research papers Acta Crystallographica Section C

process is influenced by many factors, such as the organic ligands used (Rowsell & Yaghi, 2005), the metal coordination geometry (Qin et al., 2012), the inorganic counter-ions (Kato et al., 2008), the reaction temperature (Dong et al., 2007), the pH value (Hilbert et al., 2014), the solvent system (Bu et al., 2002) etc. Among these factors, the choice of the organic spacer has the greatest influence on determining the type and topology of the product (Bai et al., 2012; Vrdoljak et al., 2010). Metal

Structural Chemistry ISSN 2053-2296

Mononuclear and three-dimensional metal complexes based on a multidentate hydrazone ligand Yan-Fei Liu, Ya-Ping Liu, Ke-Ke Zhang, Qing-Ling Ren and Jie Qin* School of Life Sciences, Shandong University of Technology, Zibo 255049, People’s Republic of China Correspondence e-mail: [email protected] Received 19 September 2014 Accepted 13 January 2015

A potentially pentadentate hydrazone ligand, N0 -[1-(pyrazin2-yl)ethylidene]nicotinohydrazide (HL), was prepared from the condensation reaction of nicotinohydrazide and acetylpyrazine. Reactions of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 afforded three metal complexes, namely dichlorido{N0 -[1-(pyrazin-2-yl-N1)ethylidene]nicotinohydrazide-2N0 ,O}manganese(II), [MnCl2(C12H11N5O)], (I), bis{N0 [1-(pyrazin-2-yl-N1)ethylidene]nicotinohydrazidato-2N0 ,O]manganese(II), [Mn(C12H10N5O)2], (II), and poly[[(acetato2O,O0 ){3-N0 -[1-(pyrazin-2-yl-2N1:N4)ethylidene]nicotinohydrazidato-3N0 ,O:N1}cadmium(II)] chloroform disolvate], {[Cd(C12H10N5O)(CH3COO)]2CHCl3}n, (III), respectively. Complex (I) has a mononuclear structure, the MnII centre adopting a distorted square-pyramidal coordination. Complex (II) also has a mononuclear structure, with the MnII centre occupying a special position (C2 symmetry) and adopting a distorted octahedral coordination environment, which is defined by two O atoms and four N atoms from two N0 -[1(pyrazin-2-yl)ethylidene]nicotinohydrazidate (L) ligands related via a crystallographic twofold axis. Complex (III) features a unique three-dimensional network with rectangular channels, and the L ligand also serves as a counter-anion. The coordination geometry of the CdII centre is pentagonal bipyramidal. This study demonstrates that HL, which can act as either a neutral or a mono-anionic ligand, is useful in the construction of interesting metal–organic compounds.

complexes based on Schiff base derivatives have received increasing attention recently due to their remarkable features. Firstly, Schiff base ligands are easily prepared by one-pot condensation of active carbonyl groups and primary amines in alcohol solvent, and are also easily purified by recrystallization (Mohamed et al., 2010), and secondly, complexes of Schiff bases show excellent potential applications in catalysis (Tsuchida, 2003), optoelectronics (Kuo et al., 2008), magnetism (Yao et al., 2012) and bioinorganic chemistry (Kalinowski et al., 2008; Lee et al., 2013).

Keywords: mononuclear complex; three-dimensional coordination polymer; crystal structure; multidentate hydrazone ligand; metal–organic compounds; self-assembly process.

1. Introduction It is an intriguing and challenging task to construct coordination compounds deliberately, because the self-assembly

116

# 2015 International Union of Crystallography

Hydrazones derived from the condensation of aldehydes (or ketones) and hydrazide constitute an important class of

doi:10.1107/S2053229615000698

Acta Cryst. (2015). C71, 116–121

research papers Schiff base ligands. These ligands feature keto–enol tautomerism and can present a neutral (HL) or a mono-anionic (L) form (Scheme 1) (Samanta et al., 2007). Hydrazones can coordinate with metal ions through the protonated/deprotonated amide O atom and the imine N atom of the hydrazone group (Mondal et al., 2013), while additional donor sites can be provided by the aldehyde (or ketone) group. The aldehydes (or ketones) used most often for the synthesis of hydrazone are pyridine-2-carbaldehyde or 2-acetylpyridine (Mondal et al., 2013; Samanta et al., 2007), and the hydrazides used most often in previous studies have been 3-hydroxy-2-naphthoylhydrazide (Lee et al., 2013) or 2-(diphenylphosphanyl)benzaldehyde (Ðord-evic´ et al., 2014). Therefore, hydrazones usually act as planar N,N0 ,O-, O,N,O0 - or P,N,O-tridentate pincer ligands. However, as far as we know, hydrazones with additional terminal donor atoms, except for the pincercoordinating group, have not been explored as much. We have thus expanded the range of hydrazone ligands with the new multidentate ligand N0 -[1-(pyrazin-2-yl)ethylidene]nicotinohydrazide (HL), which possesses terminal pyrazine and pyridine N-atom donors (Scheme 1). In this study, we have investigated the self-assembly reaction of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 at room temperature. Three coordination compounds, namely [MnCl2(HL)], (I), [Mn(L)2], (II), and {[Cd(L)(CH3COO)]2CHCl3}n, (III), were isolated (see Scheme 2).

2. Experimental 2.1. Synthesis and crystallization

All solvents and reagents were available commercially and were used as received. N0 -[1-(Pyrazin-2-yl)ethylidene]nicotinohydrazide (HL) was synthesized according to the literature method of Dong et al. (2004) and was obtained by mixing nicotinohydrazide (0.42 g, 3.00 mmol) and acetylpyrazine (0.36 g, 3.00 mmol) in distilled ethanol (30 ml) under reflux. After stirring for 3 h, a white precipitate was filtered off, washed with cold ethanol and dried under vacuum, affording HL in 86% yield. A solution of MnCl24H2O (15.8 mg, 0.08 mmol) in MeOH (5 ml) was layered onto a solution of HL (9.6 mg, 0.04 mmol) in CHCl3 (5 ml). The system was left for about one week at room temperature, after which time crystals of (I) were obtained (yield 53%). Complexes (II) and (III) were synthesized in an analogous manner, but using Mn(CH3COO)24H2O and Cd(CH3COO)23H2O, respectively, instead of MnCl24H2O. 2.2. Spectroscopic analysis

IR (KBr pellet, , cm1) for HL: 3419, 3194, 2974, 1665, 1615, 1373, 1176, 1049, 859, 735, 706, 645; for complex (I): 3385, 3073, 1704, 1600, 1514, 1480, 1467, 1424, 1410, 1369, 1274, 1175, 1160, 1123, 1059, 1031, 852, 734, 694, 640, 426; for

Table 1 Experimental details.

