|

|

Received: 6 June 2020    Revised: 7 September 2020    Accepted: 21 September 2020 DOI: 10.1111/exd.14203

VIEWPOINT

Activated melanoma vessels: A sticky point for successful immunotherapy Carsten Weishaupt1

 | Tobias Goerge1 | Karin Loser1,2

1 Department of Dermatology, University Hospital of Muenster, Muenster, Germany

Abstract

2

Institute of Immunology, University of Oldenburg, Oldenburg, Germany

Metastatic melanoma is a devastating disease with a marginal—albeit increasing—

Correspondence Carsten Weishaupt, Department of Dermatology, University Hospital Muenster, Von-Esmarch-Str. 58, D-48149 Muenster, Germany. Email: [email protected]

sion of numerous neo-antigens and thus is associated with the potential to induce

Funding information Arbeitsgemeinschaft Dermatologische Forschung/Deutsche Dermatologische Gesellschaft, Grant/Award Number: Forschungsstipendium; Deutsche Forschungsgemeinschaft, Grant/Award Number: 817/5-1 , 817/7-1 , SFB 1009 project B07 and SFB-TR 128 project A10; Interdisciplinary Center for Clinical Research, Grant/Award Number: Lo2/004/16

to evade from antitumoral immune responses have been characterized and must be

hope for cure. Melanoma has a high mutation rate which correlates to the expresand strengthen effective antitumoral immunity. However, the incomplete and potentially insufficient response to established immunotherapies (response rates usually do not markedly exceed 60%) already points to the need of further studies to improve treatment strategies. Multiple tumor escape mechanisms that allow melanoma overcome to achieve a better clinical efficacy of immunotherapies. Recently, promising progress has been made in targeting tumor vasculature to control and increase the infiltration of tumors with effector lymphocytes. It has been hypothesized that amplified lymphocytic infiltrates in melanoma metastases result in a switch of the tumor microenvironment from a non-inflammatory to an inflammatory state. In this view point essay, we discuss the requirements for successful homing of lymphocytes to melanoma tissue and we present a mouse melanoma xenograft model that allows the investigation of human tumor vessels in vivo. Furthermore, current clinical studies dealing with the activation of melanoma vasculature for enhanced effectiveness of immunotherapy protocols are presented and open questions for routine clinical application are addressed. KEYWORDS

adhesion molecules, animal model, drug carriers, lymphocyte homing receptors, xenografts

1 |  TH E N E E D TO OV E RCO M E T U M O R E S C A PE I N M E TA S TATI C M E L A N O M A

They have promising long-term outcomes[2] and response rates (40%-63%).[1] However, it needs to be considered that a significant number of melanoma patients will still develop primary resistance or

Is metastatic melanoma curable?—This question has recently been asked more extensively than ever by patients and physicians.

[1]

will show progress in the course of treatment (acquired resistance).[3]

New

A major cause of treatment resistance to immunotherapy is

treatment targets such as immune checkpoint blockade (ICB) with

characteristics of the tumor tissue itself that allow the tumor to es-

PD-1 and CTLA-4 antibodies have become a routine treatment.

cape from immune responses.[4] Therefore, a fundamental need in

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2020 The Authors. Experimental Dermatology published by John Wiley & Sons Ltd Experimental Dermatology. 2020;00:1–9. 

|

wileyonlinelibrary.com/journal/exd     1

|

2      

WEISHAUPT et al.

treatment of metastatic melanoma is to better understand tumor escape mechanisms and to identify targets in order to

Early studies by Griffioen et al had shown that adhesion molecule expression in tumor angiogenesis is reduced and corresponds to a down-regulated inflammatory response.[25,26] Subsequently, it

1. increase the treatment response rate

was found that adhesion molecules relevant for lymphocyte hom-

2. reduce treatment toxicity

ing[27] (PECAM-1, E-selectin, ICAM-1, ICAM-2, VCAM-1 and CD34)

3. increase the duration of treatment response

were sparsely expressed on melanoma vessels.[28-30] As a cause for the downregulation of adhesion molecules, angiogenic factors such

Many tumor escape mechanisms have been identified, but few

as tumor-derived VEGF, FGF, TGF-β or NO were determined.[31-33]

have been targeted effectively enough for improving existing immu-

As we could show in melanoma metastases of different origin (lung,

notherapy protocols.

skin, lymph node, liver), the sparse expression of adhesion molecules correlated with low lymphocytic infiltrates. Notably, lymphocytes

2 |  M E L A N O M A V E S S E L S A S TA RG E T S FO R I M M U N OTH E R A PY

accumulated in the tumor-surrounding tissue with regular expression of adhesion molecules on the vasculature.[27] This observation triggered the hypothesis that induction of adhesion molecules on the endothelial cells of the melanoma vasculature might induce a

As an essential logistic system for nutrition and oxygen supply of tu-

sufficient lymphocytic infiltrate for more effective immune target-

mors, the characteristics of tumor vessels have been appointed as a

ing treatment protocols.

tumor escape mechanism.

[5]

They have been in the focus of research

since the early 1970s, when Judah Folkman had proposed angiogenesis as a target for tumor treatment.[6] In tumors, the hierarchical vessel structure and blood flow are distorted.[7,8] Tumor vessels are irregularly distributed, disorganized and tortuous, and due to the interstitial pressure that is built up by the tumor mass, they are dilated and leaky. Melanoma endothelial cells have characteristics that are

3 | A M O U S E M O D E L TO S T U DY AC TI VATI O N O F H U M A N M E L A N O M A VA S C U L AT U R E 3.1 | Can human vessels be studied in vivo?

considered to be abnormal including their morphology and genetics. These tumor growth supporting characteristics have been recently

Many studies had investigated the relevance of homing marker ex-

summarized by Annan et al in detail.[9] Drug resistance, for example,

pression in melanoma tissue. Nooijen et al reported a moderate up-

is promoted by upregulation of the multi-drug resistance receptor 1

regulation of E-selectin expression on human melanoma vasculature

and upregulation of p-glycoprotein within tumor endothelial cells.

after isolated limb perfusion with TNF and melphalan.[34] However,

This is induced through Act signalling by VEGF.

[10]

In addition, au-

they did not observe any significant changes in ICAM-1, VCAM-1

tocrine VEGF signalling results in sustained vascular integrity and

or PECAM expression on tumor vasculature inside the tumor tis-

viability of tumor cells.[11] During metastasis, tumor endothelial cells

sue, and moreover, they could not detect any influx of neutrophils.

prevent tumor cell anoikis by binding to tumor cells while they travel

However, in this experimental setup endothelial modulators were

to distant organs through blood and tissue.

