Hindawi Publishing Corporation ξ€ e Scientific World Journal Volume 2014, Article ID 401741, 8 pages http://dx.doi.org/10.1155/2014/401741

Research Article New Conditions for Obtaining the Exact Solutions of the General Riccati Equation Lazhar Bougoffa Department of Mathematics, Faculty of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia Correspondence should be addressed to Lazhar Bougoffa; [email protected] Received 20 April 2014; Accepted 20 July 2014; Published 18 August 2014 Academic Editor: Kannan Krithivasan Copyright Β© 2014 Lazhar Bougoffa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We propose a direct method for solving the general Riccati equation 𝑦󸀠 = 𝑓(π‘₯)+𝑔(π‘₯)𝑦+β„Ž(π‘₯)𝑦2 . We first reduce it into an equivalent equation, and then we formulate the relations between the coefficients functions 𝑓(π‘₯), 𝑔(π‘₯), and β„Ž(π‘₯) of the equation to obtain an equivalent separable equation from which the previous equation can be solved in closed form. Several examples are presented to demonstrate the efficiency of this method.

1. Introduction

A set of solutions to the Riccati equation is then given by

In realistic investigations of the dynamics of a physical system, nonlinearity may often be in the form of the wellknown Riccati equation: 𝑦󸀠 = 𝑓 (π‘₯) + 𝑔 (π‘₯) 𝑦 + β„Ž (π‘₯) 𝑦2 .

(1)

The Riccati equation is used in different areas of physics, engineering, and mathematics such as quantum mechanics, thermodynamics, and control theory. It also appears in many engineering design simulations. The first well-known result in the analysis of the Riccati equation is that [1, 2] if one particular solution 𝑦1 can be found to (1), then the general solution is obtained as 𝑦 = 𝑦1 + 𝑒,

(2)

where 𝑒 satisfies the corresponding Bernoulli equation 𝑒󸀠 βˆ’ (𝑔 (π‘₯) + 2β„Ž (π‘₯) 𝑦1 ) 𝑒 = β„Ž (π‘₯) 𝑒2 .

(3)

The substitution that is needed to solve this Bernoulli equation is 𝑧=

1 . 𝑒

(4)

1 𝑦 = 𝑦1 + . 𝑧

(5)

The second important result in the analysis of the solution of the Riccati equation is that the general equation can always be reduced to a second-order linear differential equation of the form [3, pages 23–25] 𝑒󸀠󸀠 βˆ’ 𝑃 (π‘₯) 𝑒󸀠 + 𝑄 (π‘₯) 𝑒 = 0,

(6)

β„ŽσΈ€  (π‘₯) , β„Ž (π‘₯) 𝑄 (π‘₯) = 𝑓 (π‘₯) β„Ž (π‘₯) .

(7)

where 𝑃 (π‘₯) = 𝑔 (π‘₯) +

A solution of this equation will lead to a solution 𝑦=βˆ’

1 𝑒󸀠 β„Ž (π‘₯) 𝑒

of the original Riccati equation.

(8)

2

The Scientific World Journal

To our knowledge it is often very difficult, if not impossible, to find closed form solutions of such nonlinear differential equations. But a number of solutions of the Riccati equation can be obtained by assuming that the coefficients 𝑓(π‘₯), 𝑔(π‘₯), and β„Ž(π‘₯) satisfy certain constraints. Indeed, closed-form solutions are known if the following condition is satisfied [4]:

which yields the equation 𝑒󸀠 = 𝑓0 (π‘₯) + 𝑓1 (π‘₯) 𝑒2 ,

(14)

where 𝑓0 (π‘₯) = π‘’βˆ’ ∫ 𝑔(π‘₯)𝑑π‘₯ 𝑓(π‘₯) and 𝑓1 (π‘₯) = π‘’βˆ« 𝑔(π‘₯)𝑑π‘₯ β„Ž(π‘₯). Now, let

𝑓 (π‘₯) + 𝑔 (π‘₯) + β„Ž (π‘₯) = (log

𝛼(π‘₯) σΈ€  𝛼 (π‘₯) βˆ’ 𝛽 (π‘₯) (𝛼 (π‘₯) β„Ž (π‘₯) βˆ’ 𝛽 (π‘₯) 𝑓 (π‘₯)) , ) βˆ’ 𝛽(π‘₯) 𝛼 (π‘₯) 𝛽 (π‘₯) (9)

where 𝛼(π‘₯) and 𝛽(π‘₯) are arbitrary differentiable functions in 𝐼 βŠ‚ R with 𝛼(π‘₯)𝛽(π‘₯) > 0. A new integrability condition for the Riccati equation was presented in [5] under the following constraint: 𝑔 (π‘₯) =

𝐹 (π‘₯) βˆ’ 𝑓 (π‘₯) ∫ 𝐹 (π‘₯) 𝑑π‘₯ + 𝐢0

󡄨󡄨 𝑓 (π‘₯) 󡄨󡄨 󡄨󡄨 󡄨 𝑒 = √ 󡄨󡄨󡄨 0 󡄨V, 󡄨󡄨 𝑓1 (π‘₯) 󡄨󡄨󡄨

and consider the case 𝑓0 (π‘₯)/𝑓1 (π‘₯) > 0. Thus the transformation of (15) to (14) yields σΈ€ 

(√ βˆ’ β„Ž (π‘₯) (∫ 𝐹 (π‘₯) 𝑑π‘₯ + 𝐢0 ) ,

(10)

(𝑓(π‘₯)β„Ž(π‘₯))