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A , ,  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin / )max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters No. of restraints H-atom treatment ˚ 3)  max,  min (e A Absolute structure Absolute structure parameter

(I)

(II)

(III)

[MnCl2(C12H11N5O)] 367.10 Monoclinic, Cc 273 14.1037 (7), 7.4955 (4), 14.5827 (8) 90, 107.053 (2), 90 1473.82 (13) 4 Mo K 1.26 0.20  0.18  0.15

[Mn(C12H10N5O)2] 535.44 Orthorhombic, Aba2 273 12.3790 (7), 19.2445 (13), 9.8987 (6) 90, 90, 90 2358.1 (3) 4 Mo K 0.61 0.24  0.13  0.12

[Cd(C12H10N5O)(C2H3O2)]2CHCl3 650.43 Orthorhombic, P212121 273 10.4215 (4), 10.5323 (4), 22.2477 (10) 90, 90, 90 2441.96 (17) 4 Mo K 1.58 0.26  0.25  0.25

Bruker SMART APEX CCD areadetector diffractometer Multi-scan (SADABS; Bruker, 2002) 0.786, 0.833 6817, 2749, 2593

Bruker SMART APEX CCD areadetector diffractometer Multi-scan (SADABS; Bruker, 2002) 0.868, 0.931 11335, 2251, 1696

Bruker SMART APEX CCD areadetector diffractometer Multi-scan (SADABS; Bruker, 2002) 0.684, 0.694 24532, 4778, 4608

0.025 0.611

0.052 0.611

0.029 0.617

0.028, 0.067, 1.05 2749 191 3 H-atom parameters constrained 0.32, 0.17 Flack (1983), with 1347 Friedel pairs 0.053 (15)

0.041, 0.093, 1.04 2251 169 1 H-atom parameters constrained 0.39, 0.21 Flack (1983), with 1050 Friedel pairs 0.00 (3)

0.022, 0.053, 1.07 4778 282 1 H-atom parameters constrained 0.53, 0.40 Flack (1983), with 2061 Friedel pairs 0.028 (19)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SHELXTL (Sheldrick, 2008).

Acta Cryst. (2015). C71, 116–121

Liu et al.



[MnCl2(C12H11N5O)] and two related complexes

117

research papers complex (II): 2971, 1615, 1498, 1457, 1377, 1310, 1153, 1068, 1038, 848, 759, 709, 695, 422; for complex (III): 3236, 1539, 1459, 1421, 1359, 1299, 1190, 1154, 1059, 1030, 994, 911, 856, 745, 697, 625, 455. 2.3. Elemental analysis

Calculated for C12H11N5O, HL: C 59.74, H 4.59, N 29.03%; found: C 59.98, H 4.57, N 29.14%; for C12H11Cl2MnN5O, (I): C 39.26, H 3.02, N 19.08%; found: C 39.38, H 3.01, N 19.16%; for C24H20MnN10O2, (II): C 58.84, H 3.76, N 26.16%; found: C 59.07, H 3.74, N 26.26%; for C16H15CdCl6N5O3, (III): C 29.54, H 2.32, N 10.77%; found: C 29.63, H 2.31, N 10.80%.

Figure 2 The hydrogen-bond-driven one-dimensional chain in (I), extending along the crystallographic c axis. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) x, y + 2, z  12.]

Table 2 ˚ ,  ) for (I). Hydrogen-bond geometry (A D—H  A

2.4. Refinement

N4—H4A  Cl2

Crystal data, data collection and structure refinement details are summarized in Table 1. The imine H atom in (I) was found initially in a difference Fourier map and then refined ˚ and Uiso(H) = 1.5Ueq(N). Other H with N—H = 0.83 (2) A atoms were placed in geometrically idealized positions and ˚ , chlorotreated as riding atoms, with methyl C—H = 0.96 A ˚ ˚ form C—H = 0.98 A or aromatic C—H = 0.93 A, and with Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) otherwise.

3. Comment The MnII centre in (I) possesses a square-pyramidal coordination environment (Fig. 1). HL serves as an N,N0 ,O-tridentate pincer-type ligand, occupying three of the four equatorial coordination sites through pyrazine atom N1, azomethine atom N3 and carbonyl atom O1, with the remaining site occupied by the Cl2 chloride anion. The central MnII cation deviates from the mean plane defined by atoms N1/N3/O1/Cl2 ˚ . The axial position is occupied by the other by 0.257 (1) A chloride anion. The distortion of a square-pyramidal geometry can be evidenced from the sum of its four cis angles, which amounts to 345.13 in (I) compared with the ideal value of 360 for a planar geometry. In (I), the HL ligand is slightly twisted, with the dihedral angle between the pyridine and pyrazine ring planes being 9.45 (1) . The dihedral angles between these two

i

D—H

H  A

D  A

D—H  A

0.82

2.73

3.310 (2)

129

Symmetry code: (i) x; y þ 2; z  12.

heterocyclic ring planes and the MnII mean coordination plane (Mn/N1/C4/C5/N3/N4/C7/O1) are 15.10 (1) and 6.85 (2) , respectively. In complex (I), the pyridine N5 and pyrazine N2 atoms are involved in neither complexation nor hydrogen bonds. The latter interactions exist between the imine N—H group of HL and the Cl2 chloride ligand, and an intermolecular N4— H4A  Cl2i hydrogen bond is formed [symmetry code: (i) x, y + 2, z  12], leading to the construction of a one-dimensional chain structure along the c axis (Fig. 2 and Table 2). To investigate the effect of the chloride counter-ion on the structural motif, we reacted Mn(CH3COO)2 and HL in the same solvent system as (I), affording complex (II). The crystal structure presented in Fig. 3 shows the composition of (II) as [Mn(L)2]. The MnII centre in (II) occupies a special position on a crystallographic twofold axis and possesses an octahedral coordination environment formed by two C2-related ligands

Figure 3 Figure 1 The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

118

Liu et al.



[MnCl2(C12H11N5O)] and two related complexes

The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (ii) x, y + 1, z.] Acta Cryst. (2015). C71, 116–121

research papers

Figure 4 (a) The hydrogen-bond-driven two-dimensional sheet and (b) the three-dimensional network in (II). Dashed lines indicate hydrogen bonds.

chelating the MnII centre. Pyrazine atom N1 and azomethine atom N3 from one ligand, and enolate atom O1ii and azomethine atom N3ii from a second ligand [symmetry code: (ii) x, y + 1, z] compose the equatorial plane. The remaining pyrazine N-donor and enolate O-donor atoms occupy the axial positions. The deviation from 90 of the cis-metal–ligand angles and the axial N1ii—Mn1—O1ii angle of 143.22 (8) suggest a distorted octahedral coordination core. In complex (II), the metal–ligand bond distances follow the order Mn—O ˚ ] < Mn—N(azomethine) [2.183 (2) A ˚ ] < Mn— [2.124 (2) A ˚ N(pyrazine) [2.277 (3) A], which is different from what is observed in structurally similar metal complexes based on pyridine-2-carbaldehyde hydrazone derivatives, which usually follow the order M—N(azomethine) < M—O < M—N(pyridine) (M = Ni or Cu; Mondal et al., 2013; Samanta et al., 2007). This variation may be ascribed to the effect of the metal ions. In complex (II), the two ligands are equivalent and related by a C2 axis passing through the N3—Mn—N3ii vector. The MnII mean coordination plane (Mn/N1/C4/C5/N3/N4/C7/O1) forms a dihedral angle of 89.00 (1) with the symmetry-related coordination plane. Unlike (I), the ligand is deprotonated during coordination with MnII and hence the ligand HL acts as a counter-anion, denoted L. The C7—O1 bond length is ˚ in (I) to 1.265 (3) A ˚ in (II) due to elongated from 1.233 (3) A the loss of its full double-bond character. The C7—N4 bond

˚ in (I) to 1.334 (4) A ˚ in length is shortened from 1.352 (3) A (II) as a result of the increased -bond order. These structural changes are accompanied by a shrinking of the C7—N4—N3 angle from 114.60 (19) in (I) to 108.4 (2) in (II). These variations indicate delocalization over the deprotonated hydrazone backbone, leading to the planarity of L in (II). The dihedral angle between the pyridine and pyrazine ring planes is 6.79 (3) , and the dihedral angle between the two five-membered chelate rings formed by the same ligand is only 4.68 (1) .

