www.pubstemcell.com

JSRM/Vol6 No.3, 2010; p165

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM) Cancer Stem Cells – Basics, Progress and Future Potential Bapat S.A

_______________________________________________________________ National Centre for Cell Science, Pune, India. * Dr. Sharmila A Bapat,National Centre for Cell Science, NCCS Complex, Pune University Complex, Ganeshkhind, Pune 411 007,INDIA Published online on 30 Oct 2010

_____________________________________________________________________

The primary characteristics of adult stem cells are maintaining prolonged quiescence, ability to self-renew and plasticity to differentiate into multiple cell types. These properties are evolutionarily conserved from fruit fly to humans. Similar to normal tissue repair in organs, the stem cell concept is inherently impregnated in the etiology of cancer. Tumors contain a minor population of tumor-initiating cells, called "cancer stem cells" that maintain some similarities in self-renewal and differentiation recognized as features of normal adult stem cells. Therefore, various methods developed originally for the analysis and characterization of adult stem cells are being extended to evaluate cancer stem cells. Relevant methods that are used generally across normal stem cells as well as cancer stem cells are summarized

m o c

competitive repopulating assays in animal models has enabled the prospective purification and enrichment of cancer stem cells (CSCs) in leukemia and also in certain solid tumors. Combination of two or more of these methods for validation of cancer stem cells appears to be a promising approach for the precise isolation and analysis of cancer stem cells. However, a major limitation for research in the field of stem cells and CSCs has been the lack of research resources in the form of in vitro models for these studies

. l l

e c m

e t s

b u p

. w w

w

The hypothesis that cancer could be a stem cell disease actually existed for several years before definitive ‘proof-of-concept’ experiments unequivocally established their involvement in initiating the tumorigenic state. Over the last decade, the combination of fluorescence-activated cell sorting with functional read-outs e.g. in vitro colony forming units in colony initiating assays, and Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700106/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p165

- 165 -

Vol6 Issue3

www.pubstemcell.com

JSRM/Vol6 No.3, 2010; p166

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM) A novel Antibody based approach to Cancer Treatment Yoshikazu Kurosawa

_______________________________________________________________ Fujita Health University, Nagoya, Japan. * Prof. Yoshikazu Kurosawa,Professor and Director of Institute for Comprehensive Medical Science,Fujita Health University,Nagoya, Japan Published online on 30 Oct 2010

_____________________________________________________________________

Cancer is one of the leading causes of death among the human race. No valid modalities of treatment other than surgical treatment have been established for this disease. We aimed to identify and to characterize cancer using large number of human monoclonal antibodies (mAbs) which are specific against their surface for new molecular targeted immunotherapy. In order to find proper targets for therapeutic antibodies against cancers we developed a screening strategy. We used a huge phage library of human antibodies. At the first step we comprehensively isolated many monoclonal antibodies (mAbs) that specifically bound to surface of cancer cells. Development of ICOS (Isolation of antigen/antibody complexes through organic solvent) method allowed us to succeed in isolation of a huge number of mAbs with various characteristics (Y Akahori et al. 2009). At the next step we selected clones that showed tumor-specific staining patterns in immunohistochemical (IHC) analysis by using many fresh cancer tissues reseted. Many surgeons took part in this project. Finally the antigens recognized by these clones were identified by immunoprecipitation (IP) followed by analysis with mass (MS) spectrometry (G Kurosawa et al. 2009). We

m o c

have succeeded in identification of 29 tumorassociated antigens (TAAs) and in isolation of 441 human mAbs that specifically bound to one of the 29 TAAs (G Kurosawa et al. 2008). In these screenings of the library, rounds of the selection process, mixing of cells and phage particles centrifugation growth of phages, were repeated three to four times in each screening. Therefore, numbers of phages of the clones whose antigens were abundantly present on the cell surface increased during the screenings. Recently we developed a new method for isolation of clones whose antigens were less abundantly present on the cell surface. Hence, we would like to talk on these methodology and discuss regarding this “A novel antibody based approach to Cancer Treatment” in this plenary session.