=Β±

σΈ€ 

4𝐴 √𝐡 (11)

holds, where 𝐴 and 𝐡 are either constants or 𝐴 = 0 and 𝐡 is an arbitrary function. In this paper, we present new solutions of the general Riccati equation. We first reduce it to an equivalent equation, and then we formulate the relations between the coefficients functions 𝑓(π‘₯), 𝑔(π‘₯), and β„Ž(π‘₯) of the equation to obtain the required relation 𝑓󸀠 (π‘₯) β„ŽσΈ€  (π‘₯) βˆ’ βˆ’ 2𝑔 (π‘₯) = π‘˜ (π‘₯) βˆšπ‘“ (π‘₯) β„Ž (π‘₯), 𝑓 (π‘₯) β„Ž (π‘₯)

(16)

𝑓 (π‘₯) 𝑓 (π‘₯) ) V. V = βˆšπ‘“0 (π‘₯) 𝑓1 (π‘₯) (1 + V ) βˆ’ (√ 0 ) (√ 1 𝑓1 (π‘₯) 𝑓0 (π‘₯) (17) σΈ€ 

σΈ€ 

3/2

𝑓0 (π‘₯) σΈ€  𝑓 (π‘₯) ) V + (√ 0 ) V = 𝑓0 (π‘₯) (1 + V2 ) . 𝑓1 (π‘₯) 𝑓1 (π‘₯)

Then (16) can be written in an equivalent form as

where 𝐹(π‘₯) is an arbitrary differentiable function on 𝐼. Also, the general solution was found in [6] when (𝑓(π‘₯)β„Ž(π‘₯)) βˆ’ 2 (𝑔 (π‘₯) + β„ŽσΈ€  (π‘₯) /β„Ž (π‘₯)) 𝑓 (π‘₯) β„Ž (π‘₯)

(15)

(12)

where π‘˜(π‘₯) is an arbitrary function. Therefore the given Riccati equation can be transformed into a separable equation, which can be easily solved in two cases: π‘˜(π‘₯) equals a constant π‘˜, or certain functions. Several examples are studied in detail to illustrate the proposed technique.

2

An important remark can be made here. Equation (16) can be solved by assuming that the functions 𝑓0 (π‘₯) and 𝑓1 (π‘₯) satisfy the following condition: σΈ€ 

𝑓 (π‘₯) 𝑓 (π‘₯) ) = π‘˜1 (π‘₯) βˆšπ‘“0 (π‘₯) 𝑓1 (π‘₯), (√ 0 ) (√ 1 𝑓1 (π‘₯) 𝑓0 (π‘₯)

(18)

where π‘˜1 (π‘₯) is an arbitrary function. This condition can be written in an equivalent form as 𝑓0σΈ€  (π‘₯) 𝑓1σΈ€  (π‘₯) βˆ’ = π‘˜ (π‘₯) βˆšπ‘“0 (π‘₯) 𝑓1 (π‘₯), 𝑓0 (π‘₯) 𝑓1 (π‘₯)

π‘˜ (π‘₯) = 2π‘˜1 (π‘₯) , (19)

or equivalently

2. Exact Solutions of the Riccati Equation We begin our approach by converting the general Riccati equation (1) to a simpler form by the substitution

𝑓󸀠 (π‘₯) β„ŽσΈ€  (π‘₯) βˆ’ βˆ’ 2𝑔 (π‘₯) = π‘˜ (π‘₯) βˆšπ‘“ (π‘₯) β„Ž (π‘₯). 𝑓 (π‘₯) β„Ž (π‘₯)

𝑒 (π‘₯) = π‘’βˆ’ ∫ 𝑔(π‘₯)𝑑π‘₯ 𝑦 (π‘₯) ,

This leads to the following important cases that solve (16).

(13)

(20)

The Scientific World Journal

3

2.1. Case 1: π‘˜(π‘₯) Equals a Constant. Substituting π‘˜(π‘₯) = π‘˜ into (19) gives 𝑑V = βˆšπ‘“ (π‘₯) β„Ž (π‘₯) (V2 βˆ’ π‘˜V + 1) , 𝑑π‘₯

V (π‘₯) (21)

𝑑V = ∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯. V2 βˆ’ π‘˜V + 1

(22)

Based on the integral involving the rational algebraic functions of the form

∫

√4 βˆ’ π‘˜ { { { { { 2 { { { { { √4 βˆ’ π‘˜ 2 { { { Γ— tan ( { { 2 { { { { { { π‘˜ { { Γ— [∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢] ) + , { { 2 { { { { { 2 { 4>π‘˜ , { { { { { { { { { {(π‘˜ + βˆšπ‘˜2 βˆ’ 4 + (βˆšπ‘˜2 βˆ’ 4 βˆ’ π‘˜) { { { { { { { { 2 { { Γ— exp [βˆšπ‘˜ βˆ’ 4 (∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)]) { { { { { βˆ’1 { { { { Γ—(1 βˆ’ exp [βˆšπ‘˜2 βˆ’ 4 (∫ βˆšπ‘“(π‘₯)β„Ž(π‘₯)𝑑π‘₯ + 𝐢)]) , { { { { { { { { π‘˜2 > 4, { { { { { { { { 𝑝 + π‘ž exp [(𝑝 βˆ’ π‘ž) (∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)] { { { { { 1 βˆ’ exp [(𝑝 βˆ’ π‘ž) (∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)] , ={ { { π‘˜2 > 4, { { { { { { { { where 𝑝 and π‘ž are the roots of V2 βˆ’ π‘˜V + 1, { { { { { { { 2 2 { { { βˆšπ‘˜ βˆ’ 4 tanh (βˆ’ βˆšπ‘˜ βˆ’ 4 (βˆ«βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯+ 𝐢)) { { { 2 2 { { { { { π‘˜ { { + , { { { 2 { { { { 2 2 2 { π‘˜ > 4, (2V βˆ’ π‘˜) < π‘˜ βˆ’ 4, { { { { { { { { βˆšπ‘˜2 βˆ’ 4 βˆšπ‘˜2 βˆ’ 4 { { { coth (βˆ’ (βˆ«βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯+ 𝐢)) { { 2 2 { { { { { π‘˜ { { + , { { { 2 { { { π‘˜2 > 4, (2V βˆ’ π‘˜)2 > π‘˜2 βˆ’ 4, { { { { { { { π‘˜ 1 { { { + , βˆ’ { { { ∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢 2 { { { π‘˜2 = 4. { (24) 2

which is a first-order separable differential equation, and we can obtain its closed form solution from