[12]

delivered to the melanoma vessels through blood circulation. As the

On the other hand, tumor endothelial cells serve as a first anchor

authors discuss, the characteristics of tumor vessels might hamper

for immune cells to adhere and extravasate into the tumor tissue, a

a sufficient effect on the endothelium of tumor vasculature as they

process denominated as “homing”.[13] The homing process is regu-

found a clear effect on the tumor-surrounding vessels. In addition,

lated through a tissue-specific pattern of adhesion molecules and

the study lacks information on treatment relevant effector lympho-

chemokines.[14-16] Lymphocyte homing into tumor tissue, however,

cyte infiltration inside the tumor tissue. Thus, the study left some

is associated with an effective immune response and is a positive

questions open regarding the effectiveness of endothelial modula-

predictive marker.[17-19] Furthermore, the efficacy of immunother-

tion of tumor vasculature.

apy has been correlated to the number of tumor-infiltrating lympho-

A far more promising result was presented by Calcinotto et al.

cytes.[20] Therefore, the endothelial cells within tumor vasculature

They had studied NGR-TNF, which is TNF-α fused to a tumor-hom-

have been pinpointed as a target for investigations and therapeutic

ing peptide that recognizes an aminopeptidase N (CD13) isoform.

interventions.[21]

It is selectively expressed by endothelial cells in tumors. The fu-

Initial studies in the 1990s aiming at defining adhesion molecule

sion protein was able to induce ICAM-1, ICAM-2 and VCAM-1 on

expression on tumor vasculature were undertaken to develop mel-

tumor vasculature in a B16 melanoma mouse model.[35] This led

anoma vaccination protocols or antigen unspecific immunotherapy

to the release of pro-inflammatory cytokines and chemokines and

concepts (interferon-α, interleukin-2, isolated limb perfusion with

the infiltration of tumor-specific effector CD8+ T cells. Indeed, this

TNF).

[22-24]

Recent antigen non-specific approaches like CTLA-4

model allows studying immune responses to melanoma in an immu-

and PD-1 inhibition still require homing prerequisites, like adhesion

nocompetent mouse and it also allows to investigate immunothera-

molecule expression on tumor vasculature and chemokine gradients

peutic approaches.[36] However, at least anti-angiogenic treatments

inside tumor tissue for effective immune infiltration.

have been less effective in humans than predicted on the basis of

|

      3

WEISHAUPT et al.

preclinical tests in mice. Thus, the investigation of human vessels in

with relevant supply of melanoma grafts by human vessels. During

a melanoma xenograft model appears to be preferable for the inves-

the determined time frame of 21 days, cell homing studies indepen-

tigation of endothelial modification in vivo while other models may

dent on the type of leucocyte appear to be feasible. Certainly, the

be preferable in other demands.[37]

limitations of the model have to be taken into account. The whole set

Such a model should be able to prove that

up is elaborate and for comparability the donated blood and tumor tissues need to be sufficient. Thus, dependent on the availability

1. Human melanoma vasculature can be activated to express adhesion molecules 2. Induction of adhesion molecules results in enhanced recruitment of lymphocytes into melanoma tissue Few studies had investigated the usefulness of human vasculature in human tumor grafts on mice.[38] Summarized, they found that the supply of grafted human tumor tissue in colon carcinoma and mesothelioma was provided by mouse vessels of the host

of tissues, experiments may be prolonged. Effects of host-derived cytokines and angiogenic factors on the graft including the innate immune system and complement system are not known so far. Thus, effective controls are needed.

4 | R EQ U I R E M E NT S FO R E FFEC TI V E LY M PH O C Y TE H O M I N G TO M E L A N O M A M E TA S TA S E S

that started spreading into the tumor tissue after implantation of the graft. Similar to the study on colon carcinoma grafts, we trans-

Employing the in vivo model, three requirements for homing to

planted tissue from human melanoma metastases onto immunode-

human melanoma tissue were found (Figure 1):

ficient NOD-scid-IL2Rgammanull (NSG) mice. With this model, we were able to better characterize the function of human vessels inside melanoma xenografts.[39] We utilized a FITC labelled lectin specific for human vasculature that exclusively stained human vessels

4.1 | Activation of vascular endothelium results in enhanced lymphocyte homing to melanoma tissue

when injected into mouse circulation. As we found lectin stained human vessels inside the melanoma grafts, we were able to prove

Comparable to the finding of Calcinotto and co-workers in the B16

that human vessels inside xenografts connect to the mouse circula-

mouse model, we found that intratumoral injection of endothelial ac-

tion at day 7-14 after transplantation and can be studied until day 21

tivators like TNF resulted in an upregulation of adhesion molecules

before mouse vessels take over and outnumber human vessels. This

such as ICAM-1 and E-selectin. More importantly, we could show

observation was the first evidence that human melanoma vessels

that induction of these adhesion molecules on human melanoma

can be investigated in vivo when considering the limited time frame

vasculature resulted in enhanced infiltration of human lymphocytes

F I G U R E 1   The prerequisites of lymphocyte homing to melanoma tissue are shown. Relevant homing receptors are indicated

|

4      

WEISHAUPT et al.

from the same patient which were injected intravenously into the

cells counts in the tumor.[47,48] Others have found that also CCL3,

mouse. These results confirmed that activation of the melanoma

CCL4 and CCL5 contribute to lymphocyte invasion into melanoma

vasculature may be helpful to stimulate immune responses against

tissue.[49] In our study, we could add CCL17 (TARC), a ligand of

the tumor and within the tumor.

CCR4, as a chemokine that effectively triggers lymphocyte hom-

However, the results also showed that two additional condi-

ing to melanoma tissue when a gradient is established through in-

tions for effective leucocyte homing to melanoma tissue have to be

tralesional injection. Of note, a recent study demonstrated that

considered:

macrophage-derived CXCR3 ligands CCL9/CCL10 are required for antitumor immune responses following ICB

4.2 | Activated lymphocytes are needed for effective homing Grafted T-lymphocytes had to be taken from the same patient and had to be activated by incubation with tumor lysate from the same patient to gain homing to melanoma metastases. This suggests that imprinting of specialized homing molecules onto effec-

[50]

underlining the

clinical relevance of homing markers for established immunotherapy protocols.

5 | O PE N Q U E S TI O N S A N D E X PE R I M E NTA L A PPROAC H E S TO TA K E AC TI VATI O N O F T U M O R V E S S E L S TO C LI N I C A L A PPLI C ATI O N

tor T-lymphocytes must have taken place before cells were obtained from the patient. This was in line with others who had postulated

Since preclinical observations have suggested the activation of

that T-lymphocytes need to be activated for effective homing into

tumor vessels as an additional treatment to immunotherapies, some

tumor tissue.[40-43] An earlier study had shown similar homing re-

remaining questions have to be answered to implement this ap-

ceptor expression on peripheral blood CD8+ T cells in melanoma

proach in clinical melanoma treatment.

patients and healthy donors in a small cohort (n  = 11) suggesting that tumor-infiltrating lymphocytes might not present a skin-specific homing profile.[27] Therefore, the role of homing receptors on effector lymphocytes and mechanisms to modify these has to be reevaluated. To address this, studies on lymphocyte homing patterns (eg expression of LFA-1, MAC-1, PSGL-1 and VLA-4) in blood and mela-

5.1 | Can we specifically target endothelial modulators to tumor vasculature to improve efficacy of endothelial activation and for better tolerability?

noma tissue-derived cells from patients responding or progressing under PD-1 and/or CTLA-4 antibody treatment will provide useful

Treatment with TNF has side effects. While intralesional injection or

information.

even isolated limb perfusion of TNF can be tolerated well, this is not

Furthermore, some immunotherapeutic approaches allow ge-

the case for systemic application.[51] However, isolated limb perfu-

netic modification of T-lymphocytes, such as CAR-T cells, that

sion did not result in an effective stimulation of melanoma vessel

need to be prepared to home to tumor tissue.[44] Chemokine re-

endothelium.[34] Thus, a carrier that delivers endothelial modulators

ceptor modification on tumor-specific lymphocytes may also help

specifically to tumor vasculature is desirable. Calcinotto et al have

to target effector cells more efficiently to the tumor. For instance,

shown that NGR conjugated to human TNF is able to specifically

Idorn et al had recently shown that lentiviral transduction of

enhance adhesion molecule expression in a B16 mouse melanoma

T-lymphocytes with the chemokine receptor CXCR2 increased hom-

model.[35] NGR-humanTNF (NGR-hTNF) has already been investi-

ing of CD8 + lymphocytes to tumor tissue.