Table 3 ˚ ,  ) for (II). Hydrogen-bond geometry (A D—H  A i

C3—H3  O1 C11—H11  N2ii

D—H

H  A

D  A

D—H  A

Figure 5

0.93 0.93

2.43 2.62

3.273 (4) 3.405 (5)

151 142

The coordination environment of the CdII centre in (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (v) x + 12, y + 12, z + 2; (vi) x + 1, y  12, z + 32.]

Symmetry codes: (i) x þ 12; y þ 1; z  12; (ii) x þ 12; y  12; z þ 1.

Acta Cryst. (2015). C71, 116–121

Liu et al.



[MnCl2(C12H11N5O)] and two related complexes

119

research papers

Figure 6 The one-dimensional chain structure in (III).

Nonclassical hydrogen-bonding interactions are found in (II) (Table 3). In the solid state, each mononuclear unit is connected to four adjacent units, forming a two-dimensional sheet extending in the crystallographic ac plane via C—H  O hydrogen bonds (Table 3 and Fig. 4a). These two-dimensional supramolecular layers are stacked in an . . . AA . . . fashion along the crystallographic b axis. The uncoordinated pyrazine groups act as hydrogen-bond acceptors and link these sheets into a three-dimensional microporous supramolecular network through a C11—H11  N2iv interaction [symmetry code: (iv) x + 12, y  12, z + 1] (Table 3 and Fig. 4b). When Cd(CH3COO)2 was used instead of Mn(CH3COO)2 in the reaction, complex (III) was obtained. The asymmetric unit of (III) contains one crystallographically independent CdII centre, one L ligand, one acetate ligand and two chloroform solvent molecules. As shown in Fig. 5, the coordination geometry around the CdII centre is distorted pentagonal bipyramidal. The pincer ligand occupies the equatorial coordination sites in an N,N0 ,O-fashion, which is

the same as in complexes (I) and (II). The remaining two sites are occupied by acetate O atoms. The axial positions are occupied by pyridine N5vi and pyrazine N2v donors [symmetry codes: (v) x + 12, y + 12, z + 2; (vi) x + 1, y  12, z + 32]. The sum of the equatorial angles [359.5 (4) ] is very close to the ideal value (360 ), which ensures the planarity of the equatorial plane. The axial N2v—Cd1—N5vi bond angle of 172.41 (8) indicates deviation from a linear configuration. The Cd—O and Cd—N bond lengths are comparable with those reported for [Cd(pah)2]CH3CN [pah = pyridine-2carbaldehyde (2-aminosulfonylbenzoyl)hydrazone] (SousaPedrares et al., 2008). Given the requirement for charge balance of the whole complex, the ligand in (III) is also monoanionic. Evidence for the deprotonated form is provided by the bond lengths ˚ and C7—N4 = 1.329 (3) A ˚ , as well as by C7—O1 = 1.264 (3) A  the C7—N4—N3 bond angle of 110.7 (2) . It is interesting to note that L acts as a pentadentate ligand in (III), with both of the two terminal pyridine and pyrazine N-atom donors participating in coordination, which is different from the tridentate coordination mode in (I) and (II). The dihedral angle between the pyridine and pyrazine ring planes in (III) is the largest among these three complexes, at 18.68 (1) , as a result of this pentadentate coordination mode. In the extended structure of (III), neighbouring CdII centres are bridged by the pyridine N-atom donors to form an infinite zigzag chain structure extending along the crystallographic b ˚. axis (Fig. 6). The intrachain Cd  Cd separation is 8.63 (1) A These one-dimensional chains are aligned in an . . . AB . . . fashion in the crystallographic ac plane, and are strung to-

Table 4 ˚ ,  ) for (III). Hydrogen-bond geometry (A

Figure 7 The three-dimensional network of complex (III), with the chloroform solvent molecules shown in space-filling format.

120

Liu et al.



[MnCl2(C12H11N5O)] and two related complexes

D—H  A

D—H

H  A

D  A

D—H  A

C15—H15  O2 C15—H15  O1 C16—H16  O2i

0.98 0.98 0.98

2.51 2.39 2.46

3.230 (5) 3.186 (4) 3.316 (5)

130 138 146

Symmetry code: (i) x  12; y þ 12; z þ 1.

Acta Cryst. (2015). C71, 116–121

research papers gether by bridging pyrazine groups via Cd1—N2v linkages to form a three-dimensional network with rectangular channels along the crystallographic b axis. The uncoordinated chloroform guest molecules are located in the rectangular channels (Fig. 7). There are three sets of nonclassical hydrogen bonds between the guest molecules and the host framework, viz. C15—H15  O1, C15—H15  O2 and C16—H16  O2vii [symmetry code: (vii) x  12, y + 12, z + 1] (Table 4). In summary, the introduction of both pyrazine and pyridine donor groups in the hydrazone ligand N0 -[1-(pyrazin-2-yl)ethylidene]nicotinohydrazide (HL) leads to three diverse metal complexes. The ligand is present in its neutral form in complex (I) and in its mono-anionic form in complexes (II) and (III). HL in (I) and L in (II) both serve as a tridentate pincer ligand, and both complexes present mononuclear structures. The L ligand in (III) acts as a bridging pentadentate ligand and the complex features a three-dimensional network with rectangular channels. We expect ligands of this type to be viable for the creation of more new complexes with interesting topologies and physical properties.

References Bai, Y., Wang, J.-L., Dang, D.-B., Li, M.-M. & Niu, J.-Y. (2012). CrystEngComm, 14, 1575–1581. Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2015). C71, 116–121

Bu, X.-H., Chen, W., Hou, W.-F., Du, M., Zhang, R.-H. & Brisse, F. (2002). Inorg. Chem. 41, 3477–3482. Dong, Y.-B., Jiang, Y.-Y., Li, J., Ma, J.-P., Liu, F.-L., Tang, B., Huang, R.-Q. & Batten, S. R. (2007). J. Am. Chem. Soc. 129, 4520–4521. Dong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & zur Loye, H. C. (2004). Inorg. Chem. 43, 5603–5612. Ðord-evic´, M. M., Jeremic´, D. A., Rodic´, M. V., Simic´, V. S., Brcˇeski, I. D. & Leovac, V. M. (2014). Polyhedron, 68, 234–240. Flack, H. D. (1983). Acta Cryst. A39, 876–881. Hilbert, J., Na¨ther, C. & Bensch, W. (2014). Inorg. Chem. 53, 5619–5630. Kalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331–344. Kato, M., Fujihara, T., Yano, D. & Nagasawa, A. (2008). CrystEngComm, 10, 1460–1466. Kuo, K. L., Huang, C. C. & Lin, Y. C. (2008). Dalton Trans. pp. 3889–3898. Lee, S. M., Mohd Ali, H., Sim, K. S., Abdul Malek, S. N. & Lo, K. M. (2013). Inorg. Chim. Acta, 406, 272–278. Mohamed, G. G., Zayed, M. A. & Abdallah, S. M. (2010). J. Mol. Struct. 979, 62–71. Mondal, S., Naskar, S., Dey, A. K., Sinn, E., Eribal, C., Herron, S. R. & Chattopadhyay, S. K. (2013). Inorg. Chim. Acta, 398, 98–105. Qin, J., Qin, N., Geng, C.-H., Ma, J.-P., Liu, Q.-K., Wu, D., Zhao, C.-W. & Dong, Y.-B. (2012). CrystEngComm, 14, 8499–8508. Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670– 4679. Samanta, B., Chakraborty, J., Shit, S., Batten, S. R., Jensen, P., Masuda, J. D. & Mitra, S. (2007). Inorg. Chim. Acta, 360, 2471–2484. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sousa-Pedrares, A., Camin˜a, N., Romero, J., Dura´n, M. L., Garcı´a-Va´zquez, J. A. & Sousa, A. (2008). Polyhedron, 27, 3391–3397. Tsuchida, E. (2003). Coord. Chem. Rev. 237, 213–228. Vrdoljak, V., Prugovecki, B., Matkovic´-Cˇalogovic´, D., Dreos, R., Siega, P. & Tavagnacco, C. (2010). Cryst. Growth Des. 10, 1373–1382. Yao, M.-X., Zheng, Q., Cai, X.-M., Li, Y.-Z., Song, Y. & Zuo, J. L. (2012). Inorg. Chem. 51, 2140–2149.