. l l

e c m

e t s

b u p

. w w

w

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700107/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p166

- 166 -

Vol6 Issue3

www.pubstemcell.com

JSRM/Vol6 No.3, 2010; p167

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM) Transplantation of autologous bone marrow stromal cells (BMSC) for CNS disorders – Strategy and tactics for clinical application Satoshi Kuroda

_______________________________________________________________ Hokkaido University Graduate School of Medicine, Sapporo, Japan. * Dr. Satoshi Kuroda,Department of Neurosurgery,Hokkaido University Graduate School of Medicine,Sapporo,Japan Published online on 30 Oct 2010

_____________________________________________________________________

m o c

Background There is increasing evidence that the transplanted bone marrow stromal cells (BMSC) significantly promote functional recovery after central nervous system (CNS) damage in the animal models of various kinds of CNS disorders, including cerebral infarct, brain contusion and spinal cord injury. However, there are several shortages of information when considering clinical application of BMSC transplantation for patients with neurological disorders. In this paper, therefore, we discuss what we should clarify to establish cell transplantation therapy in clinical situation and describe our recent works for this purpose.

imaging and MRI techniques, the transplanted BMSC can non-invasively be tracked in the living animals for at least 8 weeks after transplantation. Functional imaging such as PET scan may have the potential to assess the beneficial effects of BMSC transplantation. The BMSC can be expanded using the animal protein-free culture medium, which would maintain their potential of proliferation, migration, and neural differentiation.

. l l

e c m

e t s

b u p

. w w

w

Conclusion It is urgent issues to develop clinical imaging technique to track the transplanted cells in the CNS and evaluate the therapeutic significance of BMSC transplantation in order to establish it as a definite therapeutic strategy in clinical situation in the future

Methods and Results . The BMSC have the ability to alter their gene expression profile and phenotype in response to the surrounding circumstances and to protect the neurons by producing some neurotrophic factors. They also promote neurite extension and rebuild the neural circuits in the injured CNS. Using optical Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700108/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p167

- 167 -

Vol6 Issue3

www.pubstemcell.com

JSRM/Vol6 No.3, 2010; p168-169

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM) Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp Manikandhan R1, Muthu MS2, Sunil PM3, Shalini R1, Kannan TA4 Manjunath S5, Murugan P5, Srinivasan V5, Thamaraikannan P5, Tholcopiyan L5 , Srinivasan T5, Preethy SP5, Abraham S 5,6

_______________________________________________________________ 1

Meenakshi Ammal Dental College and Hospital, Chennai, India Pedo planet, Pediatric Dental Center, Chennai, India 3 Dr. Raman Dental Health Centre, Ranipet, India 4 Madras Veterinary College, Chennai 5 Nichi-In Centre for Regenerative Medicine, Chennai, India 6 Yamanashi University - Faculty of Medicine, Chuo, Japan 2

m o c

Published online on 30 Oct 2010

_____________________________________________________________________

. l l

vitro, the cells obtained from human dental pulp.

BACKGROUND Recent studies have shown that mesenchymal stem cells isolated from post natal human dental pulp, (Dental pulp stem cells-DPSCs) which is from permanent teeth and SHED (stem cells from human exfoliated deciduous teeth),the Periodontal ligament stem cells (PDLSC) and Stem cells from root Apical papilla(SCAP)have the potential to differentiate into cells of a variety of tissues including heart, muscle, cartilage, bone, nerve, salivary glands, teeth etc(1,2,3,4).This multipotential ability of DPSCs is being researched for clinical application for treating a variety of diseases like myocardial infarction, muscular dystrophy, neurodegenerative disorders, cartilage replacement, tooth regeneration and for repair of bone defects to mention a few. Moreover, the isolation of stem cells from teeth is minimally invasive, readily accessible and the non immunogenic characteristic of dental stem cells has paved the way for efforts to store the exfoliated deciduous teeth or milk teeth which is usually discarded, for use in the future. In this study we have isolated and expanded in

e c m

METHODS AND RESULTS

te

s b u

p . w

ww

After obtaining written informed consent, 24 teeth that were extracted for therapeutic or cosmetic reasons from 16 patients were used in this study. The specimens were transported from the clinic to NCRM lab taking 6 to 48 Hrs. For removal of the pulp tissue, the teeth were split obliquely at the Cementoenamel junction and the pulp tissue was isolated using brooches. The extracted pulp tissues were subjected to digestion using Collagenase typeI and type II at 37˚C for 15- 30 minutes. The digested cells were filtered with 70µm filter and centrifuged at 1800 rpm for 10 minutes. The pellet was then suspended in Dulbecco’s modified Eagle’s medium (DMEM)/Ham’s F12 supplemented with 15% fetal bovine serum , 100 U/ml penicillin, 100 µg/ml streptomycin,2 m M L -glutamine, and 2 m M nonessential amino acids (5) .Cell counting was done by Trypan Blue dye exclusion method and the cells were seeded in 6 well culture plates. The plates with cells were incubated at