∫

in view of this, the solution in a closed form is given by

𝑑V π‘ŽV2 + 𝑏V + 𝑐 2tanβˆ’1 ((2π‘ŽV + 𝑏) /√4π‘Žπ‘ βˆ’ 𝑏2 ) { { { , { { √4π‘Žπ‘ βˆ’ 𝑏2 { { { { { { { { { 4π‘Žπ‘ > 𝑏2 , { { { { { { { { 󡄨󡄨 󡄨 { 1 { 󡄨 2π‘ŽV + 𝑏 βˆ’ βˆšπ‘2 βˆ’ 4π‘Žπ‘ 󡄨󡄨󡄨 { 󡄨󡄨 , { log 󡄨󡄨󡄨󡄨 { { βˆšπ‘2 βˆ’ 4π‘Žπ‘ 󡄨󡄨 2π‘ŽV + 𝑏 + βˆšπ‘2 βˆ’ 4π‘Žπ‘ 󡄨󡄨󡄨 { { { { { { { { { 𝑏2 > 4π‘Žπ‘, { { { { { { { 󡄨󡄨 V βˆ’ 𝑝 󡄨󡄨 { { 1 { 󡄨󡄨󡄨 󡄨󡄨 { log { 󡄨󡄨 V βˆ’ π‘ž 󡄨󡄨󡄨 , { { π‘Ž (𝑝 βˆ’ π‘ž) 󡄨 󡄨 { { { { { { { 𝑏2 > 4π‘Žπ‘, { { { 2 { = {where 𝑝 and π‘ž are the roots of π‘ŽV + 𝑏V + 𝑐 = 0, { { { { { { { βˆ’2tanhβˆ’1 ((2π‘ŽV + 𝑏) /βˆšπ‘2 βˆ’ 4π‘Žπ‘) { { { , { { βˆšπ‘2 βˆ’ 4π‘Žπ‘ { { { { { { { 𝑏2 > 4π‘Žπ‘, (2π‘ŽV + 𝑏)2 < 𝑏2 βˆ’ 4π‘Žπ‘, { { { { { { { { { { βˆ’2cothβˆ’1 ((2π‘ŽV + 𝑏) /βˆšπ‘2 βˆ’ 4π‘Žπ‘) { { { , { { { βˆšπ‘2 βˆ’ 4π‘Žπ‘ { { { { { { { 𝑏2 > 4π‘Žπ‘, (2π‘ŽV + 𝑏)2 > 𝑏2 βˆ’ 4π‘Žπ‘, { { { { { { { { { 2 { { , βˆ’ { { { 2π‘ŽV +𝑏 { { { { { 2 { 𝑏 = 4π‘Žπ‘, (23)

Once V is found then we can obtain 𝑒 from (15). Finally, after finding 𝑒, we can use 𝑦 = π‘’π‘’βˆ« 𝑔(π‘₯)𝑑π‘₯ to return to the original variable. Our results can thus be summarized by the following lemma.

4

The Scientific World Journal

Lemma 1. If the coefficients of the general Riccati equation (1) satisfy the condition 𝑓󸀠 (π‘₯) β„ŽσΈ€  (π‘₯) βˆ’ βˆ’ 2𝑔 (π‘₯) = π‘˜βˆšπ‘“ (π‘₯) β„Ž (π‘₯), 𝑓 (π‘₯) β„Ž (π‘₯)

(25)

