research papers New hydrophobic L-amino acid salts: maleates of L-leucine, L-isoleucine and L-norvaline ISSN 2053-2296

Sergey G. Arkhipov,a,b* Denis A. Rychkov,a,b Alexey M. Pugachevc and Elena V. Boldyrevaa,b a

Received 14 April 2015 Accepted 5 June 2015 Edited by A. L. Spek, Utrecht University, The Netherlands Keywords: L-amino acids; maleate; noncentrosymmetric layered structures; L-norvaline–Lnorvalinium dimer; SHG effect; crystal structure; L-leucine; L-isoleucine; L-norvaline. CCDC references: 1405139; 1405138; 1405137 Supporting information: this article has supporting information at journals.iucr.org/c

REC-008, Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russian Federation, bInstitute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str. 18, Novosibirsk 630128, Russian Federation, and cInstitute of Automation and Electrometry SB RAS, pr. Akademika Koptyuga 1, Novosibirsk 630090, Russian Federation. *Correspondence e-mail: [email protected]

Crystals of maleates of three amino acids with hydrophobic side chains [l-leucenium hydrogen maleate, C6H14NO2+C4H3O4, (I), l-isoleucenium hydrogen maleate hemihydrate, C6H14NO2+C4H3O40.5H2O, (II), and l-norvalinium hydrogen maleate–l-norvaline (1/1), C5H11NO2+C4H3O4C5H12NO2, (III)], were obtained. The new structures contain C22(12) chains, or variants thereof, that are a common feature in the crystal structures of amino acid maleates. The l-leucenium salt is remarkable due to a large number of symmetrically nonequivalent units (Z0 = 3). The l-isoleucenium salt is a hydrate despite the fact that l-isoleucine is a nonpolar hydrophobic amino acid (previously known amino acid maleates formed hydrates only with lysine and histidine, which are polar and hydrophilic). The l-norvalinium salt provides the first example where the dimeric cation l-Nva  l-NvaH+ was observed. All three compounds have layered noncentrosymmetric structures. Preliminary tests have shown the presence of the second harmonic generation (SGH) effect for all three compounds.

1. Introduction

# 2015 International Union of Crystallography

Acta Cryst. (2015). C71

The crystallization, structures and properties of amino acid salts have received much attention (Fleck & Petrosyan, 2014). It is very important from the crystal engineering viewpoint to describe and understand the principles of the structure formation of these crystals. Up to now, more than 20 different amino acid maleates have been described and these are listed in Table 1. In Arkhipov et al. (2013), we tried to identify a common structural motif for all the amino acid maleates and have suggested that this is a C22 (12) hydrogen-bonded chain linking maleate anions and amino acid cations (Fig. 1a). To form a C22 (12) chain motif, the carboxylic acid group of the amino acid cation must be protonated (cases 1–12 and 19–22 in Table 1). The aim of the present study was to crystallize new maleates of amino acids with bulky hydrophobic side chains. From an analysis of the crystal structures of previously known maleates, we noticed that those which contain an amino acid having a bulky hydrophobic side group have layered structures. We assumed that if maleic acid forms a salt with a chiral amino acid with a bulky side chain, which is unable to form hydrogen bonds and act as a proton acceptor, the crystal structures of these salts will not be centrosymmetric (which is important for physical properties), will be layered and will have C22 (12) chains (or small variations of this motif). Thus, we have chosen l-leucine, l-isoleucine and l-norvaline to cocrystallize with http://dx.doi.org/10.1107/S2053229615010888

1 of 9

research papers Table 1 C22 (12) motifs in different amino acid maleates (see also Fig. 1); the structures solved in this paper are highlighted in bold. No.

Maleate (M)

CSD refcode (Groom & Allen, 2014)

Comments related to the C22 (12) motif

1 2 3 4 5 6 7 8 9

(GlyH)M (l-AlaH)M (l-PheH)M (dl-PheHM (dl-ValH)M (l-SerH)M (dl-SerH)M (dl-MetH)M (SarH)M

RENBAN BOQTEG EDAXIQ VAGVIJ QURSUR REZPET REZPAP MOCXUX MIYBAX

All these structures have C22 (12) chains.

10

(l-HisH2)(M)2

TENVOZ

This structure has an l-histidinium(2+) cation with a protonated side chain and a protonated carboxylic acid group. This leads to the formation of C22 (12)0 chains which are very similar to C22 (12) chains.

11

(dl-ThrH)M

ETEYOR

The second hydrogen bond is formed between the –OH group of the amino acid side chain and a carboxylate group of the maleate anion. This leads to the formation of C22 (12)0 chains.

12

( -AlaH)M

EDASUX

The backbone of -alaninium is one atom longer than the common amino acids. This leads to the formation of C22 (13) chains.

13

(l-LysH)M

XADTOL

The formation of C22 (12) chains is impossible because the carboxylic acid group of the amino acid is deprotonated, while the group of the side chain is protonated.

14 15 16 17 18

(l-ArgH)MH2O (dl-ArgH)M (l-HisH)2(M)2 (l-HisH)MH2O (l-HisH)2(M)23H2O

GIHGEK * TENVUF VAZJUD

19

(BetH)M

NASQED01

20

(L-IleH)2(M)2H2O, (II)

C44 (24) chains are formed by two non-equivalent l-IleH+ cations and two maleate anions.

21

(L-LeuH)3(M)3, (I)

C66 (36) chains are formed by three non-equivalent l-LeuH+ cations and three maleate anions.

22

l-Metl-MetHM

23

L-NvaL-NvaHM



**

C22 (12) chains cannot be formed because the amino group of betaine is completely methylated.

A C33 (17) chain is formed by l-Met  l-MetH+ (case 22) or l-Nva  l-NvaH+ (case 23) dimeric cations.

, (III)



Notes: (*) for (dl-ArgH)M , the coordinates were taken from Ravishankar et al. (1998); (**) the atomic coordinates of l-MetL-MetHM were not found in the papers by Natarajan et al. (2008, 2010) or in the Cambridge Structural Database (Version 5.35, updates to February 2014; Groom & Allen, 2014), but in Fig. 3 in Natarajan et al. (2008) a C33 (17) motif can be seen. References: (1) Rajagopal, Krishnakumar, Mostad & Natarajan (2001); (2) Alagar et al. (2001a); (3) Alagar et al. (2001b); (4) Alagar et al. (2003); (5) Alagar et al. (2001c); (6) and (7) Arkhipov et al. (2013); (8) Alagar et al. (2002); (9) Ilczyszyn et al. (2003); (10) and (17) Fleck et al. (2013); (11) Rajagopal et al. (2004); (12) Rajagopal, Krishnakumar & Natarajan (2001); (13) and (18) Pratap et al. (2000); (14) Sun et al. (2007); (15) and (16) Ravishankar et al. (1998); (19) Haussu¨hl & Schreuer (2001); (22) Natarajan et al. (2008).

maleic acid. In fact, all three structures did have this structureforming motif, but each of them also had unique features which are discussed further in comparison with the structures of all other maleates.

2. Experimental 2.1. Synthesis and crystallization 2.1.1. Powder samples. As a preliminary test to see if salts could be formed in a system, mixed powders of selected amino acids were coground in an agate mortar with the powder of maleic acid, as was described in Arkhipov & Boldyreva (2014), with and without the addition of water (1 mmol of water/ 1 mmol of amino acid/1 mmol of maleic acid). All the powder samples were characterized by powder XRD analysis [Stoe ˚ ), Stadi-MP diffractometer, Cu K radiation ( = 1.54060 A Mythen 1K detector, 2 range 5.0–51.8 , step 1.05 , time on step 10 s, with an operating potential of 40 kV and a current of

2 of 9

Arkhipov et al.



40 mA]. Data were processed using Win XPOW (Stoe & Cie, 2002). Each of the powder diffraction patterns from the samples ground without water (l-leucine plus maleic acid and l-isoleucine plus maleic acid) had peaks of amino acid, of maleic acid and of unknown phases. In the cases of l-leucine plus maleic acid plus H2O and l-isoleucine plus maleic acid plus H2O, each powder diffraction pattern had only peaks of an unknown phase. For all these phases, single crystals were obtained later by crystallization from solution. Theoretical powder diffraction patterns calculated for the structural models obtained from the single-crystal data matched well with the experimental patterns measured for powders obtained by cogrinding. We assume that the formation of salts in the samples to which no water was added was possible because of the presence of moisture in the air (Losev et al., 2013). An interesting effect was observed on cogrinding l-norvaline plus maleic acid with and without water, namely the results were almost identical and gave not salt (III), which

C6H14NO2+, C6H14NO2+ and C5H11NO2+ salts of C4H3O4

Acta Cryst. (2015). C71

research papers Table 2 Experimental details. Experiments were carried out at 298 K with Mo K radiation using an Agilent Xcalibur Gemini Ultra diffractometer with a Ruby detector. H-atom parameters were constrained. We assume that the amino acids retain their chirality during the synthesis of the mixed crystals.

Crystal data Chemical formula Mr Crystal system, space group ˚) a, b, c (A ( ) ˚ 3) V (A Z  (mm1) Crystal size (mm) Data collection Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F2 > 2(F2)], wR(F2), S No. of reflections No. of parameters No. of restraints ˚ 3) max, min (e A

(I)

(II)

(III)

C6H14NO2+C4H3O4 247.24 Monoclinic, C2 21.7231 (19), 5.6603 (4), 32.075 (3) 98.950 (8) 3895.8 (6) 12 0.11 2.5  0.05  0.05

C6H14NO2+C4H3O40.5H2O 256.26 Monoclinic, P21 11.5217 (9), 5.9974 (3), 19.3426 (12) 95.848 (6) 1329.62 (15) 4 0.11 0.25  0.1  0.05

C5H11NO2+C4H3O4C5H12NO2 350.37 Monoclinic, P21 12.2269 (6), 5.30779 (17), 15.4678 (6) 113.055 (5) 923.65 (7) 2 0.10 0.5  0.13  0.05