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700109/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p168-169

- 168 -

Vol6 Issue3

Journal of Stem Cells & Regenerative Medicine

37˚C with 5% CO2 for varying periods from 14 days-28 days. The cells were observed daily and media change was done every three days.

RESULTS Viable Dental Pulp tissue-cells were obtained after transportation of up to 48 hrs and the in vitro growth of cells was initially slow but colonies were identified from the 10th day onwards. The cells were harvested at different intervals of 14-28 days for each sample based on their growth and subjected to H & E staining .The H & E staining of the cultured cells of all the samples showed positive results.

infarct size in rats with acute myocardial infarction. Stem Cells. 2008 Mar 5. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006

.

CONCLUSION:

m o c

We are able to transport extracted teeth and derive viable dental pulp tissue cells after enzymatic digestion and multiply them in culture after a maximum of 48 hrs after transportation. The cells could be grown in culture with a morphology resembling dental pulp stem cells while in culture expansion and in H&E studies. Further characterization of the cells is necessary to confirm their Stemness.

. l l

e c m

e t s

b u p

REFERENCES

1. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000

. w w

w

2. Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 2001 Oct 3. Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells. 2006 Nov 4. Gandia C, Armiñan A, García-Verdugo JM, Lledó E, Ruiz A, Miñana MD, Sanchez-Torrijos J, Payá R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepúlveda P. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700109/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p168-169

- 169 -

Vol6 Issue3

www.pubstemcell.com

JSRM/Vol6 No.3, 2010; p170-171

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM) Successful in vitro expansion and Characterization of Human Enteric Neuronal cells- A step towards Cell based therapies for Hirschsprung’s disease Krishnamohan J1, Srinivasan T2, Manjunath S2, Murugan P2, Srinivasan V2 Thamaraikannan2, Tholcopiyan L2, Preethy SP2, Balamurugan M3, Abraham S 2,4

_______________________________________________________________ 1

Institute of Child Health and Hospital for Children ,Chennai, India Nichi-In Centre for Regenerative Medicine, Chennai, India 3 Sri Manakula Vinayagar Medical College & Hospitals, Pondicherry, India 4 Yamanashi University - Faculty of Medicine, Chuo, Japan

2

m o c

Published online on 30 Oct 2010

_____________________________________________________________________

. l l

BACKGROUND The Enteric Nervous system (ENS) is a part of the Peripheral nervous system (PNS) that controls the peristaltic activity of the gut wall which is essential for propulsion of food in the digestive tract. It is composed of a large number of neurons and glial cells, distributed throughout the length of the gut. These ganglion cells develop from the neural crest in the embryo. Failure of complete colonization of the gut by these enteric neural crest cells during early development of life results in absence of ganglia or neurons in a portion of the gut, usually the colon which leads to aperistaltis and severe intestinal obstruction. This is known as Hirschsprung’s disease (HSCR) also known as congenital megacolon. HSCR affects 1 in 4500 newborns (1, 2). It appears either sporadically or has a familial basis and is often associated with other developmental defects. The main forms of treatment of HSCR are surgical resection of the aganglionic segment and pull through of the normal bowel. At present research is

aimed at developing Cell based therapies for replacement of ganglion cells or enteric neuronal cells in the aganglionic portion of the gut thus aiming at restoring the function of the gut (1, 3, 5). In this study we have isolated, in vitro expanded and characterized the Enteric Neuronal cells derived from human gut full thickness biopsy samples.

e c m

e t s

b u p

w.

ww

METHODS AND RESULTS The postnatal gut full thickness biopsy samples of size 2-4 mm were obtained using from 13 patients undergoing gut resection surgery after informed consent. The samples were washed in Phosphate Buffer saline and using forceps, the outer smooth muscle layers along with the myenteric plexus were peeled off from the underlying tissue as strips. The strips were washed in Phosphate Buffer saline (PBS) and treated with 1mg/ml Collagenase/Dispase mixture in PBS for 30-45 min at 37°C. The digested cells were filtered with 70µm filter and the cell suspensions were centrifuged at 1800rpm for 10 mins. The pellet

