodium-catalyzed oxidative di-olefinations of N-aroylsulfoximines (top) and double functionalization with an diacrylate (bottom).

[1] a) R. F. Heck, Acc. Chem. Res. 1979, 12, 146; b) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009; c) A. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103, 2945; d) P. J. Guiry, D. Kiely, Curr. Org. Chem. 2004, 8, 781; e) M. Shibasaki, E. M. Vogl, T. Ohshima, Adv. Synth. Catal. 2004, 346, 1533; f) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4516; Angew. Chem. Int. Ed. 2005, 44, 4442; g) The Mizoroki – Heck Reaction (Ed.: M. Oestreich), Wiley, Chichester, 2009. [2] a) I. Moritani, Y. Fujiwara, Tetrahedron Lett. 1967, 8, 1119; b) Y. Fujiwara, I. Moritani, S. Danno, R. Asano, S. Teranishi, J. Am. Chem. Soc. 1969, 91, 7166; c) Y. Fujiwara, R. Asano, I. Moritani, S. Teranishi, J. Org. Chem. 1976, 41, 1681; d) Y. Fujiwara, O. Maruyama, M. Yoshidomi, H. Taniguchi, J. Org. Chem. 1981, 46, 851; e) C. Jia, W. Lu, T. Kitamura, Y. Fujiwara, Org. Lett. 1999, 1, 2097; f) C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34, 633. [3] a) C.-H. Jun, C. W. Moon, D.-Y. Lee, Chem. Eur. J. 2002, 8, 2422; b) Y. J. Park, C.-H. Jun, Bull. Korean Chem. Soc. 2005, 22, 877; c) D. A. Colby,

&

&

Chem. Eur. J. 2014, 20, 1 – 6

www.chemeurj.org

[6]

[7]