Multi-scan (CrysAlis PRO; Agilent, 2014) 0.345, 1.000 24642, 7940, 2843

Multi-scan (CrysAlis PRO; Agilent, 2014) 0.949, 1.000 17017, 5459, 3452

Multi-scan (CrysAlis PRO; Agilent, 2014) 0.900, 1.000 5895, 3014, 2642

0.182 0.625

0.069 0.625

0.022 0.625

0.087, 0.162, 0.94 7940 474 1 0.17, 0.22

0.064, 0.118, 1.04 5459 329 1 0.15, 0.14

0.048, 0.114, 1.08 3014 262 59 0.29, 0.24

Computer programs: CrysAlis PRO (Agilent, 2014), olex2.solve (Bourhis et al., 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

in a dry-box gave a powder mixture, the diffraction pattern of which had peaks from l-novaline, maleic acid, (III) and (III)0 . If l-norvaline and maleic acid were coground in a 2:1 ratio with a drop of water added, the diffraction pattern from the product was completely identical to the calculated powder diffraction pattern for (III). Thus, four new phases were obtained in this study, three of which could also be grown as single crystals. 2.1.2. Crystallization. Crystals of (I) and (II) were obtained using the modified ‘sitting-drop’ approach described in Rychkov et al. (2014) by slow evaporation at 298 K from aqueous solutions containing the l-amino acid and maleic acid in a 1:1 ratio. The first crystals of (III) (2:1 ratio of components) were obtained originally from solutions with a 1:1 ratio of components under the same conditions. Crystals of the same stoichiometry and structure were also obtained from an aqueous solution containing l-norvaline and maleic acid in a 2:1 ratio. All the crystals were colourless and transparent. Crystals of (I) and (II) grew as long thin needles, while crystals of (III) were obtained as blocks. Crystals of (II) are very brittle and broke easily. For the X-ray diffraction study, it was necessary to use the whole needle, even though not all the crystal was in the beam. Attempts to break off a piece of the needle of (I) led first to elastic bending, then to plastic deformation of the crystal. Extension led to delamination of the crystal which made it unsuitable for a single-crystal X-ray experiment. Salt (I) grows giving hedgehog-like polycrystalline druses, which must be destroyed to obtain an individual

crystallizes from solution, but another salt in the presumable 1:1 ratio, which we have defined as (III)0 . The formation of

(III)0 was complete, with no peaks of remaining maleic acid or of l-norvaline present in the diffraction patterns. Cogrinding Acta Cryst. (2015). C71

Arkhipov et al.



C6H14NO2+, C6H14NO2+ and C5H11NO2+ salts of C4H3O4

3 of 9

research papers

Figure 1 The general scheme of (a) the C22 (12) motif and (b) the C22 (12)0 chain in the structure of (l-HisH2)(maleate)2.

crystal. During the fragmentation of the ‘hedgehog’, several domains are inevitably formed in the single crystals, and this results in the high values of the R factor when refining the crystal structure (R1 = 0.087 and Rint = 0.182; Table 2). We explored several single crystals, but could not obtain one of better quality. In addition, we tried other methods of growing these crystals, but these did not help to improve the quality of the crystals.

˚ and Uiso(H) = 1.2Ueq(N) for the NH3 For (I), N—H = 0.89 A ˚ group, O—H = 0.82 A and Uiso(H) = 1.5Ueq(O) for all OH ˚ and Uiso(H) = 1.2Ueq(C) for the C—H groups, C—H = 0.98 A ˚ group, C—H = 0.96 A and Uiso(H) = 1.5Ueq(C) for the CH3 ˚ and Uiso(H) = 1.2Ueq(C) for the C—H group, C—H = 0.93 A ˚ and Uiso(H) = groups in maleic acid, and C—H = 0.97 A 1.2Ueq(C) for the CH2 group of the l-leucinium cation. ˚ and Uiso(H) = 1.5Ueq(O) for the For (II), O—H = 0.85 A ˚ and Uiso(H) = 1.2Ueq(N) for water OH groups, N—H = 0.89 A ˚ the NH3 group, O—H = 0.82 A and Uiso(H) = 1.5Ueq(O) for the OH groups of the maleate anion and the l-isoleucinium ˚ and Uiso(H) = 1.2Ueq(C) for the C—H cation, C—H = 0.98 A ˚ and Uiso(H) = 1.5Ueq(C) for the CH3 group, C—H = 0.96 A ˚ group, C—H = 0.93 A and Uiso(H) = 1.2Ueq(C) for the C—H ˚ and Uiso(H) = groups in maleic acid, and C—H = 0.97 A 1.2Ueq(C) for the CH2 group of the l-isoleucinium cation. ˚ and Uiso(H) = 1.2Ueq(N) for the For (III), N—H = 0.89 A ˚ and Uiso(H) = 1.5Ueq(O) for all NH3 group, O—H = 0.82 A ˚ OH groups, C—H = 0.98 A and Uiso(H) = 1.2Ueq(C) for the ˚ and Uiso(H) = 1.5Ueq(C) for the C—H group, C—H = 0.96 A ˚ CH3 group, C—H = 0.93 A and Uiso(H) = 1.2Ueq(C) for the ˚ and Uiso(H) = C—H groups in maleic acid, and C—H = 0.97 A 1.2Ueq(C) for the CH2 group of the l-norvalinium cation and the zwitterion (also for disordered groups). 2.3. SHG measurements

2.2. Crystal solution and refinement

Crystals of suitable quality of (I), (II) and (III) were selected using polarized light under a microscope and mounted by means of MiTiGen MicroGrippers using MiTiGen LV Cryo Oil (LVCO-1) on an Agilent Xcalibur (Ruby, Gemini Ultra) diffractometer using CrysAlis PRO (Agilent, 2014) software. Parameters for the crystal data, data collection and refinement are listed in Table 2. A crystal was kept at 298 K during the data collection. Using OLEX2 (Dolomanov et al., 2009), the structure of (I) was solved with the olex2.solve (Bourhis et al., 2015) structure solution program using the charge-flipping method. The structures of (II) and (III) were solved with the SHELXS97 (Sheldrick, 2008) structure solution program using direct methods. In the structure of (III), two terminal C atoms of the n-propyl groups of the l-norvalinium cation (C4—C5) and the l-norvaline zwitterion (C41— C51) were disordered. The disorder was refined with relative occupancies of 0.954 (7):0.046 (7) for the l-norvaline zwitterion and 0.901 (9):0.099 (9) for the l-norvalinium cation. Anisotropic displacement parameters for atoms C5B/C4B/C3/ C2 and C5B1/C4B1/C31/C21 were refined with a rigid bond restraint, with the anisotropic displacement parameters ˚ 2, and with the U ij values on constrained to be within 0.01 A adjacent atoms restrained to be similar. For atoms C51, C41, C31 and C21, the U ij values were restrained to be within ˚ 2. 0.04 A All H atoms were located initially in a difference Fourier map. The positions of all H atoms were subsequently geometrically optimized and refined using a riding model, with the following assumptions and restraints.

4 of 9

Arkhipov et al.



The second harmonic generation (SHG) test was carried out for powder samples of (I), (II) and (III) (particle size 100– 200 mm) using the Kurtz and Perry technique (Kurtz & Perry, 1968). As the radiation source, we used a ‘Standa’ STA-01-7 repetitively pulsed laser with a wavelength of 1062 nm, a pulse duration of 0.6 ns, a pulse repetition rate of 1 kHz and an average power of 100 mW. The laser beam was directed onto a sample of crystalline Quartz that had an average grain size of about 100 mm that was used to calibrate the SHG intensity. A backscattered second harmonic signal (531 nm) through a collimator was supplied to a slit of the monochromator, detected by a photomultiplier and accumulated on a computer for a time necessary to achieve the required accuracy of measurements. The values were averaged over 50 measurements.

3. Results and discussion The crystals of l-leucinium hydrogen maleate, (I), l-isoleucinium hydrogen maleate hemihydrate, (II), and l-norvalinium hydrogen maleate–l-norvaline, (III), were grown as described in x2.1 using methods suggested in Rychkov et al. (2014). All three structures are monoclinic and crystallize, as expected, in noncentrosymmetric space groups, viz. C2 for (I) and P21 and (II) and (III). Salt (I) has three non-equivalent l-leucinium cations (with a neutral –COOH group) and three non-equivalent hydrogen maleate anions in the asymmetric unit (Fig. 2a). The asymmetric unit of hydrated salt (II) has two non-equivalent l-isoleucinium cations (with a neutral –COOH group), two hydrogen maleate anions and a water

C6H14NO2+, C6H14NO2+ and C5H11NO2+ salts of C4H3O4

Acta Cryst. (2015). C71

research papers

Figure 2 The asymmetric units of (a) (I), (b) (II) and (c) (III), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level.

cation and an O atom of maleate, and the second C21 (4) chain is formed by the amino group of l-isoleucinium and an O atom of water] and a C21 (7) chain (Fig. 3b). In contrast to (I), in which the C(5) and C22 (10) chains are homomolecular, all the chains in (II) are heteromolecular. In (III), an l-norvaline zwitterion and an l-norvalinium cation are connected to each other via N1—H1B  O21 and N2—H2B  O2 hydrogen bonds to form R22 (10) rings (Fig. 3c). Each R22 (10) ring is connected to another R22 (10) ring through an O1— H1  O11(x + 1, y  12, z + 2) hydrogen bond, which leads to the formation of C22 (9) and C22 (9)0 chains. The structures of the C22 (9) chains are shown in detail in Fig. 3(d). Interconnected R22 (10) rings and C22 (9) and C22 (9)0 chains form channels in (III) along the b axis. These channels are connected to each other via bridges, i.e. maleate anions. Each l-norvalinium cation or l-norvaline zwitterion is connected through the –NH3+ group to a maleate anion to form C21 (4) chains. It is important to consider the three new structures in the context of all other known structures of amino acid maleates (Table 1). Usually, amino acid maleates have a stoichiometric ratio of the amino acid cations and maleate anions (except cases 10, 20 and 23 in Table 1). The C22 (12) motif seems to be as

molecule (Fig. 2b). The asymmetric unit of (III) has l-norvaline as a zwitterion (l-Nva) with a carboxylate (COO) group, a protonated l-norvalinine residue (l-NvaH) as a cation (with a neutral –COOH group) and a hydrogen maleate anion (Fig. 2c). As in all other maleates, the maleate anions of (I), (II) and (III) form strong intramolecular O—H  O hydrogen bonds, with O  O distances of 2.433 (8), 2.454 (9) and ˚ in (I), 2.418 (4) and 2.410 (5) A ˚ in (II), and 2.449 (10) A ˚ 2.425 (4) A in (III). Also, as expected, all three compounds have layered structures, with chains running along the b-axis direction. Salt (I) has ‘head-to-tail’ C(5) chains formed by symmetrically equivalent l-leucinium cations [hydrogen bond N1— H1A  O21(x + 32, y  12, z + 1); Fig. 3a] and C22 (10) chains formed by non-equivalent l-leucinium cations [hydrogen bonds N2—H2B  O23(x  12, y  12, z) and N3— H3A  O22(x + 12, y  12, z); Fig. 3a]. l-Leucinium cations involved in the formation of C(5) chains form C21 (7) chains with maleate anions. The formation of a layer is completed by three different C22 (6) chains (Fig. 3a). Layers in the structure of (II) are formed by two different C21 (4) chains [one C21 (4) chain is formed by the amino group of the l-isoleucinium Acta Cryst. (2015). C71

Arkhipov et al.