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700110/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p170-171

-1 70 -

Vol6 Issue3

Journal of Stem Cells & Regenerative Medicine

obtained was suspended in DMEM/F12 medium supplemented with penicillin (100U/ml), streptomycin (100 µg/ml), Lglutamine (2 mmol/L), growth factors like bFGF (20ng/ml) and EGF (20ng/ml)(2). Cell counting was done by Trypan Blue dye exclusion method and the cells were seeded in cell culture dishes coated with Fibronectin. The flasks with cells were incubated at 37˚C with 5% CO2 for varying periods from 18 days-28 days. The cells were observed daily and media change was done every 2-3 days.

RESULTS In all the samples, the Neurosphere like bodies (NLBs) were observed in the culture from 10th day onwards which were then subjected to histological and immunohistochemical studies. H&E staining showed positive for neural cells and Immunohistochemistry yielded positive for S-100, normally present in cells derived from the neural crest and Neuron Specific Enolase (NSE) a neuronal specific marker.

developing Human enteric nervous system as a tool for cell therapy in dysganglionosis. Int J Colorectal Dis. 2006 21:554–559 4. Richard M. Lindley, Daniel B. Hawcutt, M. Gwen Connell, David H. Edgar, Simon E.Kennyb. Properties of secondary and tertiary human enteric nervous system neurospheres. Journal of Pediatric Surgery 2009 44:1249–1256 5. Petra M. Bareiss, Marco Metzger, Kai Sohn, SteVen Rupp, Julia S. Frick, Ingo B. Autenrieth, Florian Lang, Heinz Schwarz, Thomas Skutella, Lothar Just. Organotypical tissue cultures from adult murine colon as an in vitro model of intestinal mucosa. Histochem Cell Biol. 2008 129:795–804

.

m o c

. l l

e c m

CONCLUSION:

e t s

We could successfully isolate and expand Human Enteric Neuronal cells from postnatal gut biopsy samples. Further research is warranted to utilize these Enteric Neuronal Cells for Cell based therapies to treat Hirschsprung’s disease.

b u p

. w w

REFERENCES

w

1. Marco Metzger, Claire Caldwell, Amanda J. Barlow, Alan J. Burns, and Nikhil Thapar.Enteric nervous system stem cells derived from Human gut mucosa for the Treatment of Aganglionic gut disorders. Gastroenterology. 2009 136:2214-2225 2. Nadege Bondurand, Dipa Natarajan, Nikhil Thapar, Chris Atkins and Vassilis Pachnis. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development and disease.130 (25):6387-6400 3. Ulrich Rauch, Andrea Hänsgen, Cornelia Hagl, Stefan Holland-Cunz, Karl-Herbert Schäfer. Isolation and cultivation of neuronal precursor cells from the Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700110/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p170-171

- 171 -

Vol6 Issue3

www.pubstemcell.com

JSRM/Vol6 No.3, 2010; p172

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM) Optimal delivery route of bone marrow stromal cells for rat infarct brain – A study using non-invasive optical imaging Masahito Kawabori, MD1, Satoshi Kuroda, MD, PhD1, Masaki Ito, MD1, Taku Sugiyama, MD1, Hideo Shichinohe, MD, PhD1Yuji Kuge, MD, PhD22, Nagara Tamaki, MD, PhD32

_______________________________________________________________ 1

Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan Department of Tracer Kinetics and Bioanalysis, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan 3 Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan 2

Published online on 30 Oct 2010

m o c

_____________________________________________________________________

l.

after transplantation, Immunohistochemistry.