Liu et al.



[MnCl2(C12H11N5O)] and two related complexes

121

supporting information

supporting information Acta Cryst. (2015). C71, 116-121

[doi:10.1107/S2053229615000698]

Mononuclear and three-dimensional metal complexes based on a multidentate hydrazone ligand Yan-Fei Liu, Ya-Ping Liu, Ke-Ke Zhang, Qing-Ling Ren and Jie Qin Computing details For all compounds, data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008). (I) Dichlorido{N′-[1-(pyrazin-2-yl-κN1)ethylidene]nicotinohydrazide-κ2N′,O}manganese(II) Crystal data [MnCl2(C12H11N5O)] Mr = 367.10 Monoclinic, Cc a = 14.1037 (7) Å b = 7.4955 (4) Å c = 14.5827 (8) Å β = 107.053 (2)° V = 1473.82 (13) Å3 Z=4

F(000) = 740 Dx = 1.654 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 5089 reflections θ = 2.9–25.7° µ = 1.26 mm−1 T = 273 K Block, yellow 0.20 × 0.18 × 0.15 mm

Data collection Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) Tmin = 0.786, Tmax = 0.833

6817 measured reflections 2749 independent reflections 2593 reflections with I > 2σ(I) Rint = 0.025 θmax = 25.7°, θmin = 2.9° h = −17→17 k = −9→8 l = −17→17

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.028 wR(F2) = 0.067 S = 1.05 2749 reflections 191 parameters 3 restraints Primary atom site location: structure-invariant direct methods Acta Cryst. (2015). C71, 116-121

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.038P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.32 e Å−3 Δρmin = −0.17 e Å−3

sup-1

supporting information Absolute structure: Flack (1983), with 1347 Friedel pairs

Absolute structure parameter: 0.053 (15)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. TITL I in Cc CELL 0.71073 14.1037 7.4955 14.5827 90.000 107.053 90.000 ZERR 4.00 0.0007 0.0004 0.0008 0.000 0.002 0.000 LATT -7 SYMM X, -Y, 0.5+Z SFAC C H N O Cl Mn UNIT 48 44 20 4 8 4 L.S. 20 ACTA BOND FMAP 2 PLAN 20 size 0.2 0.18 0.15 DELU 0.01 N5 C10 CONF HTAB htab N4 Cl2_$1 eqiv $1 x, -y+2, z-1/2 FREE C7 H4A WGHT 0.037000 0.000000 FVAR 0.171780 TEMP 0.000 MOLE 1 C4 1 0.488529 0.765857 0.715422 11.000000 0.026340 0.040070 = 0.029030 0.005380 0.009720 0.002900 C3 1 0.387688 0.741179 0.677046 11.000000 0.029890 0.079130 = 0.029160 0.001730 0.004390 -0.002410 AFIX 43 H3 2 0.362681 0.714095 0.612172 11.000000 -1.200000 AFIX 0 C2 1 0.363880 0.792316 0.821197 11.000000 0.034770 0.103400 = 0.043620 0.009130 0.021740 0.003770 AFIX 43 H2 2 0.322562 0.801585 0.860320 11.000000 -1.200000 AFIX 0 C1 1 0.463982 0.818329 0.860994 11.000000 0.037930 0.079840 = 0.030140 0.001710 0.016650 0.004660 AFIX 43 H1 2 0.488439 0.845695 0.925878 11.000000 -1.200000 AFIX 0 C5 1 0.561125 0.748507 0.659665 11.000000 0.026110 0.040970 = 0.026220 0.000360 0.007640 0.003600 C6 1 0.527242 0.714956 0.554612 11.000000 0.037120 0.084780 = 0.029760 -0.008390 0.008230 0.001240 AFIX 137 H6A 2 0.557800 0.608106 0.540494 11.000000 -1.500000 H6B 2 0.545579 0.813925 0.521622 11.000000 -1.500000 H6C 2 0.456462 0.701166 0.533866 11.000000 -1.500000 AFIX 0 C7 1 0.820217 0.765078 0.742051 11.000000 0.030710 0.043090 = 0.026080 0.002070 0.010910 0.000420 C8 1 0.909862 0.753735 0.708806 11.000000 0.027040 0.038940 = 0.027690 0.003030 0.007240 0.002220 C9 1 0.909119 0.688110 0.620230 11.000000 0.029880 0.063730 = 0.033150 -0.005990 0.008950 -0.000990 AFIX 43 H9 2 0.848734 0.651498 0.578698 11.000000 -1.200000 AFIX 0 N5 3 0.988978 0.674033 0.590709 11.000000 0.036950 0.091260 = 0.036060 -0.009610 0.015650 0.003530 C11 1 1.083486 0.790827 0.742243 11.000000 0.025460 0.070120 = 0.047830 -0.003130 0.005410 -0.004490 AFIX 43 H11 2 1.144835 0.825126 0.782852 11.000000 -1.200000 AFIX 0 C12 1 1.000380 0.804238 0.771402 11.000000 0.032980 0.061500 = 0.031290 -0.007310 0.009090 -0.002400 AFIX 43 H12 2 1.004312 0.846611 0.832347 11.000000 -1.200000 AFIX 0 Cl1 5 0.703003 0.543458 0.964095 11.000000 0.061380 0.047660 = 0.049920 0.013530 0.007150 0.002770 Cl2 5 0.723834 1.049801 0.971746 11.000000 0.078110 0.049820 = 0.047340 -0.016620 0.017800 -0.005410 Mn1 6 0.692521 0.800666 0.872665 11.000000 0.028380 0.042960 = 0.022890 -0.001440 0.007710 0.000970 N1 3 0.526324 0.805251 0.808905 11.000000 0.027060 0.050770 = 0.026800 0.000260 0.009890 0.003860 N2 3 0.324233 0.754714 0.729641 11.000000 0.028380 0.111390 = 0.051060 0.005030 0.017030 -0.002140 N3 3 0.651580 0.763473 0.712918 11.000000 0.026500 0.045080 = 0.024370 0.001670 0.009910 0.001560 N4 3 0.730272 0.751423 0.676186 11.000000 0.025900 0.064990 = 0.022190 -0.001700 0.009690 0.003280 C10 1 1.075574 0.725725 0.651706 11.000000 0.031210 0.074350 = 0.042890 0.002110 0.021020 0.001240 AFIX 43 H10 2 1.132620 0.717427 0.632294 11.000000 -1.200000 AFIX 0 O1 4 0.826933 0.787089 0.827498 11.000000 0.029600 0.084840 = 0.026810 -0.009690 0.008590 -0.002920 AFIX 3 H4A 2 0.725159 0.727338 0.620153 11.000000 -1.500000 AFIX 0 HKLF 4 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