where π‘˜ is a constant, then the general solutions of the Riccati equation can be exactly obtained as 𝑦 (π‘₯) 𝑓 (π‘₯) √4 βˆ’ π‘˜2 { { √ { { { 2 { { β„Ž (π‘₯) { { √ 4 βˆ’ π‘˜2 { π‘˜ { { Γ— tan ( [∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢]) + , { { 2 2 { { { 2 { { , 4 > π‘˜ { { { { { { { { 𝑓 (π‘₯) { { √ 2 √ 2 { √ { { β„Ž (π‘₯) (π‘˜ + π‘˜ βˆ’ 4 + ( π‘˜ βˆ’ 4 βˆ’ π‘˜) { { { { { { Γ— exp [βˆšπ‘˜2 βˆ’ 4 (∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)]) { { { { βˆ’1 { { { { Γ—(1 βˆ’ exp [βˆšπ‘˜2 βˆ’ 4 (∫ βˆšπ‘“(π‘₯)β„Ž(π‘₯)𝑑π‘₯ + 𝐢)]) , { { { { { { π‘˜2 > 4, { { { { { { { { { 𝑓 (π‘₯) 𝑝 + π‘ž exp [(𝑝 βˆ’ π‘ž) (∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)] { { √ , { { β„Ž (π‘₯) 1 βˆ’ exp [(𝑝 βˆ’ π‘ž) (∫ βˆšπ‘“ (x) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)] { { { { { π‘˜2 > 4, ={ 2 {where 𝑝 and π‘ž are the roots of V βˆ’ π‘˜V + 1, { { { { { { { { { 𝑓 (π‘₯) βˆšπ‘˜2 βˆ’ 4 { { √ { { { β„Ž (π‘₯) 2 { { { { √ π‘˜2 βˆ’ 4 { π‘˜ { { Γ— tanh (βˆ’ (∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)) + , { { 2 2 { { { 2 2 2 { { > 4, βˆ’ π‘˜) < π‘˜ βˆ’ 4, π‘˜ (2V { { { { { { { { 𝑓 (π‘₯) βˆšπ‘˜2 βˆ’ 4 { { { π‘’βˆ« 𝑔(π‘₯)𝑑π‘₯ √ { { β„Ž (π‘₯) 2 { { { { 2βˆ’4 √ { π‘˜ π‘˜ { { Γ— coth (βˆ’ (∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)) + , { { { 2 2 { { 2 2 2 { { > 4, βˆ’ π‘˜) > π‘˜ βˆ’ 4, π‘˜ (2V { { { { { 𝑓 (π‘₯) 2 π‘˜ { { { + , βˆ’βˆš { { β„Ž 2 (π‘₯) βˆšπ‘“ ∫ β„Ž + 𝐢 (π‘₯) (π‘₯)𝑑π‘₯ { { { 2 π‘˜ = 4, { (26) where 𝐢 is a constant. Remark 2. For the case 𝑓0 (π‘₯)/𝑓1 (π‘₯) < 0, proceeding as before, we obtain the following condition: 𝑓󸀠 (π‘₯) β„ŽσΈ€  (π‘₯) βˆ’ βˆ’ 2𝑔 (π‘₯) = π‘˜βˆšβˆ’π‘“ (π‘₯) β„Ž (π‘₯) 𝑓 (π‘₯) β„Ž (π‘₯)

(27)

and the first-order separable equation 𝑑V = βˆšβˆ’π‘“ (π‘₯) β„Ž (π‘₯) (βˆ’V2 βˆ’ π‘˜V + 1) . 𝑑π‘₯

(28)

Thus the general solutions can be similarly found. 2.2. Case 2: π‘˜(π‘₯) Equals an Arbitrary Function. We have 𝑑V = βˆšπ‘“ (π‘₯) β„Ž (π‘₯) (V2 βˆ’ π‘˜ (π‘₯) V + 1) . 𝑑π‘₯

(29)

This equation can be written in an equivalent form as π‘˜ (π‘₯) 2 4 βˆ’ π‘˜2 (π‘₯) 𝑑V = βˆšπ‘“ (π‘₯) β„Ž (π‘₯) [(V βˆ’ ) + ]. 𝑑π‘₯ 2 4

(30)

The substitution of 𝑀=Vβˆ’

π‘˜ (π‘₯) 2

(31)

into (30) yields 𝑑𝑀 4 βˆ’ π‘˜2 (π‘₯) π‘˜σΈ€  (π‘₯) = βˆšπ‘“ (π‘₯) β„Ž (π‘₯) [𝑀2 + ]βˆ’ . 𝑑π‘₯ 4 2

(32)

If we assume that the function π‘˜(π‘₯) satisfies the following condition: βˆšπ‘“ (π‘₯) β„Ž (π‘₯) [

4 βˆ’ π‘˜2 (π‘₯) π‘˜σΈ€  (π‘₯) ]βˆ’ = πœ†βˆšπ‘“ (π‘₯) β„Ž (π‘₯), (33) 4 2

where πœ† is a constant, then π‘˜2

βˆšπ‘“ (π‘₯) β„Ž (π‘₯) π‘˜σΈ€  (π‘₯) , =βˆ’ 2 (π‘₯) βˆ’ 4 + 4πœ†

(34)

which is a separable equation. Thus π‘˜ (π‘₯) { (2𝑐1 √1 βˆ’ πœ† exp [βˆ’2√1 βˆ’ πœ† βˆ«βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯] { { { { { { { +2√1 βˆ’ πœ†) { { { { βˆ’1 { { { √1 βˆ’ πœ† βˆ«βˆšπ‘“(π‘₯)β„Ž(π‘₯)𝑑π‘₯]) , { Γ— (1 βˆ’ 𝑐 exp [βˆ’2 { 1 { { { { { 1 βˆ’ πœ† > 0, { { { { { { = {2βˆšπœ† βˆ’ 1 tan [βˆ’βˆšπœ† βˆ’ 1 ∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ { { { { { { +𝑐1 βˆšπœ† βˆ’ 1] , { { { { { { 1 βˆ’ πœ† < 0, { { { { { { { 1 { { , { { { { { (1/2) ∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝑐1 { πœ† = 1, {

(35)

where 𝑐1 is an arbitrary integration constant. Then it is easy to solve (32) in closed form. Thus 𝑑𝑀 = βˆšπ‘“ (π‘₯) β„Ž (π‘₯) [𝑀2 + πœ†] , 𝑑π‘₯

(36)

The Scientific World Journal

5

or 𝑀 = βˆšπœ† tan (βˆšπœ† ∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + βˆšπœ†π‘2 ) ,

πœ† =ΜΈ 0, (37)

𝑦 (π‘₯)

where 𝑐2 is an arbitrary integration constant. Therefore, π‘˜ (π‘₯) √ V=𝑀+ = πœ† tan (βˆšπœ† ∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + βˆšπœ†π‘2 ) 2 +

π‘˜ (π‘₯) , 2

πœ† =ΜΈ 0. (38)

Substituting the original expression for 𝑦, we obtain the final general solution as 𝑦 (π‘₯) = √

𝑓 (π‘₯) √ [ πœ† tan (βˆšπœ† ∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + βˆšπœ†π‘2 ) β„Ž (π‘₯) +

π‘˜ (π‘₯) ], 2

πœ† =ΜΈ 0. (39)

For πœ† = 0, we have 𝑀=

βˆ’1 . ∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝑐2

(40)

Thus 𝑦 (π‘₯) = √

𝑓 (π‘₯) βˆ’1 π‘˜ (π‘₯) [ + ]. β„Ž (π‘₯) ∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝑐2 2

3.2. Special Case Where the Original Equation Has the Canonical Form

(41)

Lemma 3. If the coefficients of the general Riccati equation (1) satisfy the condition (42)

where π‘˜(π‘₯) is a function given by (35), then the general closed form solutions of the Riccati equation can be exactly obtained by (39) and (41).