C6H14NO2+, C6H14NO2+ and C5H11NO2+ salts of C4H3O4

5 of 9

research papers

Figure 3 Fragments of (a) (I), (b) (II) and (c)/(d) (III). All chains except C66 (36), C44 (24) and C33 (17) run along the b axis. In part (a), two hydrogen bonds have been removed [between atoms O31 and H1A, for a clearer presentation of the C(5) chains, and between atoms O21 and H1A, to better show the C12 (7) chains]. In part (c), two hydrogen bonds are not shown [that between atoms O2 and H2B has been removed for a clearer presentation of the C22 (9) chains (highlighted yellow) and that between atoms O21 and H1B has been removed to show the C22 (9)0 chains (highlighted in red)]. Part (d) illustrates in more detail the structure of the C22 (9) chains [atoms not involved in the formation of the C22 (9) chains have been retained only for the last two molecules and the remaining atoms have been removed for a clearer presentation of the chains].

common for the amino acid maleates as the head-to-tail motif is for amino acids (Vinogradov, 1979; Go¨rbitz, 2010). This motif has many variations. A C22 (12) chain can be formed only if the carboxylic acid group of an amino acid cation is protonated (cases 1–12 and 19–22 in Table 1). In some amino acids, the side chain can act as a proton acceptor. In these cases, a salt can be formed via side-chain protonation. Protonation of the amino acid side chain leads to deprotonation of the carboxylic acid group of the amino acid, so that C22 (12) chains cannot be formed (cases 13–18 in Table 1). One of the most interesting examples is provided by the ‘maleic acid–histidine’ system which includes four different salts. In the structures of 16, 17 and 18 (Table 1), the imidazole ring is protonated, while the carboxylic acid group is negatively charged. The asymmetric unit of structure 10 (Table 1) has two doubly charged lhistidinium(2+) cations and four maleate anions. The l-histidinium(2+) cation has a protonated imidazole ring and a

6 of 9

Arkhipov et al.



carboxylic acid group, so that the formation of a C22 (12)0 motif is possible (Fig. 1b). In this motif, the first hydrogen bond is formed by an O atom of the carboxylate group of the maleate anion, which is involved in the formation of the intramolecular hydrogen bond. This motif is very similar to the C22 (12) chain. Another example of small changes is structure 11 (Table 1). In this case, the –OH group of the side chain of the dl-threoninium cation is involved in the formation of the second hydrogen bond what leads to the formation of C22 (12)00 chains. If the backbone of an amino acid cation is one C atom longer, then the C22 (12) chain transforms into the C22 (12 + 1) = C22 (13) chain (case 12 in Table 1). Single methylation of the amino group has no effect on the formation of C22 (12) chains (case 9 in Table 1), while full methylation prevents the formation of these chains (case 13 in Table 1). Usually a C22 (12) chain is formed via one amino acid cation and one maleate anion. However, the structures of (I) and (II)

C6H14NO2+, C6H14NO2+ and C5H11NO2+ salts of C4H3O4

Acta Cryst. (2015). C71

research papers

Figure 4 Chains (a) C66 (36), (b) C44 (24) and (c) C33 (17) in the structures of (I), (II) and (III), respectively. In (I) and (III), chains located in opposite half-layers form a certain angle with each other and run in opposite directions. Chains C44 (24) in (II) are of the zigzag type, located one above the another, and run in opposite directions.

Structures (I), (II) and (III) are layered. Each layer consists of two sheets, i.e. half-layers. In each half-layer, the chains described in detail above run antiparallel in the same direction in different half-layers (Figs. 3 and 4). In (I) and (III), the chains located in different half-layers form a certain angle with each other (Fig. 4a and 4c). This is similar to the (l-PheH)M structure. However, in (II), the chains form zigzags and are stacked (Fig. 4b). In the (dl-ValH)M structure, C22 (12) chains in opposite layers are also stacked. All maleates containing chiral amino acids crystallize in noncentrosymmetric structures. The structures of (GlyH)M, (SarH)M and (dl-ArgH)M also do not have a centre of inversion. It has never been investigated whether the structure of (dl-ArgH)M shows the SGH effect. For the (SarH)M structure, the SGH effect was predicted theoretically, but was not studied experimentally (Gu¨nay et al., 2013). For (GlyH)M (Balasubramanian et al., 2010), (l-AlaH)M (Natarajan et al., 2006; Balasubramanian, 2009; Raj & Madhavan, 2011; Vijayan et al., 2012; Ruby et al., 2013), (l-PheH)-

have several non-equivalent cations and anions in the asymmetric unit, i.e. three in (I) and two in (II), giving C66 (36) (Fig. 4a) and C44 (24) chains (Fig. 4b), respectively. Generally, 2n one can expect a chain of type C2n (12n), where n is the number of symmetrically independent cations or anions involved in its formation. As for the structure of (l-HisH2)(M)2, where two symmetrically independent l-histidinium(2+) cations and four symmetrically independent hydrogen maleate anions are present, the C22 (12) chain is formed by one type of cation and one type of anion only. Dimeric cations of amino acids are involved in the formation of a C22 (12) motif in the structures of 2+1 (12 + 5) = C33 (17) motif 22 and 23 (Table 1), to give a C2+1 (Fig. 4c), when the number of atoms in the zwitterion amino acid backbone is equal to 5. A new l-Nva  l-NvaH dimeric cation was observed in (III), and its presence accounts for the formation of C33 (17) chains. Similarly, an l-Met  l-MetH dimeric cation in the structure of l-Met  l-MetHM (case 22 in Table 1) leads to the formation C33 (17) chains (Natarajan et al., 2008). Acta Cryst. (2015). C71

Arkhipov et al.



C6H14NO2+, C6H14NO2+ and C5H11NO2+ salts of C4H3O4

7 of 9

research papers M (Anbuchezhiyan et al., 2009; Devaprasad & Madhavan, 2010; Yogam et al., 2012), (l-HisH)M (Gonsago et al., 2012), (l-ArgH)MH2O (Vasantha & Dhanuskodi, 2004; Mallik & Kar, 2005; Kalaiselvi et al., 2008; Sun et al., 2008; Baraniraj & Philominathan, 2010; Charoen-In et al., 2011; Vasudevan et al., 2013) and l-Metl-MetHM (Natarajan et al., 2008, 2010), the SGH effect was observed. The crystal structures of (I), (II) and (III) account for interesting physical properties which deserve further studies. First, all three structures show an SHG effect. The conversion efficiency of (I), (II) and (III) as fine powder samples was found to be, respectively, 0.43 (3), 0.66 (4) and 1.79 (8) relative to the value for quartz powder with the same particle size. This value is low compared to the best SHG efficiencies reported for other maleates [in the range 0.65–1.51 with respect to that of a standard KDP (potassium dihydrogen phosphate) crystal]. It is important also to take into account that the exact values measured for a substance depend strongly on the sample preparation, in particular, on the size, shape and orientation of particles. For example, in our own measurements using the same technique, the SHG efficiency values were 9.6 times higher than that for quartz for ground KDP and 32 times that of quartz for nonground KDP. Therefore, the quantitative values reported for the new maleates in this work should be considered as preliminary, and we give them merely as a proof that all three compounds show NLO properties in principle. Second, because of the layered structures, the crystals of the three salts show perfect cleavage and can be suggested as promising candidates to be used as substrates for the deposition of thin films of organic molecules, similar to how the crystals of pure amino acids are used (Trabattoni et al., 2013). The ‘bottle-neck’ for these applications is in obtaining large single crystals (several mm in all dimensions). Third, but not least, (I) and (II) show interesting mechanical behaviour: mechanical action on crystals of (I) results in elastic, and then plastic, bending, whereas for (II), only a brittle fracture is observed.

Acknowledgements This work was supported by RFBR (grant No. 14-03-31866 mol_a), Ministry of Education and Science of the Russian Federation (project 1828) and Russian Academy of Sciences. The authors acknowledge the advice of Dr B. A. Zakharov with regard to processing the structural data.

References Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Alagar, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2001c). Acta Cryst. E57, o1102–o1104. Alagar, M., Krishnakumar, R. V., Nandhini, M. S. & Natarajan, S. (2001a). Acta Cryst. E57, o855–o857. Alagar, M., Krishnakumar, R. V. & Natarajan, S. (2001b). Acta Cryst. E57, o968–o970. Alagar, M., Subha Nandhini, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2003). Acta Cryst. E59, o209–o211.

8 of 9

Arkhipov et al.



Alagar, M., Subha Nandhini, M., Krishnakumar, R. V. & Natarajan, S. (2002). Acta Cryst. E58, o396–o398. Anbuchezhiyan, M., Ponnusamy, S. & Muthamizhchelvan, C. (2009). Spectrochim. Acta Part A, 74, 917–923. Arkhipov, S. G. & Boldyreva, E. V. (2014). J. Struct. Chem. 55, 778–783. Arkhipov, S. G., Zakharov, B. A. & Boldyreva, E. V. (2013). Acta Cryst. C69, 517–521. Balasubramanian, D. (2009). Nat. Sci. 1, 216–221. Balasubramanian, D., Murugakoothan, P. & Jayavel, R. (2010). J. Cryst. Growth, 312, 1855–1859. Baraniraj, T. & Philominathan, P. (2010). Spectrochim. Acta Part A, 75, 74–76. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Charoen-In, U., Ramasamy, P. & Manyum, P. (2011). J. Cryst. Growth, 318, 745–750. Devaprasad, S. A. & Madhavan, J. (2010). Arch. Appl. Sci. Res. 2, 50–56. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Fleck, M., Ghazaryan, V. V., Bezhanova, L. S., Atanesyan, K. & Petrosyan, M. (2013). J. Mol. Struct. 1035, 407–415. Fleck, M. & Petrosyan, A. M. (2014). In Salts of Amino Acids: Crystallization, Structure and Properties. Dordrecht: Springer. Gonsago, C. A., Albert, H. M., Karthikeyan, J., Sagayaraj, P. & Pragasam, J. A. (2012). Mater. Res. Bull. 47, 1648–1652. Go¨rbitz, C. H. (2010). Acta Cryst. B66, 84–93. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671. Gu¨nay, N., Pir, H., Avci, D. & Atalay, Y. (2013). J. Chem. Article ID 712130. Haussu¨hl, E. & Schreuer, J. (2001). Z Kristallogr. 216, 616–622. Ilczyszyn, M., Godzisz, D. & Ilczyszyn, M. M. (2003). Spectrochim. Acta Part A, 59, 1815–1828. Kalaiselvi, D., Kumar, R. M. & Jayavel, R. (2008). Mater. Lett. 62, 755–758. Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798–3813. Losev, E. A., Mikhailenko, M. A., Achkasov, A. F. & Boldyreva, E. V. (2013). New J. Chem. 37, 1973–1981. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Mallik, T. & Kar, T. (2005). Cryst. Res. Technol. 40, 778–781. Natarajan, S., Devi, N. R., Dhas, S. A. M. B. & Athimoolam, S. (2010). J. Optoelectron. Adv. Mater. 4, 516–519. Natarajan, S., Martin, S. A. & Ramachandran, E. (2006). Cryst. Growth Des. 6, 137–140. Natarajan, S., Rajan Devi, N., Britto Dhas, S. D. M. & Athimoolam, S. (2008). Sci. Technol. Adv. Mater. 9, 025012. Pratap, J. V., Ravishankar, R. & Vijayan, M. (2000). Acta Cryst. B56, 690–696. Raj, M. V. A. & Madhavan, J. (2011). Arch. Phys. Res. 2, 160–168. Rajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2001). Acta Cryst. E57, o751–o753. Rajagopal, K., Krishnakumar, R. V. & Natarajan, S. (2001). Acta Cryst. E57, o922–o924. Rajagopal, K., Ramachandran, E., Mostad, A. & Natarajan, S. (2004). Acta Cryst. E60, o386–o388. Ravishankar, R., Chandra, N. R. & Vijayan, M. (1998). J. Biomol. Struct. Dyn. 15, 1093–1100. Ruby Nirmala, L. & Thomas Joseph Prakash, J. (2013). Spectrochim. Acta Part A, 115, 778–782. Rychkov, D. A., Arkhipov, S. G. & Boldyreva, E. V. (2014). J. Appl. Cryst. 47, 1435–1442. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Stoe & Cie (2002). WinXPOW. Stoe & Cie, Darmstadt, Germany. Sun, Z. H., Yu, W. T., Cheng, X. F., Wang, X. Q., Zhang, G. H., Yu, G., Fan, H. L. & Xu, D. (2008). Opt. Mater. (Amsterdam), 30, 1001–1006.