BACKGROUND Recent studies have indicated that bone marrow stromal cells (BMSC) have the potential to improve neurological function when transplanted into animal model of central nervous system (CNS) disorders. However, there still exist several questions to solved prior to clinical application. In this study, therefore, we aimed to clarify the optimal delivery route of BMSC transplantation over a reasonable time window.

using

l e c

RESULTS:

m e t

s b u

p . w

ww

MATERIALS AND METHODS The rats were subjected to permanent middle cerebral artery occlusion. The BMSC were labeled with quantum dot (QD) 800. The labeled BMSC were transplanted into the infarct brain directly or intravenously at 7 days after the insult. Motor function was serially assessed. The BMSC were also tracked using near infrared (NIR) fluorescence imaging technique every week. The fate of the transplanted BMSC was examined at 5 weeks

Direct, but not intravenous, transplantation of BMSC significantly enhanced functional recovery. NIR fluorescence imaging could visualize their migration towards cerebral infarct in directly, but not intravenously, injected animals. The findings were supported on histological analysis. Thus, the BMSC were widely engrafted in the infarct brain in the directly injected animals, but few BMSC were observed in the intravenously injected ones.

CONCLUSION This study strongly suggests that direct transplantation of BMSC may be more beneficial in treating patients with ischemic stroke than their intravenous transplantation. Therapeutic time window must be called into account when considering the route of BMSC transplantation.

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700111/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p172

- 172 -

Vol6 Issue3

www.pubstemcell.com

JSRM/Vol6 No.3, 2010; p173-174

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM) Isolation and Culture of Human Microvascular endothelium for comparison of the morphological and molecular characteristics of Microvascular endothelial cells under normal gravity against simulated micro gravity Manjunath S1, Chatterjee S2, Majumder S2, Srinivasan V1, Murugan P1 Thamaraikannan P1, Tholcopiyan L1, Abraham S 1,3

_______________________________________________________________ 1

Nichi-In Centre for regenerative Medicine,Chennai,India Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India 3 Yamanashi University - Faculty of Medicine, Chuo, Japan 2

m o c

Published online on 30 Oct 2010

_____________________________________________________________________

. l l

BACKGROUND

e c m

microvascular endothelial cells from bovine lung and macrovascular endothelial cells from the bovine pulmonary artery. It was observed that the proliferation and migration of macrovascular endothelial cells were increased in microgravity (4, 5). Nitric oxide production was also studied and observed that microgravity treatment did not change nitric oxide production by microvascular endothelial cells (4).

e t s

Vascular endothelial cells play a major role in wound healing and also in growth of the tumors. Angiogenesis can be a target for treating diseases that are due to either poor vascularisation or decreased blood supply as in stroke, ulcers, heart disease, etc or abnormal and increased vasculature like in tumours. Application of specific compounds that may inhibit or induce the creation of new blood vessels in the body may help in the treatment of such diseases (1). Ex vivo generation of blood vessels may offer an excellent alternative to the synthetic valves that are being currently used in cardiology. Micro gravity also referred to, as weightlessness is not essentially zero gravity but rather minimal gravity. According to cell type, micro gravity causes variety of changes in proliferation and differentiation of cells while also affecting the migration of cells and cellular functions (2, 3). Siamwala et al from AUKBC have already studied the effects of microgravity on the

b u p

. w w

w

OBJECTIVES Isolation and Comparison of culture characteristics of Human microvascular endothelium cultured conventionally and in novel nanomaterial scaffold and further study the morphological and molecular characteristics of microvascular endothelial cells under normal gravity against simulated micro gravity.

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700112/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p173-174

- 173 -

Vol6 Issue3

Journal of Stem Cells & Regenerative Medicine

MATERIALS AND METHODS

REFERENCES

The human Omentum samples were obtained using surgical procedures after informed consent. The microvascular endothelial cells were isolated following the (6) protocol described by Scott et al .The isolated cells were seeded in two groups; Group I - Cells in Nano Polymer, Overlaid M199 medium +20%FBS and, Group II Cells in Conventional M199 medium+20%FBS. The cultures were maintained at 37C with 5%CO2. The medium was changed every 3 days thereafter. The cells were observed regularly for their morphological characteristics and images were documented. At day 7 and day 13 the cells were harvested and the cells were subjected to two assays to confirm the presence of nitric oxide (NO) in samples, which will in turn confirm the presence of endothelial cells. In the first assay the isolated cell suspension was probed with diaminorhodamine-4M (DAR4FM). In the second assay, the total nitrite level in the isolated cells suspended media was measured using Griess Assay protocol.

1. Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park). 2005

RESULTS:

2. Freed LE, Pellis N, Searby N, de Luis J, Preda C, Bordonaro J, Vunjak-Novakovic G. Microgravity cultivation of cells and tissues. Gravit Space Biol Bull. 1999 3. Dedolph RR, Dipert MH. The physical basis of gravity stimulus nullification by clinostat rotation. Plant Physiol. 1971 4. Siamwala JH, Majumder S, Tamilarasan KP, Muley A, Reddy SH, Kolluru GK, Sinha S, Chatterjee S. Simulated microgravity promotes nitric oxide-supported angiogenesis via the iNOS-cGMP-PKG pathway in macrovascular endothelial cells.FEBS Lett. 2010 5. Siamwala JH, Reddy SH, Majumder S, Kolluru GK, Muley A, Sinha S, Chatterjee S. Simulated microgravity perturbs actin polymerization to promote nitric oxideassociated migration in human immortalized Eahy926 cells. Protoplasma. 2010

m o c

. l l

6. Scott PA, Bicknell R. The isolation and culture of Microvascular endothelium. J Cell Sci. 1993

e c m

e t s .

A 21% increase in number of NO positive cells was observed in the cells cultured on the novel nanopolymer, while a 1.7 fold increase in nitrite production was detected in Group I in comparison to that of Group II.

b u p

. w w

CONCLUSION

w

Our data suggests the presence of more NO driven nitrite in the Microvascular endothelial cells cultured in the nanopolymer. In the next phase of the study, the cells thus isolated from both the groups will be subjected to simulated microgravity of 10-3 g in a clinostat at the AUKBC Vascular Biology Lab and the morphological and molecular characteristics of Microvascular endothelial cells will be studied to identify whether the effects of microgravity on Microvascular endothelial cells is organ specific. Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700112/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p173-174

- 174 -

Vol6 Issue3

www.pubstemcell.com

JSRM/Vol6 No.3, 2010; p175-176

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM) Multiple Injections of in Vitro Expanded Autologous Bone Marrow Stem Cells For Cervical Level Spinal Cord Injury - A Case Report Srivastava A1, Bapat M1, Ranade S1, Srinivasan V2, Murugan P2, Manjunath S2, Thamaraikannan P2, Abraham S 2,3

_______________________________________________________________ 1

Kokilaben Dhirubhai Ambani Hospital & Medical Research Institute, Mumbai, India Nichi-In Centre for regenerative Medicine,Chennai,India 3 Yamanashi University - Faculty of Medicine, Chuo, Japan 2

Published online on 30 Oct 2010

_____________________________________________________________________

BACKGROUND Patients with complete spinal cord injury at cervical level, mostly lead a life with quadriplegia. We report a case of 22 year old male, who became quadriplegic after C4-C5 injury and has improved after five injections of in-vitro expanded autologous bone marrow mononuclear cells (ABMMNC).

MATERIALS AND METHODS The patient developed complete quadriplegia following fall from height. MRI suggested C5 burst fracture with retropulsion of C5 vertebrae and cord contusion at C4-C5 and underwent decompression and fixation four days post injury. After surgical fixation, bone marrow was harvested twice and a portion of the MNCs were expanded in-vitro and injected and another portion was cryopreserved which were later expanded and injected through lumbar puncture. The first injection was given 13 days after surgery. The first specimen of BM had CD34 of 0.18% and was injected twice; once immediately after harvesting

(CD34:1.57%) and later after cryopreservation for 11 months (CD34: 3.33%). The second specimen had a CD34 of 0.52% and was injected thrice; twice after harvesting with CD34 of 1.28% and 6.23% respectively and later after cryopreservation for four months (CD34: 14.03%). The expansion was done in a GMP compliant clean room using autologous serum and the specimens were subjected to aerobic culture and Endotoxin tests before each administration. RESULTS: Investigations done (i)Post injury, (ii) Post decompression and (iii) one year (iv) One and half year after the injury have shown objective improvements with Light touch score (20-2240-48), Pin prick score (20-20-32-40), Anal sensations (Nil-Nil-Present), Motor Score (1111-22-26), Sensory level (C6-C6-C6-C6), Motor level (C5-C5-C6-C6), Neurological level (C5-C6-C6-C6), Spinal cord independence measure (9-12-45-50) and Barthel index (0-0-30-40). Repeat MRI show gliosis at C5. The ASIA score has improved from A to B with no adverse reactions.