[45]

gated in phase I-III studies in various tumors.[52-55] The drug has been well tolerated and demonstrated clinical activity. However, most of

4.3 | Chemokine gradients are needed for effective homing

the studies combined NGR-hTNF treatment with chemotherapy since the drug enhanced penetration of the chemotherapy into the tumor tissue for better efficacy. Only a phase I study by Parmiani et al investigated the effect of NGR-hTNF in advanced melanoma.[56]

However, enhanced expression of adhesion molecules might not

Here, NGR-hTNF treatment was combined with a peptide-based

be enough for efficient lymphocyte homing. A tissue-specific

vaccination in 8 patients. Analysis of the immune infiltrate before

chemokine gradient is also a requirement. In the humanized mouse

and after treatment did not reveal an increased effector lymphocyte

model, the number of infiltrating T-lymphocytes did not increase

infiltrate, but increased numbers of macrophages inside the tumor.

without additional establishment of a chemokine gradient within

A clear tumor response was not detected while a prolonged survival

the tumor tissue. Chemokine receptors such as CXCR3 and CCR5

was discussed. However, neither adhesion nor chemokine receptors

have been shown to be important for effective tumor infiltration

analysis was performed on the tumor vasculature or lymphocytes.

with cytotoxic T-lymphocytes.[30,46] Along this line, the expression

Thus, a clinical trial to analyse the clinical effectiveness of ICB plus

of their ligands CXCL9 and CXCL10 in melanoma tissue correlates

NGR-hTNF treatment might be necessary to answer this ques-

not only with enhanced CTL infiltrates but also with increased NK

tion. It should include a translational part that investigates homing

|

      5

WEISHAUPT et al.

TA B L E 1   Therapeutic targets of tumor vasculature in melanoma and ongoing clinical trials Target

Tumor entity/stage

Phase

Substance

Registration number

L19-TNF (Daromun)

Melanoma IIIB/C

3

Neoadjuvant intratumoral treatment followed by surgery versus surgery alone

NCT03567889

NGR-hTNF

-

Talimogen laherparepvec

Melanoma with injectable lesion, no visceral metastases

1

T-vec + intratumoral injection of CD1c (BDCA-1)+ myDC

NCT03747744

VEGFR-2

-

VEGF antibody

Melanoma III/IV

1 3

bevacizumab + ipilimumab ipilimumab ± bevacizumab

NCT00790010 NCT01950390

Mucosal melanoma, metastasized or locally advanced

2

bevacizumab + atezolizumab

NCT04091217

Melanoma III/IV

2

Bevacizumab + atezolizumab

NCT04356729

Melanoma brain metastasis

2

bevacizumab + pembrolizumab

NCT02681549

Melanoma brain metastasis

2

bevacizumab + pembrolizumab ± cobimetinib

NCT03175432

Melanoma IV

1

+ paclitaxel albumin-stabilized nanoparticle formulation

NCT02020707

Melanoma IV

1b

TRK-950 + bevacizumab or other drugs

NCT03872947

Metastatic melanoma

2

Bevacizumab vs dacarbacin

EudraCT 2012-001020-35

>10 Jahre

Uveal melanoma

2

Bevacizumab

EudraCT 2009-011751-46

>10 Jahre

Melanoma IIB,IIC, IV

?

Bevacizumab

EudraCT 2006-005505-64

>10 Jahre

Melanoma IV

2

Bevacizumab + Carboplatin/ paclitaxel

EudraCT 2008-006191-30

receptors before and after treatment on melanoma vasculature and

modifying the immune response to melanoma. However, the effect

lymphocytes.

needs to be confirmed in a controlled clinical trial preferentially in

Another entry to stimulate melanoma vasculature is the L19 an-

patients treated with ICB.

tibody which recognizes tumor-specific fibronectin.[57] For clinical

In addition to stimulation of vascular adhesion molecules, at-

application, it has been fused to interleukin-2 and TNF.[58,59] A phase

tempts to prevent downregulation of adhesion molecules on mela-

II study in melanoma has shown that the intralesional combination

noma vessels during angiogenesis by VEGF-α have been undertaken

[60]

to normalize tumor vessels for better lymphocytic infiltrates.[64]

and that it was well tolerated. The results of a neoadjuvant phase

Here, immunization against VEGFR-2 or the adoptive transfer of

III study (NCT02938299) are pending. L19-TNF has also been com-

autologous T cells genetically engineered to express a chimeric an-

bined with ICB. After an improved response rate of ipilimumab and

tigen receptor targeted against VEGFR-2 has been employed and

L19-TNF was demonstrated in two syngeneic murine tumor mod-

has shown prolonged tumor-free survival in a mouse model.[65-67]

of these immunocytokines resulted in a response rate of 55%

els (F9, CT23),

[61]

a very recent study in a BALB/c derived immuno-

Furthermore, treatment with VEGF-α antibodies has raised hope to

competent murine model of sarcoma (WEHI-164) revealed that the

increase effectiveness of established immunotherapies by increas-

combination of L19-TNF and PD-1 inhibition was significantly more

ing lymphocytic infiltrates in melanoma tissue.[68,69] A clinical phase

effective than PD-1 inhibition alone.

[62]

These results, if confirmed

I has combined the CTLA-4 antibody ipilimumab and the VEGF-α

in clinical trials, will have major implications for the standard care of

antibody bevacizumab for treatment of metastatic melanoma. A

human cancers, including melanomas.

clinical response was documented demonstrating a disease control

An entirely different approach to activate tumor vasculature was chosen by Ito et al.

[63]

rate of 67,4% with an enhanced immunological response mediated

They found that adhesion receptors can be

through IL1α, TNFα and CXCL10, together with VEGF neutralization

induced on tumor vasculature by radiofrequency ablation in human

and a tolerable toxicity. Thus, further clinical studies including the

melanomas grafted on mice, resulting in enhanced lymphocyte infil-

combination of PD-1 or PD-L1 antibodies with VEGF-α antibodies

trates. These data point to a clinically easily accessible technique for

are warranted and have already shown clinical effectivity in an early

|

6      

WEISHAUPT et al.

study for renal cell carcinoma.[70] A line-up with therapeutic targets

L19-IL2 and L19-TNF. In this study, a response of non-injected me-

and ongoing clinical trials can be reviewed in Table 1.

tastases was observed in 7/13 cases.[60]

5.2 | Who needs adjuvant stimulation of tumor vessels?

6 | W I LL M E TA S TATI C M E L A N O M A B E CU R A B LE I N 10 Y E A R S ?