C6H14NO2+, C6H14NO2+ and C5H11NO2+ salts of C4H3O4

Acta Cryst. (2015). C71

research papers Sun, Z.-H., Yu, W.-T., Fan, J.-D., Xu, D. & Wang, X.-Q. (2007). Acta Cryst. E63, o2805–o2807. Trabattoni, S., Moret, M., Campione, M., Raimondo, L. & Sassella, A. (2013). Cryst. Growth Des. 13, 4268–4278. Vasantha, K. & Dhanuskodi, S. (2004). J. Cryst. Growth, 269, 333– 341. Vasudevan, P., Sankar, S. & Gokul Raj, S. (2013). Optik (Stuttgart), 124, 4155–4158.

Acta Cryst. (2015). C71

Arkhipov et al.

Vijayan, N., Bhagavannarayana, G., Maurya, K. K., Sharma, S. N., Gopalakrishnan, R., Jayabharathi, J. & Ramasamy, P. (2012). Optik Int. J. Light Electron Opt. 123, 604–608. Vinogradov, S. N. (1979). Int. J. Pept. Protein Res. 14, 281–289. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Yogam, F., Vetha Potheher, I., Vimalan, M., Jeyasekaran, R., Rajesh Kumar, T. & Sagayaraj, P. (2012). Spectrochim. Acta Part A, 95, 369–373.



C6H14NO2+, C6H14NO2+ and C5H11NO2+ salts of C4H3O4

9 of 9

supporting information

supporting information Acta Cryst. (2015). C71

[doi:10.1107/S2053229615010888]

New hydrophobic L-amino acid salts: maleates of L-leucine, L-isoleucine and Lnorvaline Sergey G. Arkhipov, Denis A. Rychkov, Alexey M. Pugachev and Elena V. Boldyreva Computing details For all compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014). Program(s) used to solve structure: olex2.solve (Bourhis et al., 2015) for (I); SHELXS97 (Sheldrick, 2008) for (II), (III). For all compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010). (I) L-Leucinium hydrogen maleate Crystal data C6H14NO2+·C4H3O4− Mr = 247.24 Monoclinic, C2 a = 21.7231 (19) Å b = 5.6603 (4) Å c = 32.075 (3) Å β = 98.950 (8)° V = 3895.8 (6) Å3 Z = 12

F(000) = 1584 Dx = 1.265 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 1466 reflections θ = 1.9–18.4° µ = 0.11 mm−1 T = 298 K Needle, clear light colourless 2.5 × 0.05 × 0.05 mm

Data collection Agilent Xcalibur Gemini Ultra diffractometer with a Ruby detector Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.3457 pixels mm-1 ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) Tmin = 0.345, Tmax = 1.000

24642 measured reflections 7940 independent reflections 2843 reflections with I > 2σ(I) Rint = 0.182 θmax = 26.4°, θmin = 1.9° h = −26→26 k = −7→7 l = −40→40

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.087 wR(F2) = 0.162 S = 0.94 7940 reflections 474 parameters

Acta Cryst. (2015). C71

1 restraint Primary atom site location: iterative Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0204P)2] where P = (Fo2 + 2Fc2)/3

sup-1

supporting information Δρmin = −0.22 e Å−3

(Δ/σ)max < 0.001 Δρmax = 0.17 e Å−3 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

O51 O21 O31 O42 O61 H61 O52 O22 N2 H2A H2B H2C O12 H12 O53 O33 O62 H62 O63 H63 N3 H3A H3B H3C O13 H13 O32 O11 H11 O41 O23 O43 C92 H92 C21 H21 C102

x

y

z

Uiso*/Ueq

0.5051 (3) 0.7040 (3) 0.6155 (3) 0.2768 (3) 0.5348 (4) 0.5541 0.3502 (3) 0.5068 (3) 0.5063 (3) 0.4888 0.4825 0.5100 0.6052 (3) 0.5952 0.4151 (3) 0.4157 (3) 0.3225 (4) 0.3162 0.4258 (4) 0.4294 0.9173 (3) 0.9502 0.9139 0.9222 0.8285 (3) 0.8357 0.2522 (3) 0.6421 (4) 0.6369 0.5815 (3) 0.9291 (3) 0.4309 (5) 0.3095 (5) 0.3153 0.6919 (4) 0.6935 0.3278 (5)

0.7078 (12) 0.5468 (12) 0.5850 (13) 0.5282 (12) 0.4129 (12) 0.3933 0.3342 (12) 0.4577 (13) 0.1572 (12) 0.2650 0.1353 0.0216 0.5617 (14) 0.6808 0.1556 (12) −0.0606 (12) 0.5702 (12) 0.5620 −0.1558 (13) −0.1867 0.1039 (13) 0.1159 −0.0443 0.2002 0.4576 (15) 0.5912 0.2399 (12) 0.2531 (13) 0.3393 0.3584 (11) 0.4450 (13) −0.2469 (13) 0.1521 (19) 0.0118 0.1973 (18) 0.0313 0.3648 (19)

0.2477 (2) 0.50318 (18) 0.4185 (2) 0.64712 (19) 0.29051 (19) 0.3143 0.7754 (2) 0.8488 (2) 0.7876 (2) 0.7693 0.8075 0.7741 0.8508 (3) 0.8627 −0.0645 (2) 0.1078 (2) 0.7217 (2) 0.6959 −0.0239 (2) 0.0014 0.8968 (2) 0.8835 0.9055 0.9190 0.8165 (2) 0.8087 0.6017 (2) 0.4744 (2) 0.4536 0.3639 (2) 0.8418 (2) 0.0512 (2) 0.7125 (3) 0.7277 0.5438 (3) 0.5354 0.7371 (3)

0.071 (2) 0.0555 (19) 0.071 (2) 0.057 (2) 0.065 (2) 0.098* 0.076 (2) 0.063 (2) 0.049 (2) 0.058* 0.058* 0.058* 0.081 (2) 0.121* 0.072 (2) 0.069 (2) 0.068 (2) 0.102* 0.090 (3) 0.135* 0.051 (2) 0.062* 0.062* 0.062* 0.081 (2) 0.121* 0.075 (2) 0.075 (2) 0.112* 0.0547 (19) 0.070 (2) 0.100 (3) 0.064 (3) 0.077* 0.048 (3) 0.057* 0.054 (3)

Acta Cryst. (2015). C71

sup-2

supporting information C91 H91 N1 H1A H1B H1C C71 C101 C93 H93 C12 C22 H22 C83 H83 C73 C72 C81 H81 C103 C13 C82 H82 C11 C32 H32A H32B C43 H43 C41 H41 C23 H23 C61 H61A H61B H61C C63 H63A H63B H63C C33 H33A H33B C31 H31A H31B C51

0.5486 (5) 0.5427 0.7531 (3) 0.7826 0.7621 0.7511 0.5914 (5) 0.5279 (5) 0.4223 (4) 0.4226 0.5557 (5) 0.5687 (4) 0.5896 0.4239 (5) 0.4265 0.4223 (5) 0.2706 (5) 0.5743 (5) 0.5828 0.4200 (5) 0.8784 (5) 0.2857 (5) 0.2773 0.6809 (5) 0.6093 (4) 0.5878 0.6478 0.7845 (5) 0.8207 0.5781 (5) 0.5648 0.8597 (4) 0.8461 0.5320 (5) 0.5484 0.4934 0.5250 0.7483 (6) 0.7134 0.7336 0.7744 0.8077 (4) 0.8224 0.7728 0.6415 (5) 0.6555 0.6378 0.5769 (6)

Acta Cryst. (2015). C71

0.8120 (18) 0.9690 0.2711 (14) 0.2542 0.1815 0.4218 0.561 (2) 0.6353 (18) 0.2234 (18) 0.3840 0.4345 (19) 0.2397 (18) 0.1088 0.1712 (17) 0.3011 −0.0584 (19) 0.311 (2) 0.7793 (18) 0.9176 0.066 (2) 0.3744 (19) 0.1262 (18) −0.0286 0.356 (2) 0.3118 (17) 0.4366 0.3778 0.041 (3) −0.0330 0.139 (2) 0.2154 0.1708 (18) 0.0371 0.213 (3) 0.1757 0.1310 0.3805 −0.144 (2) −0.0742 −0.2563 −0.2233 0.2381 (18) 0.3658 0.2981 0.2331 (19) 0.1605 0.4013 −0.123 (2)

0.3168 (3) 0.3087 0.5680 (2) 0.5518 0.5909 0.5756 0.3807 (3) 0.2831 (3) 0.0083 (3) 0.0022 0.8382 (3) 0.8072 (3) 0.8238 0.0492 (3) 0.0671 0.0700 (4) 0.6383 (3) 0.3569 (3) 0.3724 −0.0291 (4) 0.8413 (3) 0.6718 (3) 0.6629 0.5051 (3) 0.7742 (3) 0.7569 0.7888 0.9172 (4) 0.9342 0.5547 (4) 0.5273 0.8674 (3) 0.8489 0.5829 (4) 0.6116 0.5747 0.5802 0.8922 (5) 0.8745 0.9108 0.8750 0.8920 (3) 0.9112 0.8723 0.5711 (3) 0.5983 0.5758 0.5466 (5)