C4 C3 H3 C2 H2 C1 H1

x

y

z

Uiso*/Ueq

0.48853 (19) 0.3877 (2) 0.3627 0.3639 (2) 0.3226 0.4640 (2) 0.4884

0.7659 (3) 0.7412 (5) 0.7141 0.7923 (5) 0.8016 0.8183 (4) 0.8457

0.71542 (18) 0.6770 (2) 0.6122 0.8212 (3) 0.8603 0.8610 (2) 0.9259

0.0315 (5) 0.0470 (7) 0.056* 0.0584 (9) 0.070* 0.0479 (7) 0.057*

Acta Cryst. (2015). C71, 116-121

sup-2

supporting information C5 C6 H6A H6B H6C C7 C8 C9 H9 N5 C11 H11 C12 H12 Cl1 Cl2 Mn1 N1 N2 N3 N4 C10 H10 O1 H4A

0.56112 (18) 0.5272 (2) 0.5578 0.5456 0.4565 0.82022 (19) 0.90986 (19) 0.9091 (2) 0.8487 0.98898 (18) 1.0835 (2) 1.1448 1.0004 (2) 1.0043 0.70300 (5) 0.72383 (6) 0.69252 (2) 0.52632 (15) 0.32423 (19) 0.65158 (15) 0.73027 (16) 1.0756 (2) 1.1326 0.82693 (14) 0.7252

0.7485 (3) 0.7150 (5) 0.6081 0.8139 0.7012 0.7651 (3) 0.7537 (4) 0.6881 (4) 0.6515 0.6740 (4) 0.7908 (4) 0.8251 0.8042 (4) 0.8466 0.54346 (10) 1.04980 (10) 0.80067 (4) 0.8053 (3) 0.7547 (4) 0.7635 (3) 0.7514 (3) 0.7257 (4) 0.7174 0.7871 (3) 0.7273

0.65967 (18) 0.5546 (2) 0.5405 0.5216 0.5339 0.74205 (18) 0.70881 (19) 0.6202 (2) 0.5787 0.59071 (18) 0.7422 (2) 0.7829 0.7714 (2) 0.8323 0.96410 (5) 0.97175 (5) 0.87266 (2) 0.80891 (16) 0.7296 (2) 0.71292 (15) 0.67619 (15) 0.6517 (2) 0.6323 0.82750 (14) 0.6202

0.0311 (5) 0.0509 (8) 0.076* 0.076* 0.076* 0.0327 (5) 0.0314 (5) 0.0423 (6) 0.051* 0.0537 (7) 0.0489 (7) 0.059* 0.0420 (7) 0.050* 0.0549 (2) 0.0586 (2) 0.03137 (11) 0.0345 (5) 0.0625 (7) 0.0315 (4) 0.0371 (5) 0.0473 (7) 0.057* 0.0470 (5) 0.071*

Atomic displacement parameters (Å2)

C4 C3 C2 C1 C5 C6 C7 C8 C9 N5 C11 C12 Cl1 Cl2 Mn1 N1 N2 N3 N4

U11

U22

U33

U12

U13

U23

0.0263 (12) 0.0299 (17) 0.0348 (18) 0.0379 (16) 0.0261 (13) 0.0371 (18) 0.0307 (14) 0.0270 (13) 0.0299 (14) 0.0369 (14) 0.0255 (14) 0.0330 (14) 0.0614 (4) 0.0781 (6) 0.02838 (18) 0.0271 (11) 0.0284 (14) 0.0265 (11) 0.0259 (11)

0.0401 (13) 0.079 (2) 0.103 (3) 0.080 (2) 0.0410 (12) 0.085 (3) 0.0431 (13) 0.0389 (12) 0.0637 (18) 0.091 (2) 0.070 (2) 0.0615 (19) 0.0477 (4) 0.0498 (4) 0.0430 (2) 0.0508 (13) 0.111 (2) 0.0451 (12) 0.0650 (13)

0.0290 (13) 0.0292 (16) 0.0436 (18) 0.0301 (14) 0.0262 (12) 0.0298 (16) 0.0261 (13) 0.0277 (12) 0.0332 (14) 0.0361 (14) 0.0478 (18) 0.0313 (15) 0.0499 (4) 0.0473 (4) 0.02289 (18) 0.0268 (11) 0.0511 (17) 0.0244 (10) 0.0222 (11)

0.0029 (10) −0.0024 (14) 0.0038 (15) 0.0047 (13) 0.0036 (10) 0.0012 (14) 0.0004 (11) 0.0022 (10) −0.0010 (12) 0.0035 (12) −0.0045 (12) −0.0024 (12) 0.0028 (3) −0.0054 (4) 0.00097 (19) 0.0039 (9) −0.0021 (13) 0.0016 (9) 0.0033 (10)

0.0097 (10) 0.0044 (12) 0.0217 (15) 0.0166 (12) 0.0076 (10) 0.0082 (13) 0.0109 (11) 0.0072 (10) 0.0089 (11) 0.0157 (11) 0.0054 (12) 0.0091 (12) 0.0072 (4) 0.0178 (4) 0.00771 (13) 0.0099 (9) 0.0170 (12) 0.0099 (9) 0.0097 (9)

0.0054 (10) 0.0017 (13) 0.0091 (16) 0.0017 (13) 0.0004 (10) −0.0084 (13) 0.0021 (10) 0.0030 (10) −0.0060 (12) −0.0096 (12) −0.0031 (14) −0.0073 (11) 0.0135 (3) −0.0166 (3) −0.00144 (17) 0.0003 (9) 0.0050 (15) 0.0017 (9) −0.0017 (10)

Acta Cryst. (2015). C71, 116-121

sup-3

supporting information C10 O1

0.0312 (15) 0.0296 (10)

0.074 (2) 0.0848 (15)

0.0429 (16) 0.0268 (10)

0.0012 (13) −0.0029 (9)

0.0210 (13) 0.0086 (8)

0.0021 (14) −0.0097 (9)

Geometric parameters (Å, º) C4—N1 C4—C3 C4—C5 C3—N2 C3—H3 C2—N2 C2—C1 C2—H2 C1—N1 C1—H1 C5—N3 C5—C6 C6—H6A C6—H6B C6—H6C C7—O1 C7—N4 C7—C8

1.343 (3) 1.380 (4) 1.488 (3) 1.342 (4) 0.9300 1.318 (5) 1.374 (4) 0.9300 1.323 (4) 0.9300 1.289 (3) 1.486 (4) 0.9600 0.9600 0.9600 1.233 (3) 1.352 (3) 1.483 (4)

C8—C9 C8—C12 C9—N5 C9—H9 N5—C10 C11—C12 C11—C10 C11—H11 C12—H12 Cl1—Mn1 Cl2—Mn1 Mn1—O1 Mn1—N3 Mn1—N1 N3—N4 N4—H4A C10—H10