3. Examples Listed below are some special cases where the above conditions are satisfied and the general solutions of the Riccati equation are found. 3.1. The Coefficients 𝑓(π‘₯), 𝑔(π‘₯), and β„Ž(π‘₯) Are Proportional. Example 1. Consider the following Riccati equation: 𝑦󸀠 = πœ‘ (π‘₯) (π‘Ž + 𝑏𝑦 + 𝑐𝑦2 ) ,

󡄨󡄨 π‘Ž 󡄨󡄨 √4 βˆ’ π‘˜2 { √ 󡄨󡄨󡄨 󡄨󡄨󡄨 { { 󡄨󡄨 𝑐 󡄨󡄨 2 { { { { √ 4 βˆ’ π‘˜2 { π‘˜ { { Γ— tan ( [√|π‘Žπ‘| ∫ πœ‘ (π‘₯) 𝑑π‘₯ + 𝐢]) + , { { 2 2 { { { { { |π‘Žπ‘| > 𝑏2 , { { { { { { { 󡄨󡄨 π‘Ž 󡄨󡄨 { { { √ 󡄨󡄨󡄨 󡄨󡄨󡄨 (π‘˜ + βˆšπ‘˜2 βˆ’ 4 + (βˆšπ‘˜2 βˆ’ 4 βˆ’ π‘˜) { { { 󡄨󡄨 𝑐 󡄨󡄨 ={ Γ— exp [βˆšπ‘˜2 βˆ’ 4 (√|π‘Žπ‘| βˆ«πœ‘ (π‘₯) 𝑑π‘₯ + 𝐢)]) { { { { βˆ’1 { { { βˆšπ‘˜2 βˆ’ 4 (√|π‘Žπ‘| βˆ«πœ‘(π‘₯)𝑑π‘₯ + 𝐢)]) , { Γ—(1 βˆ’ exp [ { { { { { { 𝑏2 > |π‘Žπ‘| , { { { { { { { 󡄨󡄨 π‘Ž 󡄨󡄨 { 2 π‘˜ { 󡄨 󡄨 { + , {βˆ’βˆš 󡄨󡄨󡄨 󡄨󡄨󡄨 { 𝑐 2 󡄨 󡄨 { √ ∫ πœ‘ 𝑑π‘₯ + 𝐢 (π‘₯) |π‘Žπ‘| { { 2 𝑏 = |π‘Žπ‘| . { (44)

Example 2. Consider the following Riccati equation:

We have the following.

𝑓󸀠 (π‘₯) β„ŽσΈ€  (π‘₯) βˆ’ βˆ’ 2𝑔 (π‘₯) = π‘˜ (π‘₯) βˆšπ‘“ (π‘₯) β„Ž (π‘₯), 𝑓 (π‘₯) β„Ž (π‘₯)

The condition equation (25) holds if and only if π‘˜ = βˆ’2𝑏/√|π‘Žπ‘|. So the general solution to this equation can be found by

(43)

where 𝑓(π‘₯), 𝑔(π‘₯), and β„Ž(π‘₯) are proportional; that is, 𝑓(π‘₯) = π‘Žπœ‘(π‘₯), 𝑔(π‘₯) = π‘πœ‘(π‘₯), and β„Ž(π‘₯) = π‘πœ‘(π‘₯).

𝑦󸀠 = 𝑓 (π‘₯) + 𝑦2 ,

(45)

where 𝑓(π‘₯) = 1/(𝛼π‘₯ + 𝛽)2 , 𝑔(π‘₯) = 0, and β„Ž(π‘₯) = 1. The condition equation (25) holds if and only if π‘˜ = βˆ’2𝛼. Thus, the general solution is given as 𝑦 (π‘₯) √4 βˆ’ π‘˜2 1 { { { { 2 𝛼π‘₯ + 𝛽 { { { √ 4 βˆ’ π‘˜2 1 { { { Γ— tan ( [ ln (𝛼π‘₯ + 𝛽) + 𝐢]) { { { 2 𝛼 { { { π‘˜ { { { + , { { 2 { { { 2 { 1 > 𝛼 , { { { { { { { { { 1 √ 2 √ 2 = { 𝛼π‘₯ + 𝛽 (π‘˜ + π‘˜ βˆ’ 4 + ( π‘˜ βˆ’ 4 βˆ’ π‘˜) { { 1 { { Γ— exp [βˆšπ‘˜2 βˆ’ 4 ( ln (𝛼π‘₯ + 𝛽) + 𝐢)]) { { { 𝛼 { { βˆ’1 { 1 1 { 2 { √ π‘˜ βˆ’ 4 ( , + 𝐢)]) Γ—(1 βˆ’ exp [ { { { 𝛼 𝛼π‘₯ + 𝛽 { { { { 𝛼2 > 1, { { { { { { { 1 2 π‘˜ { { { βˆ’ + , { { 𝛼π‘₯ + 𝛽 2 ln (𝛼π‘₯ + 𝛽) + 𝐢 (1/𝛼) { { 2 𝛼 = 1. { (46)