This is an important question in order to determine what patient

Now that immunotherapy is established for the treatment of mela-

population will at all profit from additional activation of tumor ves-

noma it is time to sharpen this tool for more effective and individual

sels. Analysis of molecular profiles and immune cell composition

melanoma treatment. To do so, many details of the immune re-

have suggested a differentiation between inflamed tumors (hot tu-

sponses to melanoma and the immune escape mechanisms still have

mors) and non-inflamed tumors (cold tumors).[71] More recently 6

to be explored, understood and the results need to be implemented

tumor profiles have been suggested, described as “wound healing,”

into immunotherapy protocols. Activation of tumor vessels for en-

“IFN-γ-dominant,” “inflammatory,” “lymphocyte depleted,” “immu-

hanced lymphocyte infiltration is one of many targets. In the long

nologically quiet,” and “TGF-β dominant”. “Wound healing,” “IFN-γ-

run, multiple adjuvant treatments may be necessary to boost the al-

dominant,” “inflammatory,” and “lymphocyte depleted” are the most

ready existing immune checkpoint therapies. These adjuvant treat-

frequent categories found in melanoma.[72] Since the “inflammatory”

ments will be applied dependent on the category of the tumor. Thus,

subset has been associated to the best prognostic value, the “lym-

the identification of the tumor category will be a prerequisite for

phocyte depleted” tumors may be targets for additional activation

successful personalized tumor medicine. Especially for non-inflamed

of tumor vasculature. Yet, it has to be tested which tumor category

melanomas stimulation of a pro-inflammatory tumor microenviron-

will be the most suitable target for additional activation of tumor

ment might be essential for successful immunotherapy. Based on

vasculature. It is unlikely that melanoma of the various categories

the recent findings on modulation of the tumor vasculature, this ap-

can be established in a mouse model. Thus, this question will have

proach is highly promising and has progressed to investigation within

to be answered in clinical studies that compare the tumor response

clinical studies (Table 1). The sticking point will be the delivery of

to immunotherapy plus vascular stimulation for the different tumor

efficient endothelial modulators to the tumor vessels. Here effective

categories.

carriers of endothelial modulators need to be found. NGR-TNF or L19-TNF is promising drugs that hopefully will take us closer to cure

5.3 | Is local activation of the tumor vasculature by intralesional treatment enough to trigger a systemic immune response?

melanoma more often within 10 years. AC K N OW L E D G M E N T S We thank Meike Steinert for expert technical support. Financial support by the “ADF/DDG Forschungsstipendium” to CW, Deutsche

The “abscopal effect” is a phenomenon that describes a systemic

Forschungsgemeinschaft (DFG; SFB-TR 128 project A10 to KL,

immune response with regression of non-treated metastases, when

SFB 1009 project B07 to KL, projects 817/5-1 and 817/7-1 to KL)

local radiation therapy is undertaken.[73] Radiation therapy has

and the Interdisciplinary Center for Clinical Research (IZKF, project

been shown to induce abscopal effects in metastatic melanoma,[74]

Lo2/004/16 to KL) is gratefully acknowledged. Open access funding

but also other lesion directed treatment approaches have demon-

enabled and organized by Projekt DEAL. Open access funding ena-

strated similar effects. Already in the 70ies Rosenberg et al had ob-

bled and organized by ProjektDEAL.

served that intralesional treatment of melanoma metastases with Mycobacterium bovis Bacillus-Calmette-Guérin resulted in shrink-

C O N FL I C T O F I N T E R E S T

ing of untreated metastases.[75] Another pro-inflammatory approach

None.

is intralesional injection of Talimogen laherparepvec, an oncolytic virus that specifically targets tumor cells, converts tumor cell me-

AU T H O R C O N T R I B U T I O N S

tabolism to produce the immune stimulant GM-CSF and induces cell

CW, TG and KL have written the manuscript and have read and ap-

lysis. Impressively, it has displayed an abscopal response in 15% of

proved the final manuscript.

uninjected visceral metastases. Whether abscopal responses can be achieved by vascular stimu-

DATA AVA I L A B I L I T Y S TAT E M E N T

lation, for instance in combination with PD-1 antibodies needs to be

Data sharing not applicable to this article as no data sets were gener-

answered in a clinical study that will compare intralesional treatment

ated or analysed during the current study.

with endothelial modulators with and without ICB. In addition, the tumor volume that needs to be treated intralesionally to achieve a

ORCID

systemic immune response has to be investigated. First promising

Carsten Weishaupt 

results stem from a phase II study on intralesional treatment with

Karin Loser 

https://orcid.org/0000-0003-1195-2106

https://orcid.org/0000-0002-0007-0936

|

WEISHAUPT et al.