0.071 (4) 0.085* 0.055 (2) 0.066* 0.066* 0.066* 0.054 (3) 0.054 (3) 0.059 (3) 0.071* 0.047 (3) 0.047 (3) 0.056* 0.061 (3) 0.073* 0.059 (3) 0.052 (3) 0.064 (3) 0.077* 0.058 (3) 0.053 (3) 0.069 (3) 0.083* 0.049 (3) 0.055 (3) 0.066* 0.066* 0.088 (4) 0.106* 0.082 (4) 0.099* 0.051 (3) 0.061* 0.143 (7) 0.215* 0.215* 0.215* 0.141 (7) 0.211* 0.211* 0.211* 0.053 (3) 0.063* 0.063* 0.064 (3) 0.077* 0.077* 0.148 (7)

sup-3

supporting information H51A H51B H51C C53 H53A H53B H53C C62 H62A H62B H62C C42 H42 C52 H52A H52B H52C

0.5928 0.6022 0.5348 0.7445 (6) 0.7109 0.7701 0.7278 0.6695 (6) 0.7080 0.6772 0.6515 0.6254 (5) 0.5869 0.6536 (6) 0.6273 0.6566 0.6943

−0.2043 −0.1584 −0.1721 0.158 (3) 0.2450 0.2629 0.0372 −0.060 (2) 0.0166 −0.1808 −0.1287 0.119 (2) 0.0374 0.236 (3) 0.3640 0.1217 0.2952

0.5723 0.5255 0.5370 0.9478 (4) 0.9319 0.9666 0.9639 0.7675 (5) 0.7787 0.7480 0.7902 0.7451 (4) 0.7330 0.7093 (4) 0.6978 0.6876 0.7201

0.223* 0.223* 0.223* 0.141 (7) 0.211* 0.211* 0.211* 0.132 (6) 0.199* 0.199* 0.199* 0.082 (4) 0.099* 0.132 (6) 0.197* 0.197* 0.197*

Atomic displacement parameters (Å2)

O51 O21 O31 O42 O61 O52 O22 N2 O12 O53 O33 O62 O63 N3 O13 O32 O11 O41 O23 O43 C92 C21 C102 C91 N1 C71 C101

U11

U22

U33

U12

U13

U23

0.100 (6) 0.087 (5) 0.089 (5) 0.095 (5) 0.105 (6) 0.116 (6) 0.067 (5) 0.065 (6) 0.093 (6) 0.106 (6) 0.112 (6) 0.120 (7) 0.178 (9) 0.065 (5) 0.093 (6) 0.124 (7) 0.101 (6) 0.076 (5) 0.071 (5) 0.215 (10) 0.102 (9) 0.059 (7) 0.077 (8) 0.111 (10) 0.067 (6) 0.055 (7) 0.080 (8)

0.074 (5) 0.052 (4) 0.083 (6) 0.045 (5) 0.056 (5) 0.069 (5) 0.087 (5) 0.058 (5) 0.096 (7) 0.085 (6) 0.070 (5) 0.050 (5) 0.066 (6) 0.061 (6) 0.100 (7) 0.062 (5) 0.083 (6) 0.039 (4) 0.083 (6) 0.049 (5) 0.054 (8) 0.056 (7) 0.046 (7) 0.049 (7) 0.077 (6) 0.057 (8) 0.047 (7)

0.033 (5) 0.025 (4) 0.031 (4) 0.028 (4) 0.024 (4) 0.034 (5) 0.037 (4) 0.025 (5) 0.058 (6) 0.024 (4) 0.027 (4) 0.030 (4) 0.024 (5) 0.031 (5) 0.046 (5) 0.029 (5) 0.028 (5) 0.043 (5) 0.055 (5) 0.040 (5) 0.034 (7) 0.028 (6) 0.037 (7) 0.044 (8) 0.019 (5) 0.046 (8) 0.034 (7)

0.007 (5) −0.020 (4) 0.000 (5) 0.012 (4) 0.001 (5) −0.006 (5) −0.003 (5) −0.003 (5) −0.022 (6) −0.004 (5) 0.007 (5) −0.004 (5) 0.011 (6) −0.002 (5) −0.004 (6) −0.004 (5) −0.028 (5) −0.012 (4) −0.023 (5) 0.020 (6) 0.000 (7) −0.001 (6) 0.002 (6) 0.005 (7) 0.014 (5) −0.005 (7) 0.005 (6)

−0.011 (4) 0.003 (4) −0.021 (4) −0.002 (4) −0.024 (4) −0.011 (4) 0.017 (4) 0.011 (4) 0.025 (5) 0.004 (4) 0.013 (4) −0.002 (5) 0.005 (5) 0.014 (4) 0.003 (4) −0.016 (4) −0.025 (4) −0.008 (4) 0.008 (4) 0.032 (6) 0.004 (6) 0.005 (5) 0.002 (6) −0.015 (7) −0.002 (4) −0.004 (6) 0.006 (6)

0.011 (4) 0.012 (4) 0.005 (4) 0.004 (4) −0.006 (4) 0.004 (4) −0.016 (4) −0.005 (4) −0.031 (5) 0.009 (4) 0.006 (4) 0.001 (4) −0.007 (4) 0.001 (4) 0.031 (5) −0.002 (4) 0.014 (4) 0.007 (4) 0.017 (5) 0.011 (4) 0.012 (6) −0.005 (5) −0.010 (6) −0.009 (6) 0.014 (4) 0.015 (7) 0.002 (6)

Acta Cryst. (2015). C71

sup-4

supporting information C93 C12 C22 C83 C73 C72 C81 C103 C13 C82 C11 C32 C43 C41 C23 C61 C63 C33 C31 C51 C53 C62 C42 C52

0.093 (8) 0.067 (8) 0.042 (6) 0.086 (8) 0.087 (8) 0.062 (7) 0.101 (9) 0.063 (7) 0.077 (8) 0.107 (9) 0.053 (7) 0.061 (7) 0.055 (8) 0.053 (8) 0.066 (7) 0.087 (10) 0.137 (14) 0.057 (7) 0.078 (8) 0.108 (12) 0.117 (12) 0.169 (15) 0.075 (9) 0.138 (12)

0.047 (6) 0.053 (7) 0.064 (7) 0.043 (7) 0.035 (6) 0.061 (8) 0.049 (7) 0.058 (8) 0.061 (8) 0.051 (8) 0.071 (8) 0.078 (8) 0.113 (12) 0.122 (12) 0.066 (7) 0.240 (19) 0.090 (11) 0.066 (7) 0.083 (8) 0.094 (13) 0.219 (19) 0.093 (11) 0.113 (11) 0.214 (17)

0.034 (7) 0.022 (6) 0.031 (6) 0.049 (8) 0.057 (8) 0.030 (7) 0.038 (7) 0.049 (8) 0.019 (6) 0.042 (8) 0.023 (6) 0.029 (6) 0.097 (11) 0.075 (10) 0.019 (6) 0.116 (14) 0.21 (2) 0.036 (6) 0.036 (7) 0.24 (2) 0.102 (13) 0.162 (16) 0.068 (9) 0.056 (10)

−0.001 (6) 0.000 (7) 0.005 (6) 0.001 (6) 0.025 (7) 0.003 (7) −0.004 (7) 0.010 (7) −0.006 (7) −0.008 (7) −0.003 (6) −0.006 (6) 0.014 (8) 0.006 (8) 0.005 (6) 0.027 (11) −0.046 (11) −0.004 (6) 0.008 (7) −0.020 (10) −0.013 (12) 0.031 (12) −0.016 (8) 0.011 (12)

0.002 (6) 0.008 (6) −0.005 (5) 0.001 (6) 0.014 (7) 0.001 (5) −0.007 (6) −0.001 (6) 0.002 (6) −0.006 (7) 0.005 (5) 0.017 (5) 0.012 (8) 0.020 (7) −0.002 (5) 0.055 (10) 0.080 (13) 0.008 (5) 0.020 (6) 0.026 (12) 0.066 (10) 0.108 (13) 0.039 (7) 0.059 (9)

0.001 (6) −0.003 (5) −0.008 (6) −0.015 (6) 0.007 (7) 0.009 (6) −0.005 (6) −0.008 (7) 0.005 (5) −0.004 (6) 0.011 (6) 0.005 (6) 0.036 (10) 0.029 (8) 0.000 (5) 0.022 (13) −0.025 (12) −0.001 (6) 0.004 (6) −0.022 (13) 0.013 (13) 0.009 (12) −0.030 (8) −0.013 (11)

Geometric parameters (Å, º) O51—C101 O21—C11 O31—C71 O42—C72 O61—H61 O61—C101 O52—C102 O22—C12 N2—H2A N2—H2B N2—H2C N2—C22 O12—H12 O12—C12 O53—C103 O33—C73 O62—H62 O62—C102 O63—H63 O63—C103 N3—H3A

Acta Cryst. (2015). C71

1.234 (11) 1.199 (10) 1.251 (11) 1.262 (11) 0.8200 1.286 (10) 1.262 (11) 1.172 (10) 0.8900 0.8900 0.8900 1.480 (10) 0.8200 1.305 (10) 1.233 (12) 1.244 (11) 0.8200 1.261 (11) 0.8200 1.269 (11) 0.8900

C93—C103 C12—C22 C22—H22 C22—C32 C83—H83 C83—C73 C72—C82 C81—H81 C13—C23 C82—H82 C32—H32A C32—H32B C32—C42 C43—H43 C43—C63 C43—C33 C43—C53 C41—H41 C41—C61 C41—C31 C41—C51

1.489 (13) 1.540 (12) 0.9800 1.536 (11) 0.9300 1.465 (13) 1.499 (13) 0.9300 1.518 (13) 0.9300 0.9700 0.9700 1.513 (13) 0.9800 1.473 (16) 1.507 (14) 1.556 (15) 0.9800 1.509 (15) 1.494 (13) 1.504 (16)

sup-5

supporting information N3—H3B N3—H3C N3—C23 O13—H13 O13—C13 O32—C72 O11—H11 O11—C11 O41—C71 O23—C13 O43—C73 C92—H92 C92—C102 C92—C82 C21—H21 C21—N1 C21—C11 C21—C31 C91—H91 C91—C101 C91—C81 N1—H1A N1—H1B N1—H1C C71—C81 C93—H93 C93—C83