4

R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; d) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212; e) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. 2009, 121, 5196; Angew. Chem. Int. Ed. 2009, 48, 5094; f) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; g) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215; h) J. Le Bras, J. Muzart, Chem. Rev. 2011, 111, 1170; i) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788; j) M. Mewald, J. A. Schiffner, M. Oestreich, Angew. Chem. 2012, 124, 1797; Angew. Chem. Int. Ed. 2012, 51, 1763. a) M. Miura, T. Tsuda, T. Satoh, S. Pivsa-Art, M. Nomura, J. Org. Chem. 1998, 63, 5211; b) M. D. K. Boele, G. P. F. van Strijdonck, A. H. M. de Vries, P. C. J. Kamer, J. G. de Vries, P. W. N. M. van Leeuwen, J. Am. Chem. Soc. 2002, 124, 1586; c) M. Dams, D. E. De Vos, S. Celen, P. A. Jacobs, Angew. Chem. 2003, 115, 3636; Angew. Chem. Int. Ed. 2003, 42, 3512; d) T. Yokota, M. Tani, S. Sakaguchi, Y. Ishii, J. Am. Chem. Soc. 2003, 125, 1476; e) N. P. Grimster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt, Angew. Chem. 2005, 117, 3185; Angew. Chem. Int. Ed. 2005, 44, 3125; f) J.-R. Wang, C.-T. Yang, L. Liu, Q.-X. Guo, Tetrahedron Lett. 2007, 48, 5449; g) G. Cai, Y. Fu, Y. Li, X. Wan, Z. Shi, J. Am. Chem. Soc. 2007, 129, 7666; h) S. H. Cho, S. J. Hwang, S. Chang, J. Am. Chem. Soc. 2008, 130, 9254; i) J.-J. Li, T.-S. Mei, J.-Q. Yu, Angew. Chem. 2008, 120, 6552; Angew. Chem. Int. Ed. 2008, 47, 6452; j) Y.-H. Zhang, B.-F. Shi, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 5072; k) A. Garca-Rubia, R. G. J. C. Carretero, Angew. Chem. 2009, 121, 6633; Angew. Chem. Int. Ed. 2009, 48, 6511; l) D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu, Science 2010, 327, 315; m) B.-F. Shi, Y.-H. Zhang, J. K. Lam, D.-H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 460; n) M. Wasa, K. M. Engle, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 3680; o) D.-H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 5767; p) H.-X. Dai, A. F. Stepan, M. S. Plummer, Y.-H. Zhang, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 7222; q) A. Garca-Rubia, M. A. Fernndez-IbÇez, R. Gmez Arrays, J. C. Carretero, Chem. Eur. J. 2011, 17, 3567; r) P. Gandeepan, C.-H. Cheng, J. Am. Chem. Soc. 2012, 134, 5738; s) D. Leow, G. Li, T.-S. Mei, J.-Q. Yu, Nature 2012, 486, 518; t) G. Li, D. Leow, L. Wan, J.-Q. Yu, Angew. Chem. 2013, 125, 1283; Angew. Chem. Int. Ed. 2013, 52, 1245; u) H.-X. Dai, G. Li, X.-G. Zhang, A. F. Stepan, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 7567; v) B. Urones, R. G. Arrays, J. C. Carretero, Org. Lett. 2013, 15, 1120. a) K. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 9, 1407; b) N. Umeda, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2009, 74, 7094; c) J. Chen, G. Song, C.-L. Pan, X. Li, Org. Lett. 2010, 12, 5426; d) F. Wang, G. Song, X. Li, Org. Lett. 2010, 12, 5430; e) F. W. Patureau, F. Glorius, J. Am. Chem. Soc. 2010, 132, 9982; f) S. Mochida, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2011, 76, 3024; g) S. H. Park, J. Y. Kim, S. Chang, Org. Lett. 2011, 13, 2372; h) F. W. Patureau, T. Besset, F. Glorius, Angew. Chem. 2011, 123, 1096; Angew. Chem. Int. Ed. 2011, 50, 1064; i) S. Rakshit, C. Grohmann, T. Besset, F. Glorius, J. Am. Chem. Soc. 2011, 133, 2350; j) F. W. Patureau, C. Nimphius, F. Glorius, Org. Lett. 2011, 13, 6346; k) H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, Z.-J. Shi, J. Am. Chem. Soc. 2011, 133, 15244; l) F. Wang, G. Song, Z. Du, X. Li, J. Org. Chem. 2011, 76, 2926; m) A. S. Tsai, M. Brasse, R. G. Bergman, J. A. Ellman, Org. Lett. 2011, 13, 540; n) X. Wei, F. Wang, G. Song, Z. Du, X. Li, Org. Biomol. Chem. 2012, 10, 5521; o) N. Schrçder, T. Besset, F. Glorius, Adv. Synth. Catal. 2012, 354, 579; p) C. Wang, H. Chen, Z. F. Wang, J. A. Chen, Y. Huang, Angew. Chem. 2012, 124, 7354; Angew. Chem. Int. Ed. 2012, 51, 7242; q) B. Liu, Y. Fan, Y. Gao, C. Sun, C. Xu, J. Zhu, J. Am. Chem. Soc. 2013, 135, 468; r) Q. Zhang, H.-Z. Yu, Y.-T. Li, L. Liu, Y. Huang, Y. Fu, Dalton Trans. 2013, 42, 4175; s) T. Iitsuka, P. Schaal, K. Hirano, T. Satoh, C. Bolm, M. Miura, J. Org. Chem. 2013, 78, 7216. a) T. Ueyama, S. Mochida, T. Fukutani, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2011, 13, 706; b) K. Padala, M. Jeganmohan, Org. Lett. 2011, 13, 6144; c) Y. Hashimoto, T. Ueyama, T. Fukutani, K. Hirano, T. Satoh, M. Miura, Chem. Lett. 2011, 40, 1165; d) L. Ackermann, J. Pospech, Org. Lett. 2011, 13, 4153; e) P. B. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Green Chem. 2011, 13, 3075; f) K. Padala, M. Jeganmohan, Org. Lett. 2012, 14, 1134; g) B. Li, J. Ma, N. Wang, H. Feng, S. Xu, B. Wang, Org. Lett. 2012, 14, 736; h) Y. Hashimoto, T. Ortloff, K. Hirano, T. Satoh, C. Bolm, M. Miura, Chem. Lett. 2012, 41, 151; i) L. Ackermann, L. Wang, R. Wolfram, A. V. Lygin, Org. Lett. 2012, 14, 728; j) K. Graczyk, W. Ma, L. Ackermann, Org. Lett. 2012, 14, 4110. W. Dong, L. Wang, K. Parthasarathy, F. F. Pan, C. Bolm, Angew. Chem. 2013, 125, 11787; Angew. Chem. Int. Ed. 2013, 52, 11573.  2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ÝÝ These are not the final page numbers!