      7

REFERENCES

[31] A. E. Dirkx, M. G. Oude Egbrink, M. J. Kuijpers, S. T. van der Niet, V. V. T. Heijnen, J. C. A. Bouma-ter Steege, J. Wagstaff, A. W. Griffioen, Cancer Res. 2003, 63, 2322. [32] D. M. Hellebrekers, K. Castermans, E. Vire, R. P. M. Dings, N. T. H. Hoebers, K. H. Mayo, M. G. A. oude Egbrink, G. Molema, F. Fuks, M. van Engeland, A. W. Griffioen, Cancer Res. 2006, 66, 10770. [33] O. N. Hernandez de la Cruz, J. S. Lopez-Gonzalez, R. GarciaVazquez, Y. M. Salinas-Vera, M. A. Muñiz-Lino, D. Aguilar-Cazares, C. López-Camarillo, Á. Carlos-Reyes, Font. Oncol. 2019, 9:1419. [34] P. T. Nooijen, E. R. Manusama, A. M. Eggermont, L. Schalkwijk, J. Stavast, R. L. Marquet, R. M. de Waal, D. J. Ruiter, Br. J. Cancer. 1996, 74, 1908. [35] A. Calcinotto, M. Grioni, E. Jachetti, F. Curnis, A. Mondino, G. Parmiani, A. Corti, M. Bellone, J. Immunol. 2012, 188, 2687. [36] J. C. Becker, R. Houben, D. Schrama, H. Voigt, S. Ugurel, R. A. Reisfeld, Exp. Dermatol. 2010, 19, 157. [37] L. Eklund, M. Bry, K. Alitalo, Mol. Oncol. 2013, 7, 259. [38] B. L. Hylander, N. Punt, H. Tang, J. Hillman, M. Vaughan, W. Bshara, R. Pitoniak, E. A. Repasky, J Transl. Med. 2013, 11, 110. [39] C. Weishaupt, M. Steinert, G. Brunner, H.-J. Schulze, R. C. Fuhlbrigge, T. Goerge, K. Loser, Exp. Dermatol. 2019, 28, 1258. [40] D. C. Palmer, S. Balasubramaniam, K. Hanada, C. Wrzesinski, Z. Yu, S. Farid, M. R. Theoret, L. N. Hwang, C. A. Klebanoff, L. Gattinoni, A. L. Goldstein, J. C. Yang, N. P. Restifo, J. Immunol. 2004, 173, 7209. [41] J. R. Mora, M. R. Bono, N. Manjunath, W. Weninger, L. L. Cavanagh, M. Rosemblatt, U. H. von Andrian, Nature 2003, 424, 88. [42] V. Mirenda, S. J. Jarmin, R. David, J. Dyson, D. Scott, Y. Gu, R. I. Lechler, K. Okkenhaug, F. M. Marelli-Berg, Blood 2007, 109, 2968. [43] M. Salmi, R. Grenman, S. Grenman, E. Nordman, S. Jalkanen, J. Immunol. 1995, 154, 6002. [44] B. Simon, U. Uslu, Exp. Dermatol. 2018, 27, 1315. [45] M. Idorn, S. K. Skadborg, L. Kellermann, H. R. Halldórsdóttir, G. Holmen Olofsson, Ö. Met, P. thor Straten, Oncoimmunology. 2018, 7, e1450715. [46] I. M. Mullins, C. L. Slingluff, J. K. Lee, C. F. Garbee, J. Shu, S. G. Anderson, M. E. Mayer, W. A. Knaus, D. W. Mullins, Cancer Res. 2004, 64, 7697. [47] Y. Reiss, A. E. Proudfoot, C. A. Power, J. J. Campbell, E. C. Butcher, J. Exp. Med. 2001, 194, 1541. [48] E. Wennerberg, V. Kremer, R. Childs, A. Lundqvist, Cancer Immunol. Immunother. 2015, 64, 225. [49] E. Schlecker, A. Stojanovic, C. Eisen, C. Quack, C. S. Falk, V. Umansky, A. Cerwenka, J. Immunol. 2012, 189, 5602. [50] I. G. House, P. Savas, J. Lai, A. X. Y. Chen, A. J. Oliver, Z. L. Teo, K. L. Todd, M. A. Henderson, L. Giuffrida, E. V. Petley, K. Sek, S. Mardiana, T. N. Gide, C. Quek, R. A. Scolyer, G. V. Long, J. S. Wilmott, S. Loi, P. K. Darcy, P. A. Beavis, Clin. Cancer Res. 2020, 26, 487. [51] F. Van Hauwermeiren, L. Puimege, S. Vandevyver, T. Van Bogaert, I. Vanlaere, L. Huys, L. Dejager, C. Libert, Adv. Exp. Med. Biol. 2011, 691, 481. [52] V. Gregorc, A. Santoro, E. Bennicelli, C. J. A. Punt, G. Citterio, J. N. H. Timmer-Bonte, F. Caligaris Cappio, A. Lambiase, C. Bordignon, C. M. l. van Herpen, Br. J. Cancer. 2009, 101, 219. [53] H. W. van Laarhoven, W. Fiedler, I. M. Desar, J. J. A. van Asten, S. Marreaud, D. Lacombe, A-S. Govaerts, J. Bogaerts, P. Lasch, J. N. H. Timmer-Bonte, A. Lambiase, C. Bordignon, C. J. A. Punt, A. Heerschap, C. M. L. van Herpen, Clin. Cancer Res. 2010, 16, 1315. [54] D. Lorusso, G. Scambia, G. Amadio, A. di Legge, A. Pietragalla, R. De Vincenzo, V. Masciullo, M. Di Stefano, G. Mangili, G. Citterio, M. Mantori, A. Lambiase, C. Bordignon, Br. J. Cancer. 2012, 107(1), 37. [55] V. Gregorc, R. M. Gaafar, A. Favaretto, F. Grossi, J. Jassem, A. Polychronis, P. Bidoli, M. Tiseo, R. Shah, P. Taylor, S. Novello, A. Muzio, A. Bearz, L. Greillier, F. Fontana, G. Salini, A. Lambiase, M. O'Brien, Lancet Oncol. 2018, 19, 799.

[1] P. Schummer, B. Schilling, A. Gesierich, Am. J. Clin. Dermatol. 2020, 21, 493. [2] A. Rogiers, A. Boekhout, J. K. Schwarze, G. Awada, C. U. Blank, B. Neyns, J. Oncol. 2019, 2019, 5269062. [3] J. C. Moser, S. Hu-Lieskovan, Drugs 2020, 80, 459. [4] M. Friedrich, S. Jasinski-Bergner, M. F. Lazaridou, K. Subbarayan, C. Massa, S. Tretbar, A. Mueller, D. Handke, K. Biehl, J. Bukur, M. Donia, O. Mandelboim, B. Seliger, Cancer Immunol. Immunother. 2019, 68, 1689. [5] M. Mazzone, G. Bergers, Annu. Rev. Physiol. 2019, 81, 535. [6] J. Folkman, Ann. Surg. 1972, 175, 409. [7] D. W. Siemann, Cancer Treat Rev. 2011, 37(1), 63. [8] N. De Carvalho, J. Welzel, S. Schuh, L. Themstrup, M. Ulrich, G. B. E. Jemec, J. Holmes, S. Kaleci, J. Chester, L. Bigi, S. Ciardo, G. Pellacani, Exp. Dermatol. 2018, 27, 1280. [9] D. A. Annan, H. Kikuchi, N. Maishi, Y. Hida, K. Hida, Int. J. Mol. Sci. 2020, 21. [10] K. Hida, K. Akiyama, N. Ohga, N. Maishi, Y. Hida, J. Biochem. 2013, 153, 243. [11] C. K. Domigan, C. M. Warren, V. Antanesian, K. Happel, S. Ziyad, S. Lee, A. Krall, L. Duan, A. X. Torres-Collado, L. W. Castellani, D. Elashoff, H. R. Christofk, A. M. van der Bliek, M. Potente, M. l. Iruela-Arispe, J. Cell Sci. 2015, 128, 2236. [12] A. Yadav, B. Kumar, J. G. Yu, M. Old, T. N. Teknos, P. Kumar, PLoS One. 2015, 10, e0141602. [13] D. B. Coursin, Nutr. Rev. 1965, 23, 80. [14] M. L. Dustin, Cell. 2019, 177, 499. [15] R. Sackstein, T. Schatton, S. R. Barthel, Lab. Invest. 2017, 97, 669. [16] R. C. Fuhlbrigge, C. Weishaupt, Semin. Immunopathol. 2007, 29(1), 45. [17] F. Azimi, R. A. Scolyer, P. Rumcheva, M. Moncrieff, R. Murali, S. W. McCarthy, R. P. Saw, J. F. Thompson, J. Clin. Oncol. 2012, 30, 2678. [18] N. E. Thomas, K. J. Busam, L. From, A. Kricker, B. K. Armstrong, H. Anton-Culver, S. B. Gruber, R. P. Gallagher, R. Zanetti, S. Rosso, T. Dwyer, A. Venn, P. A. Kanetsky, P. A. Groben, H. Hao, I. Orlow, A. S. Reiner, L. Luo, S. Paine, D. W. Ollila, H. Wilcox, C. B. Begg, M. Berwick, J. Clin. Oncol. 2013, 31, 4252. [19] M. M. Hasani-Sadrabadi, F. S. Majedi, S. J. Bensinger, B. M. Wu, L.-S Bouchard, P. S. Weiss, A. Moshaverinia, Adv. Mater. 2018, 30, e1706780. [20] P. C. Tumeh, C. L. Harview, J. H. Yearley, I. P. Shintaku, E. J. M. Taylor, L. Robert, B. Chmielowski, M. Spasic, G. Henry, V. Ciobanu, A. N. West, M. Carmona, C. Kivork, E. Seja, G. Cherry, A. J. Gutierrez, T. R. Grogan, C. Mateus, G. Tomasic, J. A. Glaspy, R. O. Emerson, H. Robins, R. H. Pierce, D. A. Elashoff, C. Robert, A. Ribas, Nature 2014, 515, 568. [21] O. Ciesielski, M. Biesiekierska, B. Panthu, V. Vialichka, L. Pirola, A. Balcerczyk, Int. J. Mol. Sci. 2020, 21. [22] B. Mukherji, N. G. Chakraborty, Curr. Opin. Oncol. 1995, 7, 175. [23] A. Barth, D. L. Morton, Cancer. 1995, 75(2 Suppl), 726. [24] D. L. Fraker, H. R. Alexander, M. Andrich, S. A. Rosenberg, Cancer J. Sci. Am. 1995, 1, 122. [25] A. W. Griffioen, C. A. Damen, G. H. Blijham, G. Groenewegen, Blood. 1996, 88, 667. [26] A. W. Griffioen, C. A. Damen, S. Martinotti, G. H. Blijham, G. Groenewegen, Cancer Res. 1996, 56, 1111. [27] C. Weishaupt, K. N. Munoz, E. Buzney, T. S. Kupper, R. C. Fuhlbrigge, Clin. Cancer Res. 2007, 13, 2549. [28] L. Piali, A. Fichtel, H. J. Terpe, B. A. Imhof, R. H. Gisler, J. Exp. Med. 1995, 181, 811. [29] P. T. Nooijen, J. R. Westphal, A. M. Eggermont, C. Schalkwijk, R. Max, R. M. de Waal, D. J. Ruiter, Am. J. Pathol. 1998, 152, 679. [30] H. Harlin, Y. Meng, A. C. Peterson, Y. Zha, M. Tretiakova, C. Slingluff, M. McKee, T. F. Gajewski, Cancer Res. 2009, 69, 3077.