0.8900 0.8900 1.494 (10) 0.8200 1.327 (11) 1.247 (11) 0.8200 1.325 (11) 1.271 (12) 1.170 (10) 1.254 (11) 0.9300 1.459 (13) 1.337 (13) 0.9800 1.490 (10) 1.521 (12) 1.517 (11) 0.9300 1.491 (13) 1.332 (13) 0.8900 0.8900 0.8900 1.470 (13) 0.9300 1.339 (12)

C23—H23 C23—C33 C61—H61A C61—H61B C61—H61C C63—H63A C63—H63B C63—H63C C33—H33A C33—H33B C31—H31A C31—H31B C51—H51A C51—H51B C51—H51C C53—H53A C53—H53B C53—H53C C62—H62A C62—H62B C62—H62C C62—C42 C42—H42 C42—C52 C52—H52A C52—H52B C52—H52C

0.9800 1.523 (11) 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9700 0.9700 0.9700 0.9700 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 1.494 (16) 0.9800 1.535 (15) 0.9600 0.9600 0.9600

C101—O61—H61 H2A—N2—H2B H2A—N2—H2C H2B—N2—H2C C22—N2—H2A C22—N2—H2B C22—N2—H2C C12—O12—H12 C102—O62—H62 C103—O63—H63 H3A—N3—H3B H3A—N3—H3C H3B—N3—H3C C23—N3—H3A C23—N3—H3B C23—N3—H3C C13—O13—H13 C11—O11—H11 C102—C92—H92 C82—C92—H92

109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 114.8 114.8

O11—C11—C21 C22—C32—H32A C22—C32—H32B H32A—C32—H32B C42—C32—C22 C42—C32—H32A C42—C32—H32B C63—C43—H43 C63—C43—C33 C63—C43—C53 C33—C43—H43 C33—C43—C53 C53—C43—H43 C61—C41—H41 C31—C41—H41 C31—C41—C61 C31—C41—C51 C51—C41—H41 C51—C41—C61 N3—C23—C13

110.5 (9) 108.2 108.2 107.3 116.5 (8) 108.2 108.2 108.1 115.5 (12) 110.0 (11) 108.1 107.0 (11) 108.1 106.6 106.6 110.6 (11) 113.6 (11) 106.6 112.4 (12) 105.7 (8)

Acta Cryst. (2015). C71

sup-6

supporting information C82—C92—C102 N1—C21—H21 N1—C21—C11 N1—C21—C31 C11—C21—H21 C31—C21—H21 C31—C21—C11 O52—C102—C92 O62—C102—O52 O62—C102—C92 C101—C91—H91 C81—C91—H91 C81—C91—C101 C21—N1—H1A C21—N1—H1B C21—N1—H1C H1A—N1—H1B H1A—N1—H1C H1B—N1—H1C O31—C71—O41 O31—C71—C81 O41—C71—C81 O51—C101—O61 O51—C101—C91 O61—C101—C91 C83—C93—H93 C83—C93—C103 C103—C93—H93 O22—C12—O12 O22—C12—C22 O12—C12—C22 N2—C22—C12 N2—C22—H22 N2—C22—C32 C12—C22—H22 C32—C22—C12 C32—C22—H22 C93—C83—H83 C93—C83—C73 C73—C83—H83 O33—C73—O43 O33—C73—C83 O43—C73—C83 O42—C72—C82 O32—C72—O42 O32—C72—C82 C91—C81—C71 C91—C81—H81

Acta Cryst. (2015). C71

130.5 (10) 110.3 105.9 (8) 109.2 (8) 110.3 110.3 110.8 (8) 116.3 (10) 120.3 (10) 123.3 (10) 115.1 115.1 129.9 (10) 109.5 109.5 109.5 109.5 109.5 109.5 121.8 (10) 116.5 (11) 121.7 (9) 120.9 (10) 118.5 (10) 120.6 (10) 114.8 130.4 (10) 114.8 126.1 (10) 122.2 (10) 111.7 (9) 104.6 (7) 107.9 112.1 (7) 107.9 116.0 (8) 107.9 115.0 130.1 (10) 115.0 120.6 (10) 118.0 (10) 121.3 (10) 121.1 (10) 122.2 (10) 116.7 (10) 130.7 (10) 114.7

N3—C23—H23 N3—C23—C33 C13—C23—H23 C13—C23—C33 C33—C23—H23 C41—C61—H61A C41—C61—H61B C41—C61—H61C H61A—C61—H61B H61A—C61—H61C H61B—C61—H61C C43—C63—H63A C43—C63—H63B C43—C63—H63C H63A—C63—H63B H63A—C63—H63C H63B—C63—H63C C43—C33—C23 C43—C33—H33A C43—C33—H33B C23—C33—H33A C23—C33—H33B H33A—C33—H33B C21—C31—H31A C21—C31—H31B C41—C31—C21 C41—C31—H31A C41—C31—H31B H31A—C31—H31B C41—C51—H51A C41—C51—H51B C41—C51—H51C H51A—C51—H51B H51A—C51—H51C H51B—C51—H51C C43—C53—H53A C43—C53—H53B C43—C53—H53C H53A—C53—H53B H53A—C53—H53C H53B—C53—H53C H62A—C62—H62B H62A—C62—H62C H62B—C62—H62C C42—C62—H62A C42—C62—H62B C42—C62—H62C C32—C42—H42

109.3 110.7 (7) 109.3 112.4 (8) 109.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 115.4 (9) 108.4 108.4 108.4 108.4 107.5 108.0 108.0 117.3 (9) 108.0 108.0 107.2 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 108.6

sup-7

supporting information C71—C81—H81 O53—C103—O63 O53—C103—C93 O63—C103—C93 O13—C13—C23 O23—C13—O13 O23—C13—C23 C92—C82—C72 C92—C82—H82 C72—C82—H82 O21—C11—O11 O21—C11—C21

114.7 121.4 (11) 118.7 (10) 119.7 (10) 109.6 (9) 124.6 (10) 125.8 (10) 129.2 (10) 115.4 115.4 125.5 (9) 124.0 (9)

C32—C42—C52 C62—C42—C32 C62—C42—H42 C62—C42—C52 C52—C42—H42 C42—C52—H52A C42—C52—H52B C42—C52—H52C H52A—C52—H52B H52A—C52—H52C H52B—C52—H52C

107.8 (10) 112.6 (11) 108.6 110.6 (10) 108.6 109.5 109.5 109.5 109.5 109.5 109.5

O31—C71—C81—C91 O42—C72—C82—C92 O22—C12—C22—N2 O22—C12—C22—C32 N2—C22—C32—C42 O12—C12—C22—N2 O12—C12—C22—C32 N3—C23—C33—C43 O13—C13—C23—N3 O13—C13—C23—C33 O32—C72—C82—C92 O41—C71—C81—C91 O23—C13—C23—N3 O23—C13—C23—C33 C102—C92—C82—C72 N1—C21—C11—O21 N1—C21—C11—O11 N1—C21—C31—C41 C101—C91—C81—C71 C93—C83—C73—O33

179.6 (12) −3.8 (19) 15.7 (13) 139.7 (10) −63.3 (12) −165.2 (8) −41.2 (12) −64.8 (12) −175.0 (8) −54.2 (11) 175.6 (11) −1 (2) 6.7 (14) 127.5 (11) 0 (2) −24.2 (13) 156.4 (8) −172.0 (9) 1 (2) −170.2 (11)

C93—C83—C73—O43 C12—C22—C32—C42 C22—C32—C42—C62 C22—C32—C42—C52 C83—C93—C103—O53 C83—C93—C103—O63 C81—C91—C101—O51 C81—C91—C101—O61 C103—C93—C83—C73 C13—C23—C33—C43 C82—C92—C102—O52 C82—C92—C102—O62 C11—C21—C31—C41 C61—C41—C31—C21 C63—C43—C33—C23 C31—C21—C11—O21 C31—C21—C11—O11 C51—C41—C31—C21 C53—C43—C33—C23

13.9 (19) 176.7 (9) −69.5 (13) 168.2 (9) 175.8 (11) −7.2 (18) −180.0 (12) −1 (2) −2 (2) 177.3 (9) −178.7 (12) 1 (2) 71.7 (12) −173.5 (10) −70.7 (13) 94.1 (12) −85.3 (11) 58.9 (15) 166.5 (9)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

O61—H61···O41 N2—H2B···O23i N2—H2C···O51ii O12—H12···O33iii O62—H62···O42 O63—H63···O43 N3—H3A···O22iv N3—H3B···O53v N3—H3C···O63vi O13—H13···O52vii O11—H11···O31

0.82 0.89 0.89 0.82 0.82 0.82 0.89 0.89 0.89 0.82 0.82

1.62 2.03 1.92 1.78 1.67 1.63 1.99 1.95 2.00 1.80 1.80

2.433 (8) 2.860 (9) 2.780 (10) 2.592 (10) 2.454 (9) 2.449 (10) 2.786 (9) 2.829 (10) 2.866 (10) 2.589 (10) 2.599 (9)

171 155 162 172 159 176 148 168 165 161 163

Acta Cryst. (2015). C71

sup-8

supporting information N1—H1A···O21viii N1—H1B···O42iv N1—H1C···O32vii

0.89 0.89 0.89

2.18 1.98 1.99

2.890 (9) 2.863 (9) 2.867 (10)

137 170 171

Symmetry codes: (i) x−1/2, y−1/2, z; (ii) −x+1, y−1, −z+1; (iii) −x+1, y+1, −z+1; (iv) x+1/2, y−1/2, z; (v) x+1/2, y−1/2, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x+1/2, y+1/2, z; (viii) −x+3/2, y−1/2, −z+1.