6

The Scientific World Journal where 𝑓(π‘₯) = π‘Žπ‘₯βˆ’π‘›βˆ’2 , 𝑔(π‘₯) = 𝑏/π‘₯, and β„Ž(π‘₯) = 𝑐π‘₯𝑛 , we get π‘˜ = βˆ’2(𝑛 + 1 + 𝑏)/√|π‘Žπ‘|, and the general solution to this equation is given by

3.3. Equations Containing Power Functions Example 3. Consider the following equation: 𝑦󸀠 = 𝑏π‘₯π‘š + π‘Žπ‘₯𝑛 𝑦2 , π‘š

(47) 𝑛

where 𝑓(π‘₯) = 𝑏π‘₯ , 𝑔(π‘₯) = 0, and β„Ž(π‘₯) = π‘Žπ‘₯ . The condition equation (25) holds if and only if π‘˜ = (π‘š βˆ’ 𝑛)/√|π‘Žπ‘| with π‘š + 𝑛 = βˆ’2. So the general solution to this equation can be found for any values of π‘Ž, 𝑏, π‘š, and 𝑛 by 𝑦 (π‘₯) 󡄨󡄨 π‘Ž 󡄨󡄨 √4 βˆ’ π‘˜2 (π‘šβˆ’π‘›)/2 { { √ 󡄨󡄨󡄨 󡄨󡄨󡄨 { 󡄨󡄨 𝑏 󡄨󡄨 2 π‘₯ { { { { { { { { √4 βˆ’ π‘˜2 { { { Γ— tan ( { { 2 { { { { { { { { 2 π‘˜ { { √|π‘Žπ‘|π‘₯(π‘š+𝑛+2)/2 + 𝐢] ) + , Γ—[ { { π‘š+𝑛+2 2 { { { { { { { { 4 |π‘Žπ‘| > (π‘š βˆ’ 𝑛)2 , { { { { { { { { 󡄨󡄨 π‘Ž 󡄨󡄨 { { { √ 󡄨󡄨󡄨 󡄨󡄨󡄨π‘₯(π‘šβˆ’π‘›)/2 (π‘˜ + βˆšπ‘˜2 βˆ’ 4 + (βˆšπ‘˜2 βˆ’ 4 βˆ’ π‘˜) { { 󡄨󡄨 𝑏 󡄨󡄨 { { { { { { { { { { Γ— exp [βˆšπ‘˜2 βˆ’ 4 { { { { { { { { 2 { { { Γ—( { { π‘š + 𝑛+2 { { { { ={ { Γ—βˆš|π‘Žπ‘|π‘₯(π‘š+𝑛+2)/2 + 𝐢)]) { { { { { { { { { { Γ— (1 βˆ’ exp [βˆšπ‘˜2 βˆ’ 4 { { { { { { { { { 2 { { { Γ—( { { π‘š + 𝑛+2 { { { { { { βˆ’1 { { (π‘š+𝑛+2)/2 { √ Γ— + 𝐢)]) , { |π‘Žπ‘|π‘₯ { { { { { { { { { 4 |π‘Žπ‘| < (π‘š βˆ’ 𝑛)2 , { { { { { { { { { 󡄨󡄨 π‘Ž 󡄨󡄨 (π‘›βˆ’π‘š)/2 { { { 󡄨󡄨󡄨 󡄨󡄨󡄨π‘₯ √ βˆ’ { { 󡄨󡄨 𝑏 󡄨󡄨 { { { { { { { π‘˜ 2 { { + , Γ— { { (π‘š+𝑛+2)/2 { +𝐢 2 (2/ (π‘š + 𝑛 + 2)) √|π‘Žπ‘|π‘₯ { { { { { 4 |π‘Žπ‘| = (π‘š βˆ’ 𝑛)2 . { (48)

𝑦 (π‘₯) 󡄨󡄨 π‘Ž 󡄨󡄨 √4 βˆ’ π‘˜2 βˆ’(𝑛+1) { √ 󡄨󡄨󡄨 󡄨󡄨󡄨 { { 󡄨󡄨 𝑐 󡄨󡄨 2 π‘₯ { { { { √ 4 βˆ’ π‘˜2 { π‘˜ { { [√|π‘Žπ‘| ln π‘₯ + 𝐢]) + , { Γ— tan ( { 2 2 { { { { { { |π‘Žπ‘| > (𝑛 + 1 + 𝑏)2 , { { { { { { { 󡄨󡄨 π‘Ž 󡄨󡄨 { { { √ 󡄨󡄨󡄨 󡄨󡄨󡄨π‘₯βˆ’(𝑛+1) (π‘˜ + βˆšπ‘˜2 βˆ’ 4 + (βˆšπ‘˜2 βˆ’ 4 βˆ’ π‘˜) { { 󡄨󡄨 𝑐 󡄨󡄨 { { { ={ Γ— exp [βˆšπ‘˜2 βˆ’ 4 (√|π‘Žπ‘| ln π‘₯ + 𝐢)]) { { { { { { βˆ’1 { { Γ—(1 βˆ’ exp [βˆšπ‘˜2 βˆ’ 4 (√|π‘Žπ‘| ln π‘₯ + 𝐢)]) , { { { { { { { { |π‘Žπ‘| < (𝑛 + 1 + 𝑏)2 , { { { { { { { 󡄨󡄨 π‘Ž 󡄨󡄨 βˆ’(𝑛+1) { 2 π‘˜ { 󡄨󡄨 󡄨󡄨π‘₯ { √ βˆ’ + , { 󡄨󡄨 󡄨󡄨 { { 󡄨𝑐󡄨 √|π‘Žπ‘| ln π‘₯ + 𝐢 2 { { { |π‘Žπ‘| = (𝑛 + 1 + 𝑏)2 . { 3.4. Other Equations Example 5. Consider the following Riccati equation: π‘₯𝑦󸀠 = π‘₯2π‘š + (π‘š βˆ’ 𝑛) 𝑦 + π‘₯2𝑛 𝑦2 , 2π‘šβˆ’1

