Letters 409

to the Editor

The structural similarities between all RNAase P and RNAase MRP RNAs suggest that they share a common ancestor and function. Indeed, all of the RNAase P and RNAase MRP enzymes cleave RNAs to generate 5’phosphate and 3’ hydroxyl termini in a divalent cation-dependent reaction, and the mammalian enzymes share antigenic determinants and are inhibited by protease, micrococcal nuclease, and tRNAs (Koski et al., 1976; Doersen et al., 1985; Chang and Clayton, 1987a, 1987b; Gold et al., 1989). However, mammalian RNAase P cleaves RNAs at a single site on the 5’ side of a tRNA sequence, while RNAase MRP cleaves an RNA at three adjacent sites between purine residues on the S’side of a conserved oligopurine sequence to generate RNAs for the priming of mitochondrial DNA replication (Chang and Clayton, 1987a; Bennett and Clayton, 1990). A conserved oligouridine sequence present in the mitochondrial precursor primer RNA (Chang and Clayton, 1987a; Bennett and Clayton, 1990) could function as an “external guide sequence” (Forster and Altman, 1990) to generate RNAase P-like substrates for cleavage at the three observed positions. It would be of value to test whether RNAase MRP can cleave precursor tRNAs that can be cleaved by RNAase P, and whether RNAase P can cleave mitochondrial precursor primer RNA either at the RNAase MRP sites or at other sites not cleaved by RNAase MRP but thought to be cleaved in vivo by other mitochondrial enzymes (Chang and Clayton, 1987a). The specific nucleotide sequences of human RNAase P and RNAase MRP shown in Figures 1F and 2 might contain binding sites for a common protein (Gold et al., 1989) but the binding sites in E. coli RNAase P RNA for its protein cofactor lie outside the sequences shown in Figure 1A (Vioque et al., 1988). Based on deletion analyses with the E. coli and 6. subtilis RNAase P RNAs (Guerrier-Takada and Altman, 1986; Reich et al., 1986; Shiraishi and Shimura, 1988; Baer et al., 1989; G. M. McCorkle, C. GuerrierTakada, and S. Altman, unpublished data) and studies with nuclease-treated RNAase P from S. cerevisiae nuclei (Nichols et al., 1988) we suggest that the specific nucleotide sequences shown in Figures 1 and 2 largely define the hydrolytic mechanism (and not the substrate binding function) of all RNAase P and RNAase MRP enzymes. A. C. F. is supported as the Merck Fellow of the Jane Coffin Childs Memorial Fund for Medical Research; S. A, is supported by National Institutes of Health grant GM19422 and National Science Foundation grant DMB 8722644. Anthony C. Forster and Sidney Department of Biology Yale University New Haven, Connecticut 06520

Altman

References Baer, M., Lumelsky, N., GuerrierTakada, C., and Altman, S. (1989). in Nucleic Acids and Molecular Biology, Vol. 3, F. Eckstein and D. M. J. Lilley, eds. (Berlin: Springer-Verlag). pp. 231-250. Baar. M., Nilsen, T. W., Costigan, Res. 16. 97-103.

C., and Altman,

S. (1990). Nucl. Acids

Bartkiewicz, 488-499.

M., Gold,

H., and

Altman,

S. (1989).

Bennett,

J. L., and Clayton,

Chang,

D. D., and Clayton,

D. A. (1987a). EMBO

Chang,

D. D., and Clayton,

D. A. (1987b).

Chang,

D. D.. and Clayton,

D. A. (1989).

Forster,

A. C., and Altman,

Guerrier-Takada,

S. (1990).

Koski,

R. A., Bothwell,

Krupp, (1986).

235, 1178-1184.

Cell 56, 13%.139. S., and Attardi,

Science,

S. (1986).

K., Marsh,

J. (1989).

Cell 45, 177-183.

A. L. M., and Altman,

N. R. (1988).

Lee, J.-Y.., and Engelke.

D. R. (1989). N. C. (1983).

S., and Sbll, D.

Pace,

N. R., and Smith,

D. (1990).

Shiraishi,

H., and Shimura,

Woese, C. R., Gutell, Rev. 47. 621-669. Yuan, Y., Singh, 14835-14839.

R., Gupta,

R., and

M. J., and Martin, Proc.

J. Biol. Chem.

Natl. Acad.

EMBO

N. C.

Sci. USA

265, 3587-3590.

G. J., Pace, 6.. Marsh, 261, 7888-7893.

Y. (1988).

Vioque, A., Arnez, J., and Altman,

S. (1987). Proc.

Cell 34, 911-917.

I. (1988).

Reich, C., Gardiner, K. J., Olsen, Pace, N. R. (1986). J. Biol. Chem.

Cell 52,

Mol. Cell. Biol. 9, 2536-2543.

Morales, M. J., Wise, C. A., Hollingsworth. (1989). Nucl. Acids Res. 17, 6865-6881. Nichols, M., Sbll, D., and Willis, 85, 1379-1383.

S.

S. (1976). Cell 9, 101-116.

D., Nishikawa,

Lawrence, N. P, Richman, A., Amini, R., and Altman. Natl. Acad. Sci. USA 84, 6825-6829. Miller, D. L., and Martin,

Science

T.. Pace, N., and Altman,

G. J., Liu, J., and Pace,

G., Cherayil, 6.. Frendewey, EMBO J. 5, 1697-1703.

G. (1985).

rn press.

D. A., and Craft,

C., and Altman,

Guerrier-Takada, C., Gardiner, (1983). Cell 35, 849-857. B. D., Olsen,

3,

J. 6, 409-417.

Science

C., Altman,

J. N.. Clayton,

James, 19-26.

Dev.

0. A. (1990). Mol. Cell. Biol. IO, 2191-2201.

Doersen, C.-J., GuerrierTakada, J. Biol. Chem. 260, 5942-5949. Gold, H. A., Topper, 245, 1377-1380.

Genes

T L., and

J. 7, 3817-3821.

S. (1988). J. Mol. Eiol. 202,835-848. R., and Noller, H. F (1983). Microbial.

Reddy,

R. (1989).

J. Hiol. Chem.

284,

Retraction: Copy Choice Illegitimate DNA Recombination Experiments which indicate that recombination between short direct repeats flanking transposon TnlO occurs without transfer of DNA from the parental to the recombinant plasmid were reported by our laboratory (D. Brunier, B. Michel, and S. D. Ehrlich, Cell 52, 883-892, 1988). They were interpreted as evidence that such recombination is due to errors of the DNA replication machinery, which slips from the repeat preceding the transposon to that following it, without copying the transposon itself. We recently attempted to repeat these experiments, originally conducted by the first author of that paper, and were unable to, despite a very determined effort. It now appears that the interpretation was based on false data, and we wish to retract the conclusion drawn. S. 0. Ehrlich and B. Michel Laboratoire de Genetique Microbienne lnstitut de Biotechnologie INRA-Domaine de Vilvert 78352 Jouy-en-Josas Cedex France

Retraction: copy choice illegitimate DNA recombination.

Letters 409 to the Editor The structural similarities between all RNAase P and RNAase MRP RNAs suggest that they share a common ancestor and functio...
121KB Sizes 0 Downloads 0 Views