Clinical Observation

Primary Atypical Optic Nerve Sheath Meningioma in a Child With Restricted Diffusion on Magnetic Resonance Imaging S. Ali Nabavizadeh, MD, Mariarita Santi, MD, Jean B. Belasco, MD, Robert A. Zimmerman, MD

Abstract: Optic nerve sheath meningioma is most often discovered in adults and is relatively rare in children. We report a 12-year-old girl with an atypical primary optic nerve meningioma, which demonstrated restricted diffusion on magnetic resonance imaging and high Ki67 labeling index. The patient developed recurrence, despite aggressive surgical resection of primary tumor and local radiation. We are unaware of previous reports documenting this constellation of imaging and histopathologic findings. Journal of Neuro-Ophthalmology 2014;34:173–176 doi: 10.1097/WNO.0000000000000127 © 2014 by North American Neuro-Ophthalmology Society

O

ptic nerve sheath meningioma is a tumor arising within the nerve sheath of the orbital or intracanalicular portion of the optic nerve secondary to proliferation of meningothelial cells. This tumor may be either a primary tumor of the optic nerve sheath or more commonly secondary tumor because of extension of a primary intracranial meningioma into the orbit (1,2). Its occurrence is relatively rare in the pediatric patients and has more aggressive behavior in this population (1). We report an atypical primary optic nerve meningioma, which demonstrated restricted diffusion on magnetic resonance imaging (MRI) and high Ki-67 labeling index.

CASE REPORT One year before admission to hospital, a 12-year-old girl noted blurred vision in her left eye, which progressed to Departments of Radiology (SAN), Pathology (MS), and Oncology (JBB), The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania. The authors report no conflicts of interest. Address correspondence to Seyed A. Nabavizadeh, MD, Department of Radiology, The Children’s Hospital of Philadelphia, University of Pennsylvania, 34th Street, Civic Center Boulevard, Philadelphia, PA 19104; E-mail: [email protected] Nabavizadeh et al: J Neuro-Ophthalmol 2014; 34: 173-176

complete visual loss with no light perception. She initially was diagnosed with optic neuritis and received a course of corticosteroids without improvement. The patient was later thought to have a “blood clot” behind her eye based on an outside imaging study and was started on enoxaparin. She continued to have pain behind her left eye and a subjective feeling of her eye being “pushed out.” She was referred to our institution, where an MRI revealed a fusiform left orbital intraconal, a mass producing moderate degree of proptosis of the left globe (Fig. 1). The mass had a homogeneously low-signal intensity on T2 images filled most of the intracranial space with evidence of intraocular invasion. Avid enhancement of the mass was demonstrated after contrast administration, which extended through the left optic canal involving the intracranial left optic nerve just anterior to the optic chiasm. The mass also demonstrated restricted diffusion (Fig. 2). The lesion was biopsied, followed by exenteration of the left orbit with reconstruction of the socket with dermal fat graft. This tumor had the histologic features and immunohistochemical staining characteristics of a meningioma. The Ki67 labeling index was at least 10% (Fig. 3). The neoplasm also demonstrated an extremely aggressive pattern of growth with invasion of the orbit, retina, and choroid and near total replacement of the optic nerve (Fig. 4). The constellation of histopathological and immunohistochemical findings was consistent with atypical meningioma. A left orbitozygomatic craniotomy was performed for removal of the remaining tumor in the apex of the orbit, and optic canal, followed by local radiation to the tumor bed (5940 cGy). Five years later, the patient presented with tumor recurrence in the floor of the left orbit with bone destruction and extension into the left maxillary sinus. This was successfully treated with resection and radial-free flap reconstruction. The patient has had multiple neuroimaging studies and shows no signs of 173

Copyright © North American Neuro-Ophthalmology Society. Unauthorized reproduction of this article is prohibited.

Clinical Observation

FIG. 1. Magnetic resonance imaging of atypical optic nerve sheath meningioma. T2 Axial (A) and coronal (B) images reveal a relatively hypointense left intraorbital mass surrounding the optic nerve Postcontrast T1 axial (C) scan shows avid enhancement of the tumor.

tumor recurrence 36 months after her last surgery. No evidence of neurofibromatosis type 2 or other meningiomas have been detected in our patient.

DISCUSSION A significant feature of meningiomas in childhood is the higher rates of malignant and atypical subtypes in comparison with adults (3,4). In one report, 25% of all meningiomas in the pediatric population showed biological aggressive behavior in terms of disease progression (4). Our patient fit this clinical profile. The main differential diagnoses in a child presenting with an optic nerve tumor are optic nerve glioma and optic nerve meningioma. In our case, complete involvement of optic nerve and restricted

diffusion on MRI was also suggestive of a primitive neuroectodermal tumor such as medulloepithelioma (5). In the pediatric age group, literature regarding the neuroimaging appearance of primary optic nerve meningioma is scant, and no specific pattern has been recognized (1). However, most nerve sheath meningiomas in adult patients have a tubular configuration, followed by other patterns including globular, fusiform, or focal enlargement of the optic nerve sheath (1). Irregular tumor margins in the orbit are indicative of extradural invasion into surrounding tissues (1). MRI is the study of choice for evaluation of optic nerve tumors and should include fat suppression sequences and intravenous contrast (6). Lope et al (7) described the diffusion characteristics of a series of orbital tumors in pediatric patients. In one case, a meningioma demonstrated restricted diffusion; however, they did not

FIG. 2. Diffusion-weighted images demonstrate restricted diffusion (arrows) in trace diffusion image (A) and ADC map (B).