𝑏 𝑦 + π‘Žπ‘₯𝑛 𝑦2 , π‘₯

(49)

(51) 2π‘›βˆ’1

, 𝑔(π‘₯) = (π‘š βˆ’ 𝑛)/π‘₯, and β„Ž(π‘₯) = π‘₯ . We where 𝑓(π‘₯) = π‘₯ get π‘˜ = 0, and the general solution to this equation is given by 𝑦=√

𝑓 (π‘₯) √4 βˆ’ π‘˜2 β„Ž (π‘₯) 2

Γ— tan (

√4 βˆ’ π‘˜2 2

(52) π‘˜ (∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)) + . 2

Thus the exact closed form solution is 𝑦 = π‘₯π‘šβˆ’π‘› tan (

π‘₯𝑛+π‘š + 𝐢) , 𝑛+π‘š

(53)

where 𝐢 is a constant of integration. Example 6. For the given equation 2π‘₯2 𝑦󸀠 = βˆ’2π‘Ž2 π‘₯ + π‘₯𝑦 + 2𝑦2 , 2

(54) 2

where 𝑓(π‘₯) = βˆ’π‘Ž /π‘₯, 𝑔(π‘₯) = 1/2π‘₯, and β„Ž(π‘₯) = 1/π‘₯ , we get π‘˜ = 0, and the general solution to this equation is given by 𝑦 = π‘’βˆ« 𝑔(π‘₯)𝑑π‘₯ √

Example 4. For the equation 𝑦󸀠 = 𝑐π‘₯βˆ’π‘›βˆ’2 +

(50)

Γ— tan (

𝑓 (π‘₯) √4 βˆ’ π‘˜2 β„Ž (π‘₯) 2

√4 βˆ’ π‘˜ 2 2

π‘˜ (∫ βˆšπ‘“ (π‘₯) β„Ž (π‘₯)𝑑π‘₯ + 𝐢)) + . 2

(55)

The Scientific World Journal

7

Thus the exact closed form solution is 𝑦 = |π‘Ž| √π‘₯ tan (

βˆ’2 |π‘Ž| + 𝐢) , π‘₯2

(56)

where 𝐢 is a constant of integration.

π‘š

3.5. Equations Containing Exponential Functions Example 7. Consider the following Riccati equation: 𝑦󸀠 = π‘π‘’πœ‡π‘₯ + π‘Žπ‘¦2 ,

(57)

where 𝑓(π‘₯) = π‘π‘’πœ‡π‘₯ , 𝑔(π‘₯) = 0, and β„Ž(π‘₯) = π‘Ž. The condition equation (42) holds if and only if π‘˜(π‘₯) = πœ‡/√|π‘Žπ‘|π‘’βˆ’(πœ‡/2)π‘₯ . Combining this value of π‘˜(π‘₯) with (35), we get πœ‡ = 2. So π‘˜(π‘₯) = (2/√|π‘Žπ‘|)π‘’βˆ’π‘₯ . Thus the general solution to this equation can be found by (41); that is, 󡄨󡄨 𝑏 󡄨󡄨 βˆ’1 2 βˆ’π‘₯ 󡄨 󡄨 𝑦 (π‘₯) = √ 󡄨󡄨󡄨 󡄨󡄨󡄨 [ + 𝑒 ]. 󡄨󡄨 π‘Ž 󡄨󡄨 √|π‘Žπ‘|𝑒π‘₯ + 𝑐2 √|π‘Žπ‘|

(58)

4. Applications 4.1. The Central Potential Problem of the Power Law Type. Certain types of Newtons laws of motion are equivalent to the Riccati equation. For example, the equation for the energy conservation in the case of a central potential 𝑉(π‘Ÿ) is given by the standard expression [7] 𝑙2 1 + 𝑉 (π‘Ÿ) . 𝐸 = π‘šπ‘Ÿ2Μ‡ + 2 2π‘šπ‘Ÿ2

(59)

Under the influence of a power law central potential 𝑉(π‘Ÿ) = π‘˜βˆ— π‘Ÿπœ– and 𝐸 = 0, where π‘˜βˆ— is the coupling constant and the exponent πœ– can be either positive or negative, (59) can be transformed into the Riccati equation 𝑀󸀠 =

πœ–+2 πœ–+2 2 + 𝑀. 2 2

4.2. Damped Harmonic Oscillators. Various problems in quantum optics, superconductivity, and nonrelativistic quantum mechanics can be described classically by [8]

(60)

𝑑π‘₯ πœ•π‘ˆ 󡄨󡄨󡄨󡄨 𝑑2 π‘₯ + πœ† , = βˆ’ 󡄨 𝑑𝑑2 𝑑𝑑 πœ•π‘₯ 󡄨󡄨󡄨π‘₯=π‘₯(𝑑)

where π‘₯(𝑑) is the particle coordinate, π‘š is the mass of the particle, πœ† is a damping constant, and π‘ˆ(π‘₯, 𝑑) is a potential energy that accounts for the interaction of the particle with its environment. If π‘ˆ(π‘₯, 𝑑) = βˆ’π‘₯πœ‡(𝑑), where πœ‡(𝑑) is white or colored noise, then (60) becomes the well-known Langevin equation π‘š