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700113/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p175-176

- 175 -

Vol6 Issue3

Journal of Stem Cells & Regenerative Medicine

CONCLUSION Multiple intrathecal injections of in-vitro expanded ABMMNCs in cervical-spinal cord injury was found to be safe and gradual objective improvements have been observed over a year and a half without any adverse outcome.

.

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700113/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p175-176

- 176 -

Vol6 Issue3

www.pubstemcell.com

JSRM/Vol6 No.3, 2010; p177-179

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM) Autologous Bone Marrow Stem Cells in Spinal Cord Injury; Our Experience in Clinical Studies, Animal Studies, Obstacles faced and steps for future Dedeepiya V1, Manjunath S1, Murugan P1, Srinivasan V1, Thamaraikannan P1, Tholcopiyan L1,Justin William B2, Ayyappan S2, Abraham S 1,3

_______________________________________________________________ 1

Nichi-In Centre for regenerative Medicine,Chennai,India Madras Veterinary College, Chennai, India 3 Yamanashi University - Faculty of Medicine, Chuo, Japan 2

Published online on 30 Oct 2010

_____________________________________________________________________

BACKGROUND Following traumatic vertebral injuries and resultant spinal cord injury, most patients are doomed to a life either of quadriplegia or paraplegia. Current treatment option is limited to the stabilization of the vertebral fracture along with medications to prevent secondary damage leading to further deterioration and wishful waiting for recovery. In most instances recovery is insignificant. Safety of intrathecal injection of autologous bone marrow stem cells is proven but its efficacy varies between patients (1). Intralesional application has been reported to be more efficacious than intrathecal application (2, 3, 4). We have analyzed our experience in human patients followed up for 3 year period and have found several grey areas in spinal cord injury(5) one of them is to explore the differences between Intrathecal and intralesional application of stem cells with and without scaffolds in the latter technique. Towards achieving this goal we started a pilot study in animals where instead of post-

vertebral fixation intrathecal injection, we have performed intralesional application of autologous BMSC along with scaffolds (6). These scaffolds not only help retain the transplanted cells at the site of injury but also allow more neural precursors to grow compared to application without scaffolds (7). This study analyses the data retrospectively to plan further prospective studies with a view to improvise the results.

MATERIALS AND METHODS Study 1 : 100 to 120 ml of Bone marrow was tapped from the right posterior iliac crest under local anesthesia from human spinal injury victims (n=108; 76 males, 32 females) about 3 weeks to 18 months after surgical fixation of the vertebrae. The Level of injury was varied- Cervical (13 patients.) Upper Thorax- T1-T7 (35 patients) Lower thorax T8T12 (46 patients) Lumbar (2 patients.) Age Group Range: 8 yrs to 55 yrs. The bone marrow mononuclear cells were processed under cGMP SOP’s Class 10000 clean room

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700114/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p177-179

- 177 -

Vol6 Issue3

Journal of Stem Cells & Regenerative Medicine

and class 100 Biosafety hood as reported earlier (1) and were injected intrathecally into the subarachnoid space of the patients below L2 level after endotoxin tests and confirming CD34 status using flow cytometry. Study 2: 20-30ml of Bone marrow was tapped from the right posterior iliac crest under local anesthesia of canine spinal injury victims immediately after the injury and the bone marrow processed as reported earlier (6) were injected intralesionally embedded in thermoreversible hydrogel scaffolds at the site of the injury after endotoxin tests and CD34 analysis using flow cytometry. Both the animals had an Olby score of 1 with no CP reflex, Patellar reflex and deep pain reflex. RESULTS: Study-1

Parameters

Follow up attrition rate: Motor power improvement (atleast 2 grade of power post injection) Motor power improvement resulting in functional recovery