174

Nabavizadeh et al: J Neuro-Ophthalmol 2014; 34: 173-176

Copyright © North American Neuro-Ophthalmology Society. Unauthorized reproduction of this article is prohibited.

Clinical Observation

FIG. 3. Histopathologic specimen. A. The tumor is composed of meningothelial cells arranged in whorls and small lobules (hematoxylin and eosin, ·200). B. There are scattered mitotic figures (arrow) (hematoxylin and eosin, ·400). C. The tumor cells stain for epithelial membrane antigen (·400). D. There is prominent proliferative activity with MIB 1-Ki67 index of approximately 10% (MIB1-Ki67, ·400).

generate apparent diffusion coefficient (ADC) values and did not determine the histological type and grade or comment about primary optic nerve meningioma vs extension form an intracranial meningioma.

Multiple studies have found a statistical significance between histopathological subtype of meningiomas and the ADC values, with a tendency for atypical/malignant tumors to have lower ADC values (8,9). Various theories have been

FIG. 4. Histopathologic specimen. A. The meningioma invades the retina, choroid and almost completely replaces the optic nerve. Only a thin, atrophic central portion of the nerve is recognizable (arrow) (hematoxylin and eosin, ·5). Nests and lobules of tumor cells infiltrate the optic nerve (arrow) (B) (hematoxylin and eosin, ·100), the sclera and choroid (arrow) (C) (hematoxylin and eosin, ·400) and the retina (arrow) (D) (hematoxylin and eosin, ·100). Nabavizadeh et al: J Neuro-Ophthalmol 2014; 34: 173-176

175

Copyright © North American Neuro-Ophthalmology Society. Unauthorized reproduction of this article is prohibited.

Clinical Observation proposed to explain the decreased ADC in high-grade tumors including increased tumor cellularity, increased nucleus/ cytoplasm ratio, small cell size, fibrous, or gliotic tissues within the tumor or a combination of these factors (10). Ki-67 is an immunohistochemical cell proliferation marker that has been used to differentiate between benign and atypical/malignant meningiomas. In addition, this marker has been shown to be a more reliable predictor of both tumor recurrence and patient survival than histologic grade (11,12). A cutoff Ki-67 index of 10% has been proposed for distinguishing potentially recurrent and nonrecurrent meningiomas (12). In our patient, both restricted diffusion and Ki-67 value were indicative of the malignant nature of the tumor, which recurred despite aggressive initial resection and local radiation.

5. 6.

7.

8.

9.

10.

REFERENCES 1. Harold Lee HG, Garrity JA, Cameron JD, Strianese D, Bonavolonta G, Patrinely JR. Primary optic nerve sheath meningioma in children. Surv Ophthalmol. 2008;53:543–558. 2. Dutton JJ. Optic nerve sheath meningiomas. Surv Ophthalmol. 1992;37:167–183. 3. Liu Y, Li F, Zhu S, Liu M, Wu C. Clinical features and treatment of meningiomas in children: report of 12 cases and literature review. Pediatr Neurosurg. 2008;44:112–117. 4. Thuijas NB, Uitdehaag BM, Van Ouwerkerk WJ, van der Valk P, Vandertop WP, Peerdeman SM. Pediatric meningiomas in the

176

11.

12.

Netherlands 1974-2010: a descriptive epidemiological case study. Childs Nerv Syst. 2012;28:1009–1015. Miller NR. Primary tumours of the optic nerve and its sheath. Eye (Lond). 2004;18:1026–1037. Turbin RE, Pokorny K. Diagnosis and treatment of orbital optic nerve sheath meningioma. Cancer Control. 2004;11: 334–341. Lope LA, Hutcheson KA, Khademian ZP. Magnetic resonance imaging in the analysis of pediatric orbital tumors: utility of diffusion-weighted imaging. J AAPOS. 2010;14:257–262. Nagar VA, Ye JR, Ng WH, et al. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol. 2008;29:1147–1152. Filippi CG, Edgar MA, Ulug AM, Prowda JC, Heier LA, Zimmerman RD. Appearance of meningiomas on diffusionweighted images: correlating diffusion constants with histopathologic findings. Am J Neuroradiol. 2001;22:65–72. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M. Usefulness of diffusion-weighted MRI with echoplanar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999;9:53–60. Lanzafame S, Torrisi A, Barbagallo G, Emmanuele C, Alberio M, Albanese V. Correlation between histological grade, MIB-1, p53, and recurrence in 69 completely resected primary intracranial meningiomas with a 6 year mean follow-up. Pathol Res Pract. 2000;196:483–488. Torp SH, Lindboe CF, Groenberg BH, Lydersen S, Sunstrom S. Prognostic significance of Ki-67/MIB-1 proliferation index in meningiomas. Clin Neuropathol. 2005;24:170–174.

Nabavizadeh et al: J Neuro-Ophthalmol 2014; 34: 173-176

Copyright © North American Neuro-Ophthalmology Society. Unauthorized reproduction of this article is prohibited.

Primary atypical optic nerve sheath meningioma in a child with restricted diffusion on magnetic resonance imaging.

Optic nerve sheath meningioma is most often discovered in adults and is relatively rare in children. We report a 12-year-old girl with an atypical pri...
667KB Sizes 0 Downloads 4 Views