𝑑π‘₯ 𝑑2 π‘₯ +πœ† βˆ’ πœ‡ (𝑑) = 0. 𝑑𝑑2 𝑑𝑑

𝑑π‘₯ 𝑑2 π‘₯ + 2𝛽 (𝑑) + πœ”2 (𝑑) π‘₯ = 0, 𝑑𝑑2 𝑑𝑑

of the original equation, where π‘ŸσΈ€  = π‘‘π‘Ÿ/π‘‘πœƒ and πœƒ(𝑑) = 1/π‘šπ‘Ÿ2 . From the condition (25) of Lemma 1, we see that there exists a constant π‘˜ = 0 for πœ– =ΜΈ βˆ’2. Hence, the general solution of (60) is given by 𝑀 (πœƒ) = tan (

|πœ– + 2| πœƒ + 𝐢1 ) . 2

(62)

Therefore, π‘Ÿ (πœƒ) = 𝐢2 [sec ( where 𝐢2 is a constant.

2/|πœ–+2| |πœ– + 2| , πœƒ + 𝐢1 )] 2

(63)

(66)

where 𝛽 is the damping function and πœ” is the the natural frequency of the undamped oscillator. The substitution 𝑦 = π‘₯σΈ€  /π‘₯ converts (66) to the Riccati equation 𝑦󸀠 = βˆ’πœ”2 (𝑑) βˆ’ 2𝛽 (𝑑) 𝑦 βˆ’ 𝑦2 .

(67)

Here 𝑓(𝑑) = βˆ’πœ”2 (𝑑), 𝑔(𝑑) = βˆ’2𝛽(𝑑), and β„Ž(𝑑) = βˆ’1. The condition (25) holds if and only if the coefficients πœ” and 𝛽 satisfy the following condition: πœ”σΈ€  π‘˜ + 2𝛽 = πœ”, πœ” 2

where π‘˜ is a constant.

(68)

Then (68) can be written in an equivalent form as π‘˜ πœ”σΈ€  = βˆ’2𝛽 (𝑑) πœ” + πœ”2 , 2

(69)

which is a Bernoulli equation and can be readily solved for πœ” to obtain πœ” (𝑑) =

(61)

(65)

Also the equation of motion is

A solution of this equation will lead to a solution π‘ŸσΈ€  =𝑀 π‘Ÿ

(64)

1 βˆ’ (π‘˜/2) + 𝑐𝑒2 ∫ 𝛽(𝑑)𝑑𝑑

.

(70)

We conclude that if the coefficients πœ” and 𝛽 satisfy (70), then the general solution 𝑦(𝑑) of (67) is given by (26). Returning to the original dependent variable by 𝑦 = π‘₯σΈ€  /π‘₯, we obtain the general solution to (66) as π‘₯ (𝑑) = π‘π‘’βˆ« 𝑦(𝑑)𝑑𝑑 ,

(71)

where 𝑐 is a constant.

5. Conclusion We have converted the Riccati equation into an equivalent equation; then, by using the integrability condition for this equation, 𝑓󸀠 (π‘₯) β„ŽσΈ€  (π‘₯) βˆ’ βˆ’ 2𝑔 (π‘₯) = π‘˜ (π‘₯) βˆšπ‘“ (π‘₯) β„Ž (π‘₯), 𝑓 (π‘₯) β„Ž (π‘₯)

(72)

8 we obtain a separable equation. The first case π‘˜(π‘₯) = π‘˜, where constant π‘˜ is a constant, is considered. Thus, the general solutions of the Riccati equation can be exactly obtained. The second integrability case is obtained for the reduced Riccati equation with an arbitrary function π‘˜(π‘₯). We have considered several distinct examples to illustrate our new approach. The method is also applied to the Riccati equation arising in the solution of certain types of Newtons laws of motion and the damped harmonic oscillators equations.

Conflict of Interests The author declares that there is no conflict of interests regarding the publication of this paper.

References [1] A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, Fla, USA, Second edition, 2003. [2] E. Hille, Ordinary Differential Equat ions in the Complex Domain, Dover Publications, Mineola, NY, USA, 1997. [3] E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, NY, USA, 1956. [4] V. M. Strelchenya, β€œA new case of integrability of the general Riccati equation and its application to relaxation problems,” Journal of Physics A: Mathematical and General, vol. 24, no. 21, pp. 4965–4967, 1991. [5] M. K. Mak and T. Harko, β€œNew further integrability cases for the Riccati equation,” Applied Mathematics and Computation, vol. 219, no. 14, pp. 7465–7471, 2013. [6] A. Al Bastami, M. R. BeliΒ΄c, and N. Z. PetroviΒ΄c, β€œSpecial solutions of the Riccati equation with applications to the Gross-Pitaevskii nonlinear PDE,” Electronic Journal of Differential Equations, vol. 2010, no. 66, pp. 1–10, 2010. [7] M. Nowakowski and H. C. Rosu, β€œNewton’s laws of motion in the form of a Riccati equation,” Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, vol. 65, no. 4, Article ID 047602, 2002. [8] S. I. Denisov and W. Horsthemke, β€œAnomalous diffusion and stochastic localization of damped quantum particles,” Physics Letters A, vol. 282, no. 6, pp. 367–372, 2001.

The Scientific World Journal

New conditions for obtaining the exact solutions of the general Riccati equation.

We propose a direct method for solving the general Riccati equation y' = f(x) + g(x)y + h(x)y(2). We first reduce it into an equivalent equation, and ...
527KB Sizes 0 Downloads 5 Views