(II) L-Lisinium hydrogen maleate hemihydrate Crystal data C6H14NO2+·C4H3O4−·0.5H2O Mr = 256.26 Monoclinic, P21 a = 11.5217 (9) Å b = 5.9974 (3) Å c = 19.3426 (12) Å β = 95.848 (6)° V = 1329.62 (15) Å3 Z=4

F(000) = 548 Dx = 1.280 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 3141 reflections θ = 1.8–28.1° µ = 0.11 mm−1 T = 298 K Needle, clear light colourless 0.25 × 0.1 × 0.05 mm

Data collection Agilent Xcalibur Gemini Ultra diffractometer with Ruby detector Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.3457 pixels mm-1 ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) Tmin = 0.949, Tmax = 1.000

17017 measured reflections 5459 independent reflections 3452 reflections with I > 2σ(I) Rint = 0.069 θmax = 26.4°, θmin = 1.8° h = −14→14 k = −7→7 l = −24→24

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.064 wR(F2) = 0.118 S = 1.04 5459 reflections 329 parameters 1 restraint

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0337P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.15 e Å−3 Δρmin = −0.14 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

O1 H1 O52

x

y

z

Uiso*/Ueq

0.2729 (3) 0.2965 0.6863 (3)

0.3576 (6) 0.2392 0.4547 (6)

0.55993 (14) 0.5773 0.39132 (15)

0.0558 (9) 0.084* 0.0615 (10)

Acta Cryst. (2015). C71

sup-9

supporting information O2 O62 H62 O42 O32 N1 H1A H1B H1C C1 C2 H2 C102 C3 H3 C92 H92 C82 H82 C72 C4 H4A H4B H4C C5 H5A H5B C6 H6A H6B H6C O5 O6 H6 O1W1 H1WA H1WB O3 O4 O12 H12 N2 H2A H2B H2C O22 C12 C7

0.2448 (4) 0.5944 (3) 0.5543 0.4728 (3) 0.4175 (3) 0.1596 (3) 0.1215 0.2227 0.1133 0.2393 (4) 0.1956 (4) 0.1253 0.6266 (4) 0.2810 (4) 0.2462 0.5923 (4) 0.6199 0.5268 (4) 0.5163 0.4687 (4) 0.3980 (4) 0.4381 0.3847 0.4447 0.3014 (5) 0.3526 0.3423 0.1947 (6) 0.2174 0.1535 0.1450 0.0101 (3) 0.0433 (4) 0.0732 0.4655 (3) 0.5088 0.4198 0.2264 (3) 0.1333 (3) 0.1953 (3) 0.2089 0.3793 (3) 0.3684 0.4133 0.4247 0.3705 (3) 0.2850 (4) 0.1728 (4)

Acta Cryst. (2015). C71

0.1518 (7) 0.6140 (6) 0.5771 0.4996 (6) 0.1871 (6) 0.7067 (6) 0.8152 0.7629 0.6458 0.3277 (9) 0.5335 (8) 0.4901 0.4406 (9) 0.6275 (9) 0.7642 0.2154 (9) 0.0997 0.1513 (9) −0.0018 0.2892 (9) 0.6926 (11) 0.5607 0.7888 0.7690 0.4712 (12) 0.5456 0.3404 0.3948 (17) 0.3005 0.5221 0.3131 0.4666 (6) 0.1552 (7) 0.1147 0.3364 (7) 0.4123 0.2555 0.1948 (7) 0.0388 (6) 0.8213 (7) 0.9363 0.4947 (7) 0.3905 0.6131 0.4409 0.8829 (8) 0.7722 (10) 0.2076 (10)

0.46452 (18) 0.29963 (17) 0.2640 0.19698 (16) 0.14387 (14) 0.50321 (16) 0.4791 0.5275 0.5321 0.4933 (2) 0.4547 (2) 0.4249 0.3344 (2) 0.4072 (2) 0.3865 0.3099 (2) 0.3391 0.2514 (2) 0.2464 0.1939 (2) 0.4465 (3) 0.4640 0.4846 0.4156 0.3475 (3) 0.3180 0.3668 0.3028 (3) 0.2664 0.2827 0.3306 0.58072 (14) 0.63896 (16) 0.6772 0.90954 (13) 0.8854 0.8828 0.84460 (15) 0.75155 (16) −0.09220 (17) −0.1129 0.02938 (17) 0.0608 0.0505 −0.0012 −0.03935 (19) −0.0474 (2) 0.7847 (2)

0.0822 (13) 0.0595 (10) 0.089* 0.0658 (11) 0.0627 (10) 0.0438 (10) 0.053* 0.053* 0.053* 0.0469 (12) 0.0412 (12) 0.049* 0.0456 (12) 0.0544 (14) 0.065* 0.0481 (13) 0.058* 0.0509 (13) 0.061* 0.0481 (13) 0.0767 (18) 0.115* 0.115* 0.115* 0.0799 (19) 0.096* 0.096* 0.130 (4) 0.196* 0.196* 0.196* 0.0604 (10) 0.0750 (12) 0.113* 0.0605 (10) 0.091* 0.091* 0.0716 (12) 0.0704 (12) 0.0786 (12) 0.118* 0.0460 (10) 0.055* 0.055* 0.055* 0.0900 (15) 0.0507 (13) 0.0549 (14)

sup-10

supporting information C22 H22 C9 H9 C32 H32 C10 C52 H52A H52B C8 H8 C62 H62A H62B H62C C42 H42A H42B H42C

0.2642 (4) 0.2400 0.1072 (4) 0.1073 0.1690 (4) 0.1007 0.0504 (4) 0.2014 (5) 0.2620 0.2337 0.1579 (4) 0.1886 0.1007 (6) 0.1289 0.0656 0.0436 0.1327 (5) 0.1956 0.1143 0.0654

0.5613 (9) 0.4444 0.4986 (9) 0.6518 0.5858 (10) 0.6476 0.3657 (10) 0.7500 (11) 0.6837 0.8834 0.4335 (10) 0.5480 0.8169 (14) 0.9108 0.6857 0.8966 0.3614 (10) 0.3003 0.2618 0.3800

−0.0074 (2) −0.0413 0.6932 (2) 0.6858 0.0408 (3) 0.0130 0.6344 (2) 0.1001 (3) 0.1321 0.0810 0.7550 (2) 0.7837 0.1402 (3) 0.1785 0.1576 0.1101 0.0677 (3) 0.0983 0.0292 0.0925

0.0480 (13) 0.058* 0.0532 (14) 0.064* 0.0597 (15) 0.072* 0.0513 (14) 0.0708 (16) 0.085* 0.085* 0.0563 (14) 0.068* 0.109 (3) 0.163* 0.163* 0.163* 0.0814 (19) 0.122* 0.122* 0.122*

Atomic displacement parameters (Å2)

O1 O52 O2 O62 O42 O32 N1 C1 C2 C102 C3 C92 C82 C72 C4 C5 C6 O5 O6 O1W1 O3 O4 O12 N2

U11

U22

U33

U12

U13

U23

0.074 (2) 0.077 (2) 0.142 (4) 0.082 (3) 0.107 (3) 0.076 (2) 0.045 (2) 0.052 (3) 0.046 (3) 0.051 (3) 0.055 (3) 0.062 (3) 0.066 (3) 0.053 (3) 0.056 (4) 0.079 (4) 0.111 (6) 0.060 (2) 0.100 (3) 0.074 (3) 0.092 (3) 0.101 (3) 0.076 (3) 0.045 (2)

0.038 (2) 0.050 (3) 0.036 (3) 0.038 (2) 0.041 (3) 0.064 (3) 0.037 (3) 0.039 (3) 0.035 (3) 0.040 (3) 0.055 (4) 0.037 (3) 0.036 (3) 0.053 (4) 0.077 (5) 0.092 (5) 0.208 (11) 0.076 (3) 0.065 (3) 0.062 (3) 0.072 (3) 0.044 (3) 0.081 (3) 0.049 (3)

0.0506 (17) 0.0506 (18) 0.063 (2) 0.055 (2) 0.046 (2) 0.0424 (17) 0.048 (2) 0.047 (3) 0.041 (2) 0.045 (3) 0.054 (3) 0.043 (3) 0.047 (3) 0.036 (3) 0.100 (4) 0.071 (3) 0.070 (4) 0.0413 (16) 0.052 (2) 0.0430 (16) 0.0446 (18) 0.059 (2) 0.070 (2) 0.0442 (19)

0.0084 (18) −0.003 (2) 0.008 (2) −0.0075 (19) 0.013 (2) 0.006 (2) 0.0046 (19) −0.003 (2) 0.003 (2) 0.002 (3) 0.007 (3) 0.005 (3) 0.001 (3) 0.010 (3) −0.010 (3) −0.001 (4) 0.006 (6) −0.023 (2) −0.032 (2) −0.009 (2) −0.008 (2) −0.017 (2) −0.013 (2) 0.005 (2)

−0.0163 (16) −0.0233 (17) −0.020 (2) −0.0090 (19) −0.0121 (18) −0.0201 (17) −0.0013 (18) −0.007 (2) −0.004 (2) 0.000 (2) 0.012 (3) −0.010 (2) −0.013 (2) −0.003 (2) 0.020 (3) 0.022 (3) 0.000 (4) −0.0131 (15) −0.031 (2) −0.0062 (17) −0.0236 (18) −0.025 (2) −0.031 (2) 0.0015 (17)

0.0056 (17) −0.0063 (19) −0.003 (2) −0.0017 (18) 0.0069 (18) −0.0056 (19) 0.010 (2) −0.001 (3) −0.003 (2) 0.002 (3) 0.007 (3) 0.001 (2) 0.000 (2) −0.001 (3) −0.002 (4) −0.008 (4) −0.052 (6) 0.016 (2) 0.007 (2) −0.0055 (19) 0.013 (2) 0.0058 (19) 0.027 (2) 0.004 (2)

Acta Cryst. (2015). C71

sup-11

supporting information O22 C12 C7 C22 C9 C32 C10 C52 C8 C62 C42

0.058 (3) 0.045 (3) 0.059 (3) 0.045 (3) 0.071 (4) 0.041 (3) 0.048 (3) 0.067 (4) 0.072 (4) 0.115 (6) 0.066 (4)

0.102 (4) 0.060 (4) 0.059 (4) 0.051 (4) 0.041 (3) 0.066 (4) 0.060 (4) 0.067 (4) 0.048 (3) 0.104 (6) 0.072 (5)

0.102 (3) 0.045 (3) 0.044 (3) 0.046 (3) 0.044 (2) 0.071 (3) 0.046 (3) 0.081 (4) 0.046 (3) 0.118 (5) 0.105 (4)

−0.026 (2) −0.007 (3) −0.007 (3) −0.004 (2) −0.010 (3) 0.001 (3) −0.019 (3) 0.012 (3) −0.014 (3) 0.028 (5) −0.016 (3)

−0.027 (2) −0.003 (2) −0.005 (2) −0.010 (2) −0.012 (2) 0.000 (3) 0.003 (2) 0.021 (3) −0.012 (2) 0.066 (5) 0.003 (3)

0.058 (3) 0.007 (3) 0.008 (3) 0.007 (2) 0.001 (3) 0.024 (3) 0.001 (3) 0.004 (3) −0.002 (3) 0.019 (5) 0.031 (4)

Geometric parameters (Å, º) O1—H1 O1—C1 O52—C102 O2—C1 O62—H62 O62—C102 O42—C72 O32—C72 N1—H1A N1—H1B N1—H1C N1—C2 C1—C2 C2—H2 C2—C3 C102—C92 C3—H3 C3—C4 C3—C5 C92—H92 C92—C82 C82—H82 C82—C72 C4—H4A C4—H4B C4—H4C C5—H5A C5—H5B C5—C6 C6—H6A C6—H6B C6—H6C O5—C10