Communication [8] For representative examples of sulfoximine applications, see: a) asymmetric catalysis: M. Frings, I. Atodiresei, Y. Wang, J. Runsink, G. Raabe, C. Bolm, Chem. Eur. J. 2010, 16, 4577; b) crop protection: Y. Zhu, M. R. Loso, G. B. Watson, T. C. Sparks, R. B. Rogers, J. X. Huang, B. C. Gerwick, J. M. Babcock, D. Kelley, V. B. Hegde, B. M. Nugent, J. M. Renga, I. Denholm, K. Gorman, G. J. DeBoer, J. Hasler, T. Meade, J. D. Thomas, J. Agric. Food Chem. 2011, 59, 2950; c) medicinal chemistry: U. Lcking, Angew. Chem. 2013, 125, 9570; Angew. Chem. Int. Ed. 2013, 52, 9399. [9] For reviews on the chemistry of sulfoximines, see: a) C. R. Johnson, Acc. Chem. Res. 1973, 6, 341; b) M. Reggelin, C. Zur, Synthesis 2000, 1; c) M. Harmata, Chemtracts 2003, 16, 660; d) H. Okamura, C. Bolm, Chem. Lett. 2004, 33, 482; e) C. Worch, A. C. Mayer, C. Bolm in Organosulfur Chemistry in Asymmetric Synthesis; (Eds.: T. Toru, C. Bolm), Wiley-VCH, Weinheim, 2008, pp. 209; f) R. Bentley, Chem. Soc. Rev. 2005, 34, 609; g) H.-J. Gais, Heteroat. Chem. 2007, 18, 472. [10] a) See ref. [3d]; b) J. Wencel-Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740; c) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012,

Chem. Eur. J. 2014, 20, 1 – 6

www.chemeurj.org

These are not the final page numbers! ÞÞ

[11] [12] [13] [14]

41, 3651; d) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879; e) L. Ackermann, Acc. Chem. Res. 2014, 47, 281; f) F. W. Patureau, J. Wencel-Delord, F. Glorius, Aldrichimica Acta 2012, 45, 31. For a solvent screening see the Supporting Information. For an analogous ortho C H oxidation under palladium catalysis, see: M. R. Yadav, R. K. Rit, A. K. Sahoo, Chem. Eur. J. 2012, 18, 5541. L. Wang, D. L. Priebbenow, L.-H. Zou, C. Bolm, Adv. Synth. Catal. 2013, 355, 1490, and references therein. For other examples, see: a) P. Lennartz, G. Raabe, C, Bolm, Adv. Synth. Catal. 2012, 354, 3237; b) J. J. P. Kramer, C. Yildiz, M. Nieger, S. Brse, Eur. J. Org. Chem. 2014, 1287.

Received: December 17, 2013 Published online on && &&, 0000

5

 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

&

&

Communication

COMMUNICATION &C

H Bond Activation

K. Parthasarathy, C. Bolm* && – && Rhodium(III)-Catalyzed Selective ortho-Olefinations of N-Acyl and NAroyl Sulfoximines by C H Bond Activation

&

&

Chem. Eur. J. 2014, 20, 1 – 6

www.chemeurj.org

Directed arene alkenylations: Two new rhodium-catalyzed oxidative couplings between sulfoximine derivatives and alkenes by regioselective C H activation,

6

affording ortho-olefinated (Heck-type) products, are reported (see scheme; Cp* = pentamethylcyclopentadiene, Ac = acetyl).

 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ÝÝ These are not the final page numbers!

Rhodium(III)-catalyzed selective ortho-olefinations of N-acyl and N-aroyl sulfoximines by C-H bond activation.

Two new rhodium-catalyzed oxidative couplings between sulfoximine derivatives and alkenes by regioselective CH activation, affording ortho-olefinated...
375KB Sizes 0 Downloads 3 Views