Subjective sensory improvement Abnormal sensation Autonomic improvement

4-6 months followup(1) 14.02%

12-36 months followup(8) 69%

14.11%

7.69%

4.70% 3 walk with support, 1 walking without support 16.97%

5.13%

25.64%

0%

0%

9.41%

10.26%

by Urodynamic studies Study-2: The first canine died due to cystitis on the 7th day after the procedure and the cause of death was confirmed to be unrelated to the procedure by autopsy that revealed co-morbid conditions like cystitis, nephritis and transmissible venereal tumor. Histopathology of the engrafted area revealed sustainability of aggregated stem cells that were transplanted revealing an ideal biocompatibility of the construct prepared with bone marrow mononuclear cells and polymer hydrogel for spinal cord regeneration in dogs. The second canine had complete recovery of hind limb function and coordination after 6 months, Olby score has improved to 14 (normal 15) with normal bowel and bladder control. DISCUSSION: It was hypothesized that intralesional application at time of surgery may be superior to Intrathecal application of bone marrow stem cells simply because the former technique ensured the delivery of a higher proportion of cells in the damaged area. It is possible that the cells injected intrathecally are carried along with the CSF to parts other than that damaged as well. This has been supported by study 2 when it was applied with scaffold. The injury model used in study 2 is a natural traumatic model and is more akin to real life than any other controlled spinal cord model that one could create in the lab. This study 2 which is still in process allows for the animal to live to its entire course enabling us to follow up the neurological recovery of the patient and on its death perform an autopsy to not only determine the cause of death but to also examine the fate of stem cells injected intralesionally. We hope to determine the percentage of stem cells remaining as stem cells and to determine the nature and magnitude of histopathological changes that might have taken place which facilitated /non facilitated the recovery in the study animals

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700114/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p177-179

- 178 -

Vol6 Issue3

Journal of Stem Cells & Regenerative Medicine 6. Yasuda H, Kuroda S, Shichinohe H, Kamei S, Kawamura R, Iwasaki Y. Effect of biodegradable fibrin scaffold on survival, migration, and differentiation of transplanted bone marrow stromal cells after cortical injury in rats. J Neurosurg. 2010 ;112(2):336-44.

CONCLUSION It is understood from the study 1, that the factors determining outcome are multiple and includes the age of patients, level of injury, time interval between injury and ABMMC injection, dosage of stem cells injected and all these need to be evaluated in future studies. More studies are necessary to ascertain the efficacy. Safety of both intrathecal and intralesional injection with scaffold have been proven in this studies. Inclusion of larger number of cases with a long term follow up is necessary to know the efficacy of intralesional therapy with scaffolds.

7. Abraham et al. Stem cell Clinical trials Session. Stem cell Global blue Print Conference (21-22 May2010) Toronto, Canada

.

References 1. Abraham S, Manjunath S, Baskar S, Senthil Kumar R, Dedeepiya V, Terunuma H, Ravikumar R, Narayanan R, Selvan R ,Sankaranarayanan S, Jasper J, Parthiban JKBC, Arjundas D and Subramanniyan SR. Autologous Stem Cell Injections for Spinal Cord Injury - A multicentric Study with 6 month follow up of 108 patients 7th Annual Meeting of Japanese Society of Regenerative Medicine, Nagoya, Japan, 13 - 14 March 2008 2. Vaquero J, Zurita M, Oya S, Santos M. Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration? Neurosci Lett. 2006 May. 3. de Haro J, Zurita M, Ayllón L, Vaquero J. Detection of 111.In-oxine-labeled bone marrow stromal cells after intravenous or intralesional administration inchronic paraplegic rats. Neurosci Lett. 2005 Mar 4. Yano S, Kuroda S, Lee JB, Shichinohe H, Seki T, Ikeda J, Nishimura G, Hida K, Tamura M, Iwasaki Y. In vivo fluorescence tracking of bone marrow stromal cells transplanted into pneumatic injury model of rat spinal cord. J Neurotrauma.2005 Aug 5. Ravikumar R, Narayanan S, Baskar S, SenthilNagarajan R, Abraham S. Autologous Stem Cell Injection for Spinal Cord Injury- A Clinical Study from India. PASRM 2007-004 6. Justin William B, Ayyappan S, DhanaJayaRao G, Pushkinraj H, Kannan TA , Sureshkumar R, Manjunath S, Murugan P, Srinivasan V, Abraham S. Intralesional Application of Autologous Bone Marrow Stem Cells with Scaffold in Canine for Spinal Cord Injury. PASRM, IV annual symposium , 2009.

Copyright © Journal of Stem cells and Regenerative medicine. All rights reserved JSRM/006030700114/Oct 30, 2010. JSRM/Vol6 No.3, 2010; p177-179

- 179 -

Vol6 Issue3

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM).

Proceedings of the Annual Symposium on Regenerative Medicine(PASRM). - PDF Download Free
583KB Sizes 1 Downloads 3 Views