Nimbalkar et al. BMC Res Notes (2015) 8:636 DOI 10.1186/s13104-015-1623-9

Open Access

RESEARCH ARTICLE

Randomized control trial of high fidelity vs low fidelity simulation for training undergraduate students in neonatal resuscitation Archana Nimbalkar1, Dipen Patel2, Amit Kungwani2, Ajay Phatak3, Rohitkumar Vasa4 and Somashekhar Nimbalkar1,2,3*

Abstract  Background:  Knowledge acquisition and skill maintenance are important in learning neonatal resuscitation. Traditionally this is taught by using low fidelity mannequins. Technological advancement enabled a move towards high fidelity mannequins. In a low resources setting, it is incumbent to ensure reasonable cost benefit ratio before investing in technology. Methods:  A randomized control trial was conducted in 101 undergraduate students who were assigned to conventional Resusci® Baby Basic or SimNewB group over a period of 3 days. The lectures were the same for both groups but the hands on training was on different mannequins. There were five experienced and accredited teachers who were standardized for training the students. Both the groups received a written test and a Megacode before and after the training, and 3 months later a post-test. Results:  The baseline written exam score (p = 0.07), Megacode assessment score (p = 0.19) and sex distribution (p = 0.17) were similar in both groups. Both groups showed significant improvement in the written exam score as well as in the Megacode assessment score at post-test and 3 months (retention) period. However there was no significant difference in the “improvement” between both the groups with respect to written exam (p = 0.38) or Megacode assessment (p = 0.92). Further the post-test and 3 month scores were comparable for the skills as well as content components suggesting that the skills were retained in 3 months with an opportunity of self learning them. Conclusions:  Due diligence is a caveat before contemplating the acquisition of high fidelity mannequins by educational centers for neonatal resuscitation. Keywords:  Simulation, Resuscitation, Neonate, Students Background Neonatal resuscitation requires the acquisition of cognitive, technical, and behavioral skills. The traditional Neonatal Resusitation Program (NRP), until 2010, had been predominantly based on didactic sessions with additional skills station training. Since 2010, emphasis *Correspondence: [email protected] 2 Department of Pediatrics, Pramukhswami Medical College, Karamsad, Anand, Gujarat Full list of author information is available at the end of the article

has been placed on behavioral skills, and simulation methodology fulfills this void. “Simulation is a technique, not a technology, to replace or amplify real experiences with guided experiences, often immersive in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion” [1]. The Apollo 13 rescue mission and Skylab 2 repairs used simulation to improve efficacy [2]. Simulation has a large role to play in the education of professionals in industries where there is an inherent risk of significant error and where real-life training is costly and/or dangerous [3]. Medical simulators not

© 2015 Nimbalkar et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Nimbalkar et al. BMC Res Notes (2015) 8:636

only provide life-like models of actual patients; they also involve the most advanced forms of information technology, which allows for repetitive standardized training in various invasive procedures, decision making processes, and human interactions [4]. SimNewB was introduced in 2009, which is an interactive high fidelity simulator for neonatal skills training designed by Laerdal, in conjunction with the American Academy of Pediatrics (AAP), to meet the training requirements of the NRP. SimNewB accurately represents a full-term, 50th percentile newborn female, and measures approximately 50  cm in length and weighs about 3.5 kgs. The fidelity required for a particular application depends on the specific goal. Complex training aids are not required where learners are learning the basic skills involved in a task [5]. Simulation based learning strategies have a favorable impact on self efficacy and motivation for learning that affects acquisition of clinical skills as well as knowledge. These can be integrated into teaching methodologies to promote active learning [6]. While meta-analysis of studies done in simulation for resuscitation show that it is highly effective, they still call for more research in use of simulation as an educational tool [7, 8]. High fidelity simulation has several benefits. It provides video recording of trainees’ performance, thus making debriefing and learning easier. The simulation also allows for repetitive practice, utilizing different scenarios with various levels of difficulty. High fidelity simulators are expensive and setting up expensive simulation labs in a resource-challenged country such as India can be quite challenging. There is an increasing focus on simulation in the recently revised newborn resuscitation guidelines, making it a central part of the training. A recent systematic review on high fidelity mannequins for advanced life support training showed moderate benefits for improving skill performance. It also showed no significant benefit beyond course completion [9]. None of the studies included have been done in India and hence with a large population of medical students and new-borns, it is needed that high fidelity simulation be explored in this setting, especially considering the fact that high fidelity mannequins may not be accesible to the students that may require them. A simulation course built into the curriculum of 3rd year medical students demonstrated a significant favorable impact on clinical management skills and leadership skills. It is expected that such a curriculum will enhance the ability to manage acute clinical problems which can increase with increased exposure to simulation [10]. The aim of our study was to compare the acquisition and retention of neonatal resuscitation skills, particularly cognitive and technical skills, acquired through use of high fidelity vs low fidelity simulation training.