|

8      

[56] G. Parmiani, L. Pilla, A. Corti, C. Doglioni, C. Cimminiello, M. Bellone, D. Parolini, V. Russo, F. Capocefalo, C. Maccalli, Oncoimmunology 2014, 3, e963406. [57] A. Pini, F. Viti, A. Santucci, B. Carnemolla, L. Zardi, P. Neri, D. Neri, J. Biol. Chem. 1998, 273, 21769. [58] C. Halin, V. Gafner, M. E. Villani,L. Borsi, A. Berndt, H. Kosmehl, L. Zardi, D. Neri, Cancer Res. 2003, 63, 3202. [59] B. Carnemolla, L. Borsi, E. Balza, P. Castellani, R. Meazza, A. Berndt, S. Ferrini, H. Kosmehl, D. Neri, L. Zardi, Blood. 2002, 99, 1659. [60] R. Danielli, R. Patuzzo, A. M. Di Giacomo, G. Gallino, A. Maurichi, A. Di Florio, O. Cutaia, A. Lazzeri, C. Fazio, C. Miracco, L. Giovannoni, G. Elia, D. Neri, M. Maio, M. Santinami, Cancer Immunol. Immunother. 2015, 64, 999. [61] K. Schwager, T. Hemmerle, D. Aebischer, D. Neri, J. Invest. Dermatol. 2013, 133, 751. [62] R. Corbellari, L. Nadal, A. Villa, D. Neri, R. De Luca, Anticancer Drugs 2020. [63] F. Ito, T. D. Vardam, M. M. Appenheimer, K. H. Eng, S. O. Gollnick, J. B. Muhitch, S. S. Evans, Int. J. Hyperthermia. 2019;36(Sup 1):22. [64] M. Bellone, A. Calcinotto, Front. Oncol. 2013, 3, 231. [65] Y. Q. Wei, Q. R. Wang, X. Zhao, L. Yang, L. Tian, Y. Lu, B. Kang, C.-J. Lu, M.-J. Huang, Y.-Y. Lou, F. Xiao, Q.-M. He, J.-M. Shu, X.-J. Xie, Y.-Q. Mao, S. Lei, F. Luo, L.-Q. Zhou, C.-E. Liu, H. Zhou, Y. Jiang, F. Peng, L.-P. Yuan, Q. Li, Y. Wu, J.-Y. Liu, Nat. Med. 2000, 6, 1160. [66] D. Chinnasamy, Z. Yu, M. R. Theoret, Y. Zhao, R. K. Shrimali, R. A. Morgan, S. A. Feldman, N. P. Restifo, S. A. Rosenberg, J. Clin. Invest. 2010, 120, 3953. [67] D. Chinnasamy, E. Tran, Z. Yu, R. A. Morgan, N. P. Restifo, S. A. Rosenberg, Cancer Res. 2013, 73, 3371. [68] A. E. Dirkx, M. G. A. O. Egbrink, K. Castermans, D. W. J. Schaft, V. L. J. L. Thijssen, R. P. M. Dings, L. Kwee, K. H. Mayo, J. Wagstaff, J. C. A. B.-t. Steege, A. W. Griffioen, FASEB J. 2006, 20, 621. [69] R. K. Shrimali, Z. Yu, M. R. Theoret, D. Chinnasamy, N. P. Restifo, S. A. Rosenberg, Cancer Res. 2010, 70, 6171. [70] J. J. Wallin, J. C. Bendell, R. Funke, M. Sznol, K. Korski, S. Jones, G. Hernandez, J. Mier, X. He, F. S. Hodi, M. Denker, V. Leveque, M. Cañamero, G. Babitski, H. Koeppen, J. Ziai, N. Sharma, F. Gaire, D. S. Chen, D. Waterkamp, P. S. Hegde, D. F. McDermott, Nat. Commun. 2016, 7, 12624. [71] J. M. Balwit, P. Kalinski, V. K. Sondak, P. G. Coulie, E. M. Jaffee, T. F. Gajewski, F. M. Marincola, J. Transl. Med. 2011, 9, 60. [72] V. Thorsson, D. L. Gibbs, S. D. Brown, D. Wolf, D. S. Bortone, T.-H. Ou Yang, E. Porta-Pardo, G. F. Gao, C. L. Plaisier, J. A. Eddy, E. Ziv, A. C. Culhane, E. O. Paull, I. K. A. Sivakumar, A. J. Gentles, R. Malhotra, F. Farshidfar, A. Colaprico, J. S. Parker, L. E. Mose, N. S. Vo, J. Liu, Y. Liu, J. Rader, V. Dhankani, S. M. Reynolds, R. Bowlby, A. Califano, A. D. Cherniack, D. Anastassiou, D. Bedognetti, Y. Mokrab, A. M. Newman, A. Rao, K. Chen, A. Krasnitz, H. Hu, T. M. Malta, H. Noushmehr, C. S. Pedamallu, S. Bullman, A. I. Ojesina, A. Lamb, W. Zhou, Hui Shen, Toni K. Choueiri, J. N. Weinstein, J. Guinney, J. Saltz, R. A. Holt, C. S. Rabkin, A. J. Lazar, J. S. Serody, E. G. Demicco, M. L. Disis, B. G. Vincent, I. Shmulevich, S. J. Caesar-Johnson, J. A. Demchok, I. Felau, M. Kasapi, M. L. Ferguson, C. M. Hutter, H. J. Sofia, R. Tarnuzzer, Z. Wang, L. Yang, J. C. Zenklusen, J. Zhang, S. Chudamani, J. Liu, L. Lolla, R. Naresh, T. Pihl, Q. Sun, Y. Wan, Y. Wu, J. Cho, T. DeFreitas, S. Frazer, N. Gehlenborg, G. Getz, D. I. Heiman, J. Kim, M. S. Lawrence, P. Lin, S. Meier, M. S. Noble, G. Saksena, D. Voet, H. Zhang, B. Bernard, N. Chambwe, V. Dhankani, T. Knijnenburg, R. Kramer, K. Leinonen, Y. Liu, M. Miller, S. Reynolds, Ilya Shmulevich, V. Thorsson, W. Zhang, R. Akbani, B. M. Broom, A. M. Hegde, Z. Ju, R. S. Kanchi, A. Korkut, J. Li, H. Liang, S. Ling, W. Liu, Y. Lu, G. B. Mills, K.-S. Ng, A. Rao, M. Ryan, J. Wang, J. N. Weinstein, J. Zhang, A. Abeshouse, J. Armenia, D. Chakravarty, W. K. Chatila, I. de Bruijn, J. Gao, B. E. Gross, Z. J. Heins, R. Kundra, K. La, M. Ladanyi, A. Luna, M. G. Nissan, A. Ochoa, S. M. Phillips, E.