1.379 (4) 1.387 (4) 1.323 (4) 0.9300 1.340 (4) 1.363 (4) 1.381 (4) 0.9300 0.9300 2.3239 (8) 2.3228 (7) 2.1841 (19) 2.247 (2) 2.254 (2) 1.370 (3) 0.8191 0.9300

N1—C4—C3 N1—C4—C5 C3—C4—C5 N2—C3—C4 N2—C3—H3 C4—C3—H3 N2—C2—C1 N2—C2—H2 C1—C2—H2 N1—C1—C2 N1—C1—H1 C2—C1—H1 N3—C5—C6 N3—C5—C4 C6—C5—C4 C5—C6—H6A C5—C6—H6B H6A—C6—H6B C5—C6—H6C H6A—C6—H6C H6B—C6—H6C O1—C7—N4 O1—C7—C8 N4—C7—C8

119.8 (3) 116.2 (2) 124.0 (2) 122.6 (3) 118.7 118.7 122.5 (3) 118.8 118.8 121.4 (3) 119.3 119.3 126.7 (2) 112.4 (2) 120.9 (2) 109.5 109.5 109.5 109.5 109.5 109.5 120.4 (2) 121.2 (2) 118.4 (2)

C12—C11—C10 C12—C11—H11 C10—C11—H11 C11—C12—C8 C11—C12—H12 C8—C12—H12 O1—Mn1—N3 O1—Mn1—N1 N3—Mn1—N1 O1—Mn1—Cl2 N3—Mn1—Cl2 N1—Mn1—Cl2 O1—Mn1—Cl1 N3—Mn1—Cl1 N1—Mn1—Cl1 Cl2—Mn1—Cl1 C1—N1—C4 C1—N1—Mn1 C4—N1—Mn1 C2—N2—C3 C5—N3—N4 C5—N3—Mn1 N4—N3—Mn1 C7—N4—N3

119.2 (3) 120.4 120.4 119.0 (3) 120.5 120.5 70.33 (7) 139.98 (7) 69.77 (8) 101.63 (6) 133.53 (6) 103.26 (6) 102.68 (6) 116.47 (6) 97.63 (6) 109.97 (3) 117.8 (2) 123.36 (19) 118.07 (17) 116.0 (3) 122.1 (2) 122.92 (17) 114.98 (15) 114.60 (19)

Acta Cryst. (2015). C71, 116-121

sup-4

supporting information C9—C8—C12 C9—C8—C7 C12—C8—C7 N5—C9—C8 N5—C9—H9 C8—C9—H9 C9—N5—C10

117.8 (2) 123.6 (2) 118.5 (2) 124.0 (3) 118.0 118.0 117.3 (2)

C7—N4—H4A N3—N4—H4A N5—C10—C11 N5—C10—H10 C11—C10—H10 C7—O1—Mn1

121.0 124.1 122.6 (3) 118.7 118.7 119.66 (17)

N1—C4—C3—N2 C5—C4—C3—N2 N2—C2—C1—N1 N1—C4—C5—N3 C3—C4—C5—N3 N1—C4—C5—C6 C3—C4—C5—C6 O1—C7—C8—C9 N4—C7—C8—C9 O1—C7—C8—C12 N4—C7—C8—C12 C12—C8—C9—N5 C7—C8—C9—N5 C8—C9—N5—C10 C10—C11—C12—C8 C9—C8—C12—C11 C7—C8—C12—C11 C2—C1—N1—C4 C2—C1—N1—Mn1 C3—C4—N1—C1 C5—C4—N1—C1 C3—C4—N1—Mn1 C5—C4—N1—Mn1 O1—Mn1—N1—C1 N3—Mn1—N1—C1 Cl2—Mn1—N1—C1 Cl1—Mn1—N1—C1 O1—Mn1—N1—C4 N3—Mn1—N1—C4

−0.1 (5) 178.8 (3) −0.6 (5) 4.2 (3) −174.7 (3) −176.6 (3) 4.4 (4) 164.0 (3) −16.3 (4) −13.0 (4) 166.7 (2) −1.5 (4) −178.5 (3) 0.6 (4) −0.7 (4) 1.5 (4) 178.7 (3) 0.1 (4) −169.5 (2) 0.2 (4) −178.8 (2) 170.4 (2) −8.6 (3) −178.6 (2) 176.6 (2) −51.6 (2) 61.1 (2) 11.8 (2) 6.99 (17)

Cl2—Mn1—N1—C4 Cl1—Mn1—N1—C4 C1—C2—N2—C3 C4—C3—N2—C2 C6—C5—N3—N4 C4—C5—N3—N4 C6—C5—N3—Mn1 C4—C5—N3—Mn1 O1—Mn1—N3—C5 N1—Mn1—N3—C5 Cl2—Mn1—N3—C5 Cl1—Mn1—N3—C5 O1—Mn1—N3—N4 N1—Mn1—N3—N4 Cl2—Mn1—N3—N4 Cl1—Mn1—N3—N4 O1—C7—N4—N3 C8—C7—N4—N3 C5—N3—N4—C7 Mn1—N3—N4—C7 C9—N5—C10—C11 C12—C11—C10—N5 N4—C7—O1—Mn1 C8—C7—O1—Mn1 N3—Mn1—O1—C7 N1—Mn1—O1—C7 Cl2—Mn1—O1—C7 Cl1—Mn1—O1—C7

138.86 (17) −108.46 (17) 0.7 (5) −0.4 (5) 0.8 (4) 179.9 (2) −176.8 (2) 2.3 (3) 178.4 (2) −4.93 (19) −94.2 (2) 83.6 (2) 0.57 (15) 177.28 (18) 88.03 (17) −94.17 (16) −0.2 (4) −179.9 (2) −178.2 (2) −0.4 (3) 0.3 (4) −0.2 (5) 0.8 (3) −179.50 (18) −0.71 (19) −5.5 (3) −133.03 (19) 113.16 (19)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N4—H4A···Cl2i

0.82

2.73

3.310 (2)

129

Symmetry code: (i) x, −y+2, z−1/2.

Acta Cryst. (2015). C71, 116-121

sup-5

supporting information (II) Bis{N′-[1-(pyrazin-2-yl-κN1)ethylidene]nicotinohydrazidato-κ2N′,O]manganese(II) Crystal data [Mn(C12H10N5O)2] Mr = 535.44 Orthorhombic, Aba2 a = 12.3790 (7) Å b = 19.2445 (13) Å c = 9.8987 (6) Å V = 2358.1 (3) Å3 Z=4 F(000) = 1100

Dx = 1.508 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 3587 reflections θ = 2.8–22.4° µ = 0.61 mm−1 T = 273 K Bar, yellow 0.24 × 0.13 × 0.12 mm

Data collection Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) Tmin = 0.868, Tmax = 0.931

11335 measured reflections 2251 independent reflections 1696 reflections with I > 2σ(I) Rint = 0.052 θmax = 25.8°, θmin = 2.1° h = −15→13 k = −23→23 l = −11→12