Page 2 of 7

Methods The study was approved by the institutional Human Research Ethics Committee. Instrument: Written test of 40 questions and Megacode of AAP. The written test was derived from the questions placed in the NRP textbook of AAP. The Megacode is a validated instrument developed by the AAP which tests the psychomotor and cognitive skills of resuscitating a newborn [11]. The Megacode has a 20 item checklist with a 3 (0, 1 and 2) point scale and includes 5 critical skills, none of which should be missed. Trainers: Four of the five trainers were trained on the SimNewB simulator in the preceding year and had used SimNewB in the intervening duration. The resource people were certified trainers in neonatal resuscitation based on the NRP guidelines by the AAP. Each had a minimum of 2 years of experience as a NRP trainer. Sample size: Neonatal resuscitation is a mandatory part of curriculum for final year medical students. All 103 students were included as the study subjects. Formal power analysis for calculation of sample size was not done prior to the study. However a sample of size 44 per group was sufficient to detect a moderate effect size of 0.60 between the groups at 5 % alpha error and 80 % power. Informed consent was obtained from all participants. Conduct of training: The study was conducted over a period of 3 days using the SimNewB (High Fidelity Simulator) of Laerdal Inc. and the low fidelity Resusci® Baby Basic of Laerdal Inc. Students in groups of 40 individuals on day 1, 40 on day 2, and then 23 on day 3 were randomized to the high fidelity simulator or the low fidelity Resusci® Baby Basic on each day. Randomization was done by WinPepi software by a statistician not involved in the study into high fidelity (HiFi) and low fidelity (LoFi) groups. The first 40 numbers were administered the intervention on day 1 as per their allocated intervention. NRP books of the AAP were provided to all of the MBBS students on the day of the course. At the start of each day, a pre-test of 40 questions and an advanced Megacode to the students was administered. This was followed by a 3 h didactic session of nine lectures based on the NRP textbook of the AAP. Following that, on each day, students were split into two groups. Both groups received training on preparation for resuscitation, initial steps, bag and mask ventilation, and endotracheal intubation at skill stations for a period of about 3 h. Students had little theory and practical exposure in neonatal resuscitation until they entered in the study, which eliminated possible confounding factors. Both the groups had an equal opportunity to finish the scenarios. The students in LoFi group were able to finish scenarios about 30 min earlier. Videotaping and debriefing was not done for either of the groups due to organizational limitations. Case based scenarios were used for both groups.

Nimbalkar et al. BMC Res Notes (2015) 8:636

Page 3 of 7

The HiFi group had the advantage of using several high fidelity features such as cry of mannequin, breathing effort, breath sounds, grunts, cyanosis, movements of limbs, saturations and heart rate displays, gastric tube insertion, cutting umbilical cord, etc. Following this, a written post-test and Megacode assessment was done for the HiFi group on the simulator and for the LoFi group on the conventional Laerdal mannequin. A student scoring more than or equal to 32 of 38 marks and correctly demonstrating the 5 critical skills was considered ‘pass’. Analysis was done to look for differences between the groups for skills and knowledge acquisition. After 3 months, we conducted a repeat written test and Megacode evaluation to check for retention of skills and knowledge. At the end of 3 months following the course, the trainees completed a questionnaire regarding their experience with didactic portion of the course, simulation methodology, conduct of the course, instructor performance, etc. Statistical analysis

Descriptive statistics [mean (SD), frequency (%)] was used to depict the characteristics of the study population. Paired t test was applied to test inter-group differences. Independent sample t-test on difference score/Chisquare test was applied to test for difference in skills and knowledge acquisition between the groups depending on

the type of variable. Though the study participants were randomized, the teachers who assessed them were not blinded. The statistician was provided the data as group 1 and group 2 rather than high fidelity and low fidelity. The group identity was decoded after the analysis and interpretation was complete. Statistical significance was considered if p-value was less than 0.05.

Results All the 103 student trainees in their final year of medical school were randomized using a balanced randomization technique in order to ensure an equal number of participants in both groups (52 in low fidelity group and 51 in high fidelity group). One student from each group did not show up for the training. At the 3 month follow up (retention) evaluation, 46 from low fidelity group and 48 from high fidelity group were present. A total of 73 (72.3  %) males and 28 (27.7  %) females participated in the study. The gender distribution (Male) [40 (78.4 %) vs 33 (66.0 %)], the mean (SD) pre-test written score [18.87 (6.06) vs 21.04 (5.80)] and the mean (SD) Megacode score [9.75 (6.16) vs 11.38 (6.27)] were similar between the groups (Table 1). Not a single participant from either group passed the Megacode test before the training. One participant from low fidelity group and five participants from high fidelity group performed the five main steps of Megacode correctly before the training.

Table 1  Baseline characteristics and within and between group comparisons of low fidelity vs high fidelity training Low fidelity (N = 51)

High fidelity (N = 50)

40 (78.4)

33 (66.0)

p value for between group comparisons using difference scores

Gender, frequency (%)  Male Written, mean (SD)  Pre-test  Post-test

18.87 (6.06) 33.90 (3.28)

21.04 (5.80)

 p-value for within group comparison (pre

Randomized control trial of high fidelity vs low fidelity simulation for training undergraduate students in neonatal resuscitation.

Knowledge acquisition and skill maintenance are important in learning neonatal resuscitation. Traditionally this is taught by using low fidelity manne...
NAN Sizes 0 Downloads 7 Views