WEISHAUPT et al.

Reznik, F. Sanchez-Vega, C. Sander, N. Schultz, R. Sheridan, S. O. Sumer, Y. Sun, B. S. Taylor, J. Wang, H. Zhang, P. Anur, M. Peto, P. Spellman, C. Benz, J. M. Stuart, C. K. Wong, C. Yau, D. N. Hayes, J. S. Parker, M. D. Wilkerson, A. Ally, M. Balasundaram, R. Bowlby, D. Brooks, R. Carlsen, E. Chuah, N. Dhalla, R. Holt, S. J. M. Jones, K. Kasaian, D. Lee, Y. Ma, M. A. Marra, M. Mayo, R. A. Moore, A. J. Mungall, K. Mungall, A. G. Robertson, S. Sadeghi, J. E. Schein, P. Sipahimalani, A. Tam, N. Thiessen, K. Tse, T. Wong, A. C. Berger, R. Beroukhim, A. D. Cherniack, C. Cibulskis, S. B. Gabriel, G. F. Gao, G. Ha, M. Meyerson, S. E. Schumacher, J. Shih, M. H. Kucherlapati, R. S. Kucherlapati, S. Baylin, L. Cope, L. Danilova, M. S. Bootwalla, P. H. Lai, D. T. Maglinte, D. J. Van Den Berg, D. J. Weisenberger, J. T. Auman, S. Balu, T. Bodenheimer, C. Fan, K. A. Hoadley, A. P. Hoyle, S. R. Jefferys, C. D. Jones, S. Meng, P. A. Mieczkowski, L. E. Mose, A. H. Perou, C. M. Perou, J. Roach, Y. Shi, J. V. Simons, T. Skelly, M. G. Soloway, D. Tan, U. Veluvolu, H. Fan, T. Hinoue, P. W. Laird, H. Shen, W. Zhou, M. Bellair, K. Chang, K. Covington, C. J. Creighton, H. Dinh, H. V. Doddapaneni, L. A. Donehower, J. Drummond, R. A. Gibbs, R. Glenn, W. Hale, Yi Han, J. Hu, V. Korchina, S. Lee, L. Lewis, W. Li, X. Liu, M. Morgan, D. Morton, D. Muzny, J. Santibanez, M. Sheth, E. Shinbrot, L. Wang, M. Wang, D. A. Wheeler, L. Xi, F. Zhao, J. Hess, E. L. Appelbaum, M. Bailey, M. G. Cordes, Li Ding, C. C. Fronick, L. A. Fulton, R. S. Fulton, C. Kandoth, E. R. Mardis, M. D. McLellan, C. A. Miller, H. K. Schmidt, R. K. Wilson, D. Crain, E. Curley, J. Gardner, K. Lau, D. Mallery, S. Morris, J. Paulauskis, R. Penny, C. Shelton, T. Shelton, M. Sherman, Eric Thompson, P. Yena, J. Bowen, J. M. Gastier-Foster, M. Gerken, K. M. Leraas, T. M. Lichtenberg, N. C. Ramirez, L. Wise, E. Zmuda, N. Corcoran, T. Costello, C. Hovens, A. L. Carvalho, A. C. de Carvalho, J. H. Fregnani, A. Longatto-Filho, R. M. Reis, C. Scapulatempo-Neto, H. C. S. Silveira, D. O. Vidal, A. Burnette, J. Eschbacher, B. Hermes, A. Noss, R. Singh, M. L. Anderson, P. D. Castro, M. Ittmann, D. Huntsman, B. Kohl, X. Le, R. Thorp, C. Andry, E. R. Duffy, V. Lyadov, O. Paklina, G. Setdikova, A. Shabunin, M. Tavobilov, C. McPherson, R. Warnick, R. Berkowitz, D. Cramer, C. Feltmate, N. Horowitz, A. Kibel, M. Muto, C. P. Raut, Andrei Malykh, Jill S. Barnholtz-Sloan, W. Barrett, K. Devine, J. Fulop, Q. T. Ostrom, K. Shimmel, Y. Wolinsky, A. E. Sloan, A. De Rose, F. Giuliante, M. Goodman, B. Y. Karlan, C. H. Hagedorn, J. Eckman, J. Harr, J. Myers, K. Tucker, L. A. Zach, B. Deyarmin, H. Hu, L. Kvecher, C. Larson, R. J. Mural, S. Somiari, A. Vicha, T. Zelinka, J. Bennett, M. Iacocca, B. Rabeno, P. Swanson, M. Latour, L. Lacombe, B. Têtu, A. Bergeron, M. McGraw, S. M. Staugaitis, J. Chabot, H. Hibshoosh, A. Sepulveda, T. Su, T. Wang, O. Potapova, O. Voronina, L. Desjardins, O. Mariani, S. Roman-Roman, X. Sastre, M.-H. Stern, F. Cheng, S. Signoretti, A. Berchuck, D. Bigner, E. Lipp, J. Marks, S. McCall, R. McLendon, A. Secord, A. Sharp, M. Behera, D. J. Brat, A. Chen, K. Delman, S. Force, F. Khuri, K. Magliocca, S. Maithel, J. J. Olson, T. Owonikoko, A. Pickens, S. Ramalingam, D. M. Shin, G. Sica, E. G. Van Meir, H. Zhang, W. Eijckenboom, A. Gillis, E. Korpershoek, L. Looijenga, W. Oosterhuis, H. Stoop, K. E. van Kessel, E. C. Zwarthoff, C. Calatozzolo, L. Cuppini, S. Cuzzubbo, F. DiMeco, G. Finocchiaro, L. Mattei, A. Perin, B. Pollo, C. Chen, J. Houck, P. Lohavanichbutr, A. Hartmann, C. Stoehr, R. Stoehr, H. Taubert, S. Wach, B. Wullich, W. Kycler, D. Murawa, M. Wiznerowicz, K. Chung, W. J. Edenfield, J. Martin, E. Baudin, G. Bubley, R. Bueno, A. De Rienzo, W. G. Richards, S. Kalkanis, T. Mikkelsen, H. Noushmehr, L. Scarpace, N. Girard, M. Aymerich, E. Campo, E. Giné, A. L. Guillermo, N. Van Bang, P. T. Hanh, B. D. Phu, Y. Tang, H. Colman, K. Evason, P. R. Dottino, J. A. Martignetti, H. Gabra, H. Juhl, T. Akeredolu, S. Stepa, D. Hoon, K. Ahn, K. J. Kang, F. Beuschlein, A. Breggia, M. Birrer, D. Bell, M. Borad, A. H. Bryce, E. Castle, V. Chandan, J. Cheville, J. A. Copland, M. Farnell, T. Flotte, N. Giama, T. Ho, M. Kendrick, J.-P. Kocher, K. Kopp, C. Moser, D. Nagorney, D. O’Brien, B. P. O’Neill, T. Patel, G. Petersen, F. Que, M. Rivera, L. Roberts, R. Smallridge, T. Smyrk, M. Stanton, R. H.

|

      9

WEISHAUPT et al.