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.041 wR(F2) = 0.093 S = 1.04 2251 reflections 169 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0499P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.39 e Å−3 Δρmin = −0.21 e Å−3 Absolute structure: Flack (1983), with 1050 Friedel pairs Absolute structure parameter: 0.00 (3)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Acta Cryst. (2015). C71, 116-121

sup-6

supporting information Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. TITL 1 in Aba2 CELL 0.71073 12.3790 19.2445 9.8987 90.000 90.000 90.000 ZERR 4.00 0.0007 0.0013 0.0006 0.000 0.000 0.000 LATT -5 SYMM -X, -Y, Z SYMM 0.5+X, 0.5-Y, Z SYMM 0.5-X, 0.5+Y, Z SFAC C H N O Mn UNIT 96 80 40 8 4 L.S. 50 ACTA BOND $H FMAP 2 PLAN 10 HTAB eqiv $1 x+1/2, -y+1, z-1/2 eqiv $2 -x+1/2, y-1/2, z+1 htab C3 O1_$1 htab C11 N2_$2 CONF SIZE 0.24 0.13 0.12 WGHT 0.049900 0.000000 FVAR 0.146150 TEMP 0.000 MOLE 1 Mn1 5 0.000000 0.500000 0.045969 10.500000 0.021440 0.049090 = 0.039090 0.000000 0.000000 0.003890 C1 1 0.053079 0.607268 -0.198981 11.000000 0.050880 0.048100 = 0.055290 0.006370 0.002910 0.002050 AFIX 43 H1 2 -0.020879 0.615760 -0.199138 11.000000 -1.200000 AFIX 0 C2 1 0.117064 0.643026 -0.287289 11.000000 0.074210 0.057210 = 0.053570 0.005920 0.003040 0.002420 AFIX 43 H2 2 0.085961 0.676040 -0.343809 11.000000 -1.200000 AFIX 0 C3 1 0.263643 0.585432 -0.207088 11.000000 0.042110 0.057960 = 0.059990 -0.016120 0.018920 -0.013600 AFIX 43 H3 2 0.337538 0.576740 -0.208399 11.000000 -1.200000 AFIX 0 C4 1 0.199482 0.549708 -0.114211 11.000000 0.033170 0.042780 = 0.038180 -0.012980 0.009470 -0.005240 C5 1 0.241944 0.497842 -0.017314 11.000000 0.027160 0.044800 = 0.041480 -0.013600 0.005040 -0.000590 C6 1 0.360551 0.487229 0.000875 11.000000 0.024630 0.075010 = 0.065430 -0.017790 0.001120 0.001390 AFIX 137 H6A 2 0.372661 0.448480 0.060045 11.000000 -1.500000 H6B 2 0.391936 0.528295 0.039490 11.000000 -1.500000 H6C 2 0.393308 0.478090 -0.085217 11.000000 -1.500000 AFIX 0 C7 1 0.107564 0.393034 0.202816 11.000000 0.038770 0.041860 = 0.035250 -0.001930 -0.001720 0.005000 C8 1 0.122956 0.338114 0.306355 11.000000 0.046760 0.044180 = 0.042730 -0.003700 -0.001770 0.012630 C9 1 0.222602 0.314788 0.349311 11.000000 0.054660 0.058370 = 0.062030 0.000300 -0.012100 0.011880 AFIX 43 H9 2 0.285768 0.331193 0.309693 11.000000 -1.200000 AFIX 0 C10 1 0.226414 0.266625 0.452261 11.000000 0.080150 0.061370 = 0.065690 -0.000680 -0.025470 0.024130 AFIX 43 H10 2 0.292625 0.250629 0.483945 11.000000 -1.200000 AFIX 0 C11 1 0.133123 0.242638 0.507211 11.000000 0.110040 0.067500 = 0.058660 0.009730 -0.006900 0.030300 AFIX 43 H11 2 0.137804 0.210351 0.576871 11.000000 -1.200000 AFIX 0 C12 1 0.033430 0.309336 0.368009 11.000000 0.064920 0.066770 = 0.067250 0.024210 0.009750 0.025060 AFIX 43 H12 2 -0.033969 0.323850 0.337572 11.000000 -1.200000 AFIX 0 N1 3 0.092184 0.561222 -0.113638 11.000000 0.035900 0.047020 = 0.042440 0.001450 0.004760 -0.002950 N2 3 0.223067 0.631642 -0.294221 11.000000 0.075710 0.056840 = 0.058750 0.004630 0.015670 -0.013040 N3 3 0.168490 0.466503 0.050198 11.000000 0.027250 0.043170 = 0.040360 -0.003720 0.000870 0.003000 N4 3 0.197258 0.416837 0.144238 11.000000 0.032640 0.048940 = 0.046460 -0.000820 -0.002500 0.006850 N5 3 0.035183 0.262705 0.467056 11.000000 0.094530 0.073650 = 0.076120 0.029810 0.016970 0.025740 O1 4 0.012759 0.415117 0.182140 11.000000 0.028770 0.066560 = 0.055140 0.017930 0.001770 0.008260 HKLF 4 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Mn1 C1 H1 C2 H2 C3 H3 C4 C5 C6 H6A H6B H6C C7 C8 C9

x

y

z

Uiso*/Ueq

0.0000 0.0531 (3) −0.0209 0.1171 (3) 0.0860 0.2636 (3) 0.3375 0.1995 (2) 0.2419 (3) 0.3606 (2) 0.3727 0.3919 0.3933 0.1076 (3) 0.1230 (3) 0.2226 (3)

0.5000 0.60727 (17) 0.6158 0.6430 (2) 0.6760 0.58543 (18) 0.5767 0.54971 (16) 0.49784 (16) 0.4872 (2) 0.4485 0.5283 0.4781 0.39303 (16) 0.33811 (17) 0.31479 (19)

0.04597 (7) −0.1990 (4) −0.1991 −0.2873 (4) −0.3438 −0.2071 (4) −0.2084 −0.1142 (4) −0.0173 (3) 0.0009 (4) 0.0600 0.0395 −0.0852 0.2028 (3) 0.3064 (3) 0.3493 (4)

0.0365 (2) 0.0514 (9) 0.062* 0.0617 (10) 0.074* 0.0534 (9) 0.064* 0.0380 (8) 0.0378 (8) 0.0550 (11) 0.083* 0.083* 0.083* 0.0386 (7) 0.0446 (9) 0.0584 (10)

Acta Cryst. (2015). C71, 116-121

sup-7

supporting information H9 C10 H10 C11 H11 C12 H12 N1 N2 N3 N4 N5 O1

0.2858 0.2264 (4) 0.2926 0.1331 (4) 0.1378 0.0334 (3) −0.0340 0.0922 (2) 0.2231 (3) 0.16849 (17) 0.19726 (19) 0.0352 (3) 0.01276 (16)

0.3312 0.2666 (2) 0.2506 0.2426 (2) 0.2104 0.3093 (2) 0.3238 0.56122 (13) 0.63164 (16) 0.46650 (12) 0.41684 (14) 0.26270 (19) 0.41512 (13)

0.3097 0.4523 (5) 0.4839 0.5072 (5) 0.5769 0.3680 (4) 0.3376 −0.1136 (3) −0.2942 (3) 0.0502 (3) 0.1442 (3) 0.4671 (4) 0.1821 (3)

0.070* 0.0691 (12) 0.083* 0.0787 (13) 0.094* 0.0663 (11) 0.080* 0.0418 (6) 0.0638 (9) 0.0369 (5) 0.0427 (7) 0.0814 (11) 0.0502 (6)

Atomic displacement parameters (Å2)

