Photoredox Dual Catalysis.

Nickel/photoredox catalysis is used to synthesize indolines in one step from iodoacetanilides and alkenes. Very high regioselectivity for 3-substitute...
NAN Sizes 6 Downloads 119 Views

Recommend Documents

Nickel Dual Catalysis.
Hypervalent alkylsilicates represent new and readily accessible precursors for the generation of alkyl radicals under photoredox conditions. Alkyl radicals generated from such silicates serve as effective hydrogen atom abstractors from thiols, furnis

nickel dual catalysis.
The routine application of C(sp3)-hybridized nucleophiles in cross-coupling reactions remains an unsolved challenge in organic chemistry. The sluggish transmetalation rates observed for the preferred organoboron reagents in such transformations are a

Dual catalysis. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp³-carbons with aryl halides.
Over the past 40 years, transition metal catalysis has enabled bond formation between aryl and olefinic (sp(2)) carbons in a selective and predictable manner with high functional group tolerance. Couplings involving alkyl (sp(3)) carbons have proven

Photoredox Catalysis in Organic Chemistry.
In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert

Ni Dual Catalysis for the Synthesis of Benzylic Ethers.
Single-electron transmetalation has emerged as an enabling paradigm for the cross-coupling of Csp(3) hybridized organotrifluoroborates. Cross-coupling of α-alkoxymethyltrifluoroborates with aryl and heteroaryl bromides has been demonstrated by employ

Dual gold and photoredox catalysis: visible light-mediated intermolecular atom transfer thiosulfonylation of alkenes.
Regioselective difunctionalization of alkenes has attracted significant attention from synthetic chemists and has the advantage of introducing diverse functional groups into vicinal carbons of common alkene moieties in a single operation. Herein, we

Nickel Dual Catalysis.
Photoredox/nickel dual catalysis via single electron transmetalation allows coupling of Csp(3)-Csp(2) hybridized centers under mild conditions. A procedure for the coupling of electron-deficient aryl triflates, -tosylates, and -mesylates with alkylbi

Indole Functionalization via Photoredox Gold Catalysis.
The use of photoredox catalyst [Au2(dppm)2]Cl2 to initiate free-radical cyclizations onto indoles is reported. Excitation of the dimeric Au(I) photocatalyst for the reduction of unactivated bromoalkanes and bromoarenes is used for the generation of c

A dual catalytic strategy for carbon-phosphorus cross-coupling via gold and photoredox catalysis.
A new method for the P-arylation of aryldiazonium salts with H-phosphonates via dual gold and photoredox catalysis is described. The reaction proceeds smoothly at room temperature in the absence of base and/or additives, and offers an efficient appro

Generating hydrated electrons through photoredox catalysis with 9-anthrolate.
Hydrated electrons are among the strongest reductants known. Adding the ascorbate dianion as a sacrificial donor turns the photoionization of 9-anthrolate in water into a catalytic cycle for their in situ production with near-UV light (355 nm). The p