Thompson, M. Torbenson, J. D. Yang, L. Zhang, F. Brimo, J. A. Ajani, A. M. A. Gonzalez, C. Behrens, J. Bondaruk, R. Broaddus, B. Czerniak, B. Esmaeli, J. Fujimoto, J. Gershenwald, C. Guo, A. J. Lazar, C. Logothetis, F. Meric-Bernstam, C. Moran, L. Ramondetta, D. Rice, A. Sood, P. Tamboli, T. Thompson, P. Troncoso, A. Tsao, I. Wistuba, C. Carter, L. Haydu, P. Hersey, V. Jakrot, H. Kakavand, R. Kefford, K. Lee, G. Long, G. Mann, M. Quinn, R. Saw, R. Scolyer, K. Shannon, A. Spillane, O. Stretch, M. Synott, J. Thompson, J. Wilmott, H. Al-Ahmadie, T. A. Chan, Ronald Ghossein, A. Gopalan, D. A. Levine, V. Reuter, S. Singer, B. Singh, N. V. Tien, T. Broudy, C. Mirsaidi, P. Nair, P. Drwiega, J. Miller, J. Smith, H. Zaren, J.-W. Park, N. P. Hung, E. Kebebew, W. M. Linehan, A. R. Metwalli, K. Pacak, P. A. Pinto, M. Schiffman, L. S. Schmidt, C. D. Vocke, N. Wentzensen, R. Worrell, H. Yang, M. Moncrieff, C. Goparaju, J. Melamed, H. Pass, N. Botnariuc, I. Caraman, M. Cernat, I. Chemencedji, A. Clipca, S. Doruc, G. Gorincioi, S. Mura, M. Pirtac, I. Stancul, D. Tcaciuc, M. Albert, I. Alexopoulou, A. Arnaout, J. Bartlett, J. Engel, S. Gilbert, J. Parfitt, H. Sekhon, G. Thomas, D. M. Rassl, R. C. Rintoul, C. Bifulco, R. Tamakawa, W. Urba, N. Hayward, H. Timmers, A. Antenucci, F. Facciolo, G. Grazi, M. Marino, R. Merola, R. de Krijger, A.-P. Gimenez-Roqueplo, A. Piché, S. Chevalier, G. McKercher, K. Birsoy, G. Barnett, C. Brewer, C. Farver, T. Naska, N. A. Pennell, D. Raymond, C. Schilero, K. Smolenski, F. Williams, C. Morrison, J. A. Borgia, M. J. Liptay, M. Pool, C. W. Seder, K. Junker, L. Omberg, M. Dinkin, G. Manikhas, D. Alvaro, M. C. Bragazzi, V. Cardinale, G. Carpino, E. Gaudio, D. Chesla, S. Cottingham, M. Dubina, F. Moiseenko, R. Dhanasekaran, K.-F. Becker, K.-P. Janssen, J. SlottaHuspenina, M. H. Abdel-Rahman, D. Aziz, S. Bell, C. M. Cebulla, A. Davis, R. Duell, J. B. Elder, J. Hilty, B. Kumar, J. Lang, N. L. Lehman, R. Mandt, P. Nguyen, R. Pilarski, K. Rai, L. Schoenfield, K. Senecal, Paul Wakely, P. Hansen, R. Lechan, J. Powers, A. Tischler, W. E. Grizzle, K. C. Sexton, A. Kastl, J. Henderson, S. Porten, J. Waldmann, M. Fassnacht, S. L. Asa, D. Schadendorf, M. Couce, M. Graefen, H. Huland, G. Sauter, T. Schlomm, R. Simon, P. Tennstedt, O. Olabode, M. Nelson, O. Bathe, P. R. Carroll, J. M. Chan, P. Disaia, P. Glenn, R.

K. Kelley, C. N. Landen, J. Phillips, M. Prados, J. Simko, K. SmithMcCune, S. VandenBerg, K. Roggin, A. Fehrenbach, A. Kendler, S. Sifri, R. Steele, A. Jimeno, F. Carey, I. Forgie, M. Mannelli, M. Carney, B. Hernandez, B. Campos, C. Herold-Mende, C. Jungk, A. Unterberg, A. von Deimling, A. Bossler, J. Galbraith, L. Jacobus, M. Knudson, T. Knutson, D. Ma, M. Milhem, R. Sigmund, A. K. Godwin, R. Madan, H. G. Rosenthal, C. Adebamowo, S. N. Adebamowo, A. Boussioutas, D. Beer, T. Giordano, A.-M. Mes-Masson, F. Saad, T. Bocklage, L. Landrum, R. Mannel, K. Moore, K. Moxley, R. Postier, J. Walker, R. Zuna, M. Feldman, F. Valdivieso, R. Dhir, J. Luketich, E. M. M. Pinero, M. Quintero-Aguilo, C. G. Carlotti, J. S. Dos Santos, R. Kemp, A. Sankarankuty, D. Tirapelli, J. Catto, K. Agnew, E. Swisher, J. Creaney, B. Robinson, C. S. Shelley, E. M. Godwin, S. Kendall, C. Shipman, C. Bradford, T. Carey, A. Haddad, J. Moyer, L. Peterson, M. Prince, L. Rozek, G. Wolf, R. Bowman, K. M. Fong, I. Yang, R. Korst, W. K. Rathmell, J. L. Fantacone-Campbell, J. A. Hooke, A. J. Kovatich, C. D. Shriver, J. DiPersio, B. Drake, R. Govindan, S. Heath, T. Ley, B. Van Tine, P. Westervelt, M. A. Rubin, J. Lee II, N. D. Aredes, A. Mariamidze, Immunity. 2018, 48, 812. [73] N. Dagoglu, S. Karaman, H. B. Caglar, E. N. Oral, Cureus 2019, 11, e4103. [74] M. A. D'Andrea, G. K. Reddy, Oncology 2020, 98, 202. [75] S. A. Rosenberg, H. J. Rapp, Med. Clin. North Am. 1976, 60, 419.

How to cite this article: Weishaupt C, Goerge T, Loser K. Activated melanoma vessels: A sticky point for successful immunotherapy. Exp Dermatol. 2020;00:1–9. https://doi. org/10.1111/exd.14203

No title

| | Received: 6 June 2020    Revised: 7 September 2020    Accepted: 21 September 2020 DOI: 10.1111/exd.14203 VIEWPOINT Activated melanoma vessels:...
694KB Sizes 0 Downloads 0 Views