Acta Cryst. (2015). C71

0.8200 1.319 (5) 1.240 (5) 1.198 (6) 0.8200 1.273 (5) 1.264 (6) 1.242 (5) 0.8900 0.8900 0.8900 1.488 (5) 1.503 (7) 0.9800 1.522 (6) 1.472 (7) 0.9800 1.529 (6) 1.524 (7) 0.9300 1.349 (5) 0.9300 1.490 (6) 0.9600 0.9600 0.9600 0.9700 0.9700 1.501 (8) 0.9600 0.9600 0.9600 1.249 (5)

O6—H6 O6—C10 O1W1—H1WA O1W1—H1WB O3—C7 O4—C7 O12—H12 O12—C12 N2—H2A N2—H2B N2—H2C N2—C22 O22—C12 C12—C22 C7—C8 C22—H22 C22—C32 C9—H9 C9—C10 C9—C8 C32—H32 C32—C52 C32—C42 C52—H52A C52—H52B C52—C62 C8—H8 C62—H62A C62—H62B C62—H62C C42—H42A C42—H42B C42—H42C

0.8200 1.269 (6) 0.8499 0.8505 1.257 (5) 1.259 (6) 0.8200 1.313 (5) 0.8900 0.8900 0.8900 1.494 (5) 1.185 (5) 1.514 (7) 1.475 (7) 0.9800 1.518 (6) 0.9300 1.485 (6) 1.334 (6) 0.9800 1.529 (7) 1.517 (7) 0.9700 0.9700 1.515 (7) 0.9300 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600

sup-12

supporting information C1—O1—H1 C102—O62—H62 H1A—N1—H1B H1A—N1—H1C H1B—N1—H1C C2—N1—H1A C2—N1—H1B C2—N1—H1C O1—C1—C2 O2—C1—O1 O2—C1—C2 N1—C2—C1 N1—C2—H2 N1—C2—C3 C1—C2—H2 C1—C2—C3 C3—C2—H2 O52—C102—O62 O52—C102—C92 O62—C102—C92 C2—C3—H3 C2—C3—C4 C2—C3—C5 C4—C3—H3 C5—C3—H3 C5—C3—C4 C102—C92—H92 C82—C92—C102 C82—C92—H92 C92—C82—H82 C92—C82—C72 C72—C82—H82 O42—C72—C82 O32—C72—O42 O32—C72—C82 C3—C4—H4A C3—C4—H4B C3—C4—H4C H4A—C4—H4B H4A—C4—H4C H4B—C4—H4C C3—C5—H5A C3—C5—H5B H5A—C5—H5B C6—C5—C3 C6—C5—H5A C6—C5—H5B C5—C6—H6A

Acta Cryst. (2015). C71

109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 115.1 (4) 123.4 (5) 121.5 (4) 111.1 (3) 106.9 111.2 (4) 106.9 113.6 (4) 106.9 121.3 (5) 117.1 (4) 121.6 (4) 107.1 112.7 (4) 112.8 (5) 107.1 107.1 109.7 (4) 115.1 129.8 (5) 115.1 115.2 129.7 (5) 115.2 120.5 (4) 122.8 (5) 116.8 (5) 109.5 109.5 109.5 109.5 109.5 109.5 108.2 108.2 107.4 116.3 (5) 108.2 108.2 109.5

H1WA—O1W1—H1WB C12—O12—H12 H2A—N2—H2B H2A—N2—H2C H2B—N2—H2C C22—N2—H2A C22—N2—H2B C22—N2—H2C O12—C12—C22 O22—C12—O12 O22—C12—C22 O3—C7—O4 O3—C7—C8 O4—C7—C8 N2—C22—C12 N2—C22—H22 N2—C22—C32 C12—C22—H22 C12—C22—C32 C32—C22—H22 C10—C9—H9 C8—C9—H9 C8—C9—C10 C22—C32—H32 C22—C32—C52 C52—C32—H32 C42—C32—C22 C42—C32—H32 C42—C32—C52 O5—C10—O6 O5—C10—C9 O6—C10—C9 C32—C52—H52A C32—C52—H52B H52A—C52—H52B C62—C52—C32 C62—C52—H52A C62—C52—H52B C7—C8—H8 C9—C8—C7 C9—C8—H8 C52—C62—H62A C52—C62—H62B C52—C62—H62C H62A—C62—H62B H62A—C62—H62C H62B—C62—H62C C32—C42—H42A

109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 111.7 (4) 123.3 (5) 125.0 (4) 122.6 (5) 116.2 (5) 121.2 (4) 106.7 (4) 107.8 113.3 (4) 107.8 113.3 (4) 107.8 114.8 114.8 130.4 (5) 106.8 112.7 (4) 106.8 111.5 (5) 106.8 111.7 (4) 121.3 (5) 118.3 (5) 120.4 (5) 108.7 108.7 107.6 114.4 (5) 108.7 108.7 115.1 129.9 (5) 115.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5

sup-13

supporting information C5—C6—H6B C5—C6—H6C H6A—C6—H6B H6A—C6—H6C H6B—C6—H6C C10—O6—H6

109.5 109.5 109.5 109.5 109.5 109.5

C32—C42—H42B C32—C42—H42C H42A—C42—H42B H42A—C42—H42C H42B—C42—H42C

109.5 109.5 109.5 109.5 109.5

O1—C1—C2—N1 O1—C1—C2—C3 O52—C102—C92—C82 O2—C1—C2—N1 O2—C1—C2—C3 O62—C102—C92—C82 N1—C2—C3—C4 N1—C2—C3—C5 C1—C2—C3—C4 C1—C2—C3—C5 C2—C3—C5—C6 C102—C92—C82—C72 C92—C82—C72—O42 C92—C82—C72—O32 C4—C3—C5—C6

−20.4 (6) 105.8 (5) 178.8 (5) 161.0 (5) −72.8 (6) 0.2 (8) 66.5 (5) −168.6 (4) −59.7 (6) 65.3 (5) 54.5 (8) −0.2 (9) −3.2 (8) 176.7 (5) −178.9 (6)

O3—C7—C8—C9 O4—C7—C8—C9 O12—C12—C22—N2 O12—C12—C22—C32 N2—C22—C32—C52 N2—C22—C32—C42 O22—C12—C22—N2 O22—C12—C22—C32 C12—C22—C32—C52 C12—C22—C32—C42 C22—C32—C52—C62 C10—C9—C8—C7 C8—C9—C10—O5 C8—C9—C10—O6 C42—C32—C52—C62

179.0 (5) −1.3 (9) 167.6 (4) −67.1 (5) 55.9 (6) −70.7 (6) −13.3 (7) 112.0 (6) −65.8 (5) 167.6 (4) 167.7 (5) −0.6 (10) −179.0 (5) 1.1 (9) −65.9 (6)

Hydrogen-bond geometry (Å, º) D—H···A i

O1—H1···O52 O62—H62···O42 N1—H1A···O5ii N1—H1C···O5 O6—H6···O4 O1W1—H1WA···O32iii O12—H12···O3iv N2—H2A···O32 N2—H2B···O1W1iii N2—H2C···O1W1v

D—H

H···A

D···A

D—H···A

0.82 0.82 0.89 0.89 0.82 0.85 0.82 0.89 0.89 0.89

1.82 1.59 2.03 1.92 1.60 1.96 1.78 2.05 2.03 1.94

2.619 (5) 2.410 (5) 2.871 (5) 2.796 (5) 2.418 (4) 2.756 (5) 2.594 (5) 2.881 (5) 2.892 (6) 2.780 (5)

166 177 158 168 179 155 175 155 163 157

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x, y+1/2, −z+1; (iii) −x+1, y+1/2, −z+1; (iv) x, y+1, z−1; (v) x, y, z−1.

(III) L-Norvalinium hydrogen maleate–L-norvaline (1/1) Crystal data C5H11NO2+·C4H3O4−·C5H12NO2 Mr = 350.37 Monoclinic, P21 a = 12.2269 (6) Å b = 5.30779 (17) Å c = 15.4678 (6) Å β = 113.055 (5)°

Acta Cryst. (2015). C71

V = 923.65 (7) Å3 Z=2 F(000) = 376 Dx = 1.260 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 2037 reflections θ = 1.8–28.2°

sup-14

supporting information µ = 0.10 mm−1 T = 298 K

Plate, clear light colourless 0.5 × 0.13 × 0.05 mm

Data collection Agilent Xcalibur Gemini Ultra diffractometer with Ruby detector Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.3457 pixels mm-1 ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) Tmin = 0.900, Tmax = 1.000

5895 measured reflections 3014 independent reflections 2642 reflections with I > 2σ(I) Rint = 0.022 θmax = 26.4°, θmin = 1.8° h = −15→15 k = −6→5 l = −19→19

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.048 wR(F2) = 0.114 S = 1.08 3014 reflections 262 parameters 59 restraints Primary atom site location: iterative

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1421P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.29 e Å−3 Δρmin = −0.23 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N2 H2A H2B H2C O2 O5 O21 O11 O1 H1 N1 H1A H1B H1C O3 C11 O6 H6

x

y

z

Uiso*/Ueq

0.5847 (2) 0.5959 0.5111 0.5952 0.37615 (18) 0.5965 (2) 0.59257 (19) 0.7387 (2) 0.2532 (2) 0.2685 0.3696 (2) 0.3495 0.4459 0.3580 0.6529 (2) 0.6641 (3) 0.6659 (4) 0.6798

0.1724 (5) 0.3044 0.1763 0.0309 0.2209 (4) 0.6802 (5) 0.5987 (4) 0.4643 (5) 0.3646 (5) 0.2297 0.6466 (5) 0.5204 0.6323 0.7926 0.6476 (6) 0.4389 (6) 0.9279 (5) 0.9226

0.80036 (16) 0.7693 0.7987 0.7737 0.83252 (15) 0.70792 (15) 0.89350 (15) 1.02484 (14) 0.89580 (16) 0.9239 0.73896 (17) 0.6978 0.7770 0.7084 0.36432 (15) 0.9399 (2) 0.6289 (2) 0.5812

0.0383 (6) 0.046* 0.046* 0.046* 0.0415 (5) 0.0545 (7) 0.0428 (6) 0.0477 (6) 0.0475 (6) 0.071* 0.0377 (6) 0.045* 0.045* 0.045* 0.0588 (7) 0.0335 (7) 0.0856 (11) 0.128*

Acta Cryst. (2015). C71

Occ. (

New hydrophobic L-amino acid salts: maleates of L-leucine, L-isoleucine and L-norvaline.

Crystals of maleates of three amino acids with hydrophobic side chains [L-leucenium hydrogen maleate, C6H14NO2(+)·C4H3O4(-), (I), L-isoleucenium hydro...
1MB Sizes 0 Downloads 8 Views