Mn1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 N1 N2 N3 N4 N5 O1

U11

U22

U33

U12

U13

U23

0.0214 (3) 0.051 (2) 0.074 (3) 0.042 (2) 0.0332 (18) 0.0272 (17) 0.0246 (18) 0.0388 (19) 0.047 (2) 0.055 (2) 0.080 (3) 0.110 (4) 0.065 (2) 0.0359 (16) 0.076 (2) 0.0273 (12) 0.0326 (15) 0.095 (3) 0.0288 (13)

0.0491 (4) 0.048 (2) 0.057 (2) 0.058 (2) 0.043 (2) 0.0448 (18) 0.075 (3) 0.0419 (19) 0.044 (2) 0.058 (2) 0.061 (3) 0.067 (3) 0.067 (3) 0.0470 (16) 0.057 (2) 0.0432 (13) 0.0489 (18) 0.074 (2) 0.0666 (16)

0.0391 (3) 0.055 (2) 0.054 (2) 0.060 (2) 0.0382 (18) 0.0415 (17) 0.065 (3) 0.0352 (17) 0.043 (2) 0.062 (3) 0.066 (3) 0.059 (3) 0.067 (3) 0.0424 (15) 0.059 (2) 0.0404 (13) 0.0465 (17) 0.076 (3) 0.0551 (15)

0.0039 (3) 0.0021 (18) 0.002 (2) −0.0136 (19) −0.0052 (13) −0.0006 (16) 0.0014 (15) 0.0050 (15) 0.0126 (15) 0.0119 (18) 0.024 (2) 0.030 (3) 0.025 (2) −0.0030 (12) −0.0130 (17) 0.0030 (10) 0.0069 (12) 0.026 (2) 0.0083 (10)

0.000 0.0029 (19) 0.003 (2) 0.0189 (19) 0.0095 (14) 0.0050 (13) 0.0011 (15) −0.0017 (15) −0.0018 (16) −0.0121 (18) −0.025 (2) −0.007 (2) 0.010 (2) 0.0048 (12) 0.0157 (18) 0.0009 (15) −0.0025 (12) 0.017 (2) 0.0018 (11)

0.000 0.006 (2) 0.006 (2) −0.016 (2) −0.0130 (16) −0.0136 (17) −0.0178 (19) −0.0019 (16) −0.0037 (16) 0.000 (2) −0.001 (2) 0.010 (2) 0.024 (3) 0.0015 (15) 0.0046 (19) −0.0037 (19) −0.0008 (15) 0.030 (2) 0.0179 (13)

Geometric parameters (Å, º) Mn1—O1 Mn1—O1i Mn1—N3i Mn1—N3 Mn1—N1i Mn1—N1 C1—N1 C1—C2 C1—H1

Acta Cryst. (2015). C71, 116-121

2.124 (2) 2.124 (2) 2.183 (2) 2.183 (2) 2.277 (3) 2.277 (3) 1.317 (4) 1.366 (5) 0.9300

C6—H6A C6—H6B C6—H6C C7—O1 C7—N4 C7—C8 C8—C9 C8—C12 C9—C10

0.9600 0.9600 0.9600 1.265 (3) 1.334 (4) 1.485 (5) 1.380 (5) 1.381 (5) 1.378 (6)

sup-8

supporting information C2—N2 C2—H2 C3—N2 C3—C4 C3—H3 C4—N1 C4—C5 C5—N3 C5—C6

1.332 (5) 0.9300 1.337 (5) 1.396 (5) 0.9300 1.347 (4) 1.481 (5) 1.280 (4) 1.493 (4)

C9—H9 C10—C11 C10—H10 C11—N5 C11—H11 C12—N5 C12—H12 N3—N4

0.9300 1.357 (6) 0.9300 1.333 (5) 0.9300 1.329 (5) 0.9300 1.381 (4)

O1—Mn1—O1i O1—Mn1—N3i O1i—Mn1—N3i O1—Mn1—N3 O1i—Mn1—N3 N3i—Mn1—N3 O1—Mn1—N1i O1i—Mn1—N1i N3i—Mn1—N1i N3—Mn1—N1i O1—Mn1—N1 O1i—Mn1—N1 N3i—Mn1—N1 N3—Mn1—N1 N1i—Mn1—N1 N1—C1—C2 N1—C1—H1 C2—C1—H1 N2—C2—C1 N2—C2—H2 C1—C2—H2 N2—C3—C4 N2—C3—H3 C4—C3—H3 N1—C4—C3 N1—C4—C5 C3—C4—C5 N3—C5—C4 N3—C5—C6 C4—C5—C6 C5—C6—H6A C5—C6—H6B

101.21 (14) 106.62 (9) 71.92 (9) 71.92 (9) 106.62 (9) 177.80 (19) 94.57 (10) 143.22 (8) 71.78 (10) 109.83 (11) 143.22 (8) 94.57 (10) 109.83 (11) 71.78 (10) 92.15 (14) 122.5 (3) 118.8 118.8 121.4 (4) 119.3 119.3 122.6 (4) 118.7 118.7 118.9 (3) 117.3 (3) 123.8 (3) 113.8 (3) 124.8 (3) 121.3 (3) 109.5 109.5

H6A—C6—H6B C5—C6—H6C H6A—C6—H6C H6B—C6—H6C O1—C7—N4 O1—C7—C8 N4—C7—C8 C9—C8—C12 C9—C8—C7 C12—C8—C7 C10—C9—C8 C10—C9—H9 C8—C9—H9 C11—C10—C9 C11—C10—H10 C9—C10—H10 N5—C11—C10 N5—C11—H11 C10—C11—H11 N5—C12—C8 N5—C12—H12 C8—C12—H12 C1—N1—C4 C1—N1—Mn1 C4—N1—Mn1 C2—N2—C3 C5—N3—N4 C5—N3—Mn1 N4—N3—Mn1 C7—N4—N3 C12—N5—C11 C7—O1—Mn1

109.5 109.5 109.5 109.5 125.9 (3) 118.0 (3) 116.0 (3) 116.8 (4) 124.0 (3) 119.2 (3) 118.5 (4) 120.7 120.7 119.7 (4) 120.1 120.1 123.8 (4) 118.1 118.1 125.7 (4) 117.1 117.1 118.1 (3) 127.5 (2) 114.3 (2) 116.5 (3) 119.7 (2) 122.0 (2) 117.62 (18) 108.4 (2) 115.5 (4) 115.5 (2)

N1—C1—C2—N2 N2—C3—C4—N1 N2—C3—C4—C5 N1—C4—C5—N3 C3—C4—C5—N3

1.9 (6) 1.2 (5) 179.5 (3) 4.4 (4) −173.9 (3)

N3—Mn1—N1—C4 N1i—Mn1—N1—C4 C1—C2—N2—C3 C4—C3—N2—C2 C4—C5—N3—N4

−5.2 (2) −115.4 (2) −2.4 (5) 0.9 (5) −179.9 (3)

Acta Cryst. (2015). C71, 116-121

sup-9

supporting information N1—C4—C5—C6 C3—C4—C5—C6 O1—C7—C8—C9 N4—C7—C8—C9 O1—C7—C8—C12 N4—C7—C8—C12 C12—C8—C9—C10 C7—C8—C9—C10 C8—C9—C10—C11 C9—C10—C11—N5 C9—C8—C12—N5 C7—C8—C12—N5 C2—C1—N1—C4 C2—C1—N1—Mn1 C3—C4—N1—C1 C5—C4—N1—C1 C3—C4—N1—Mn1 C5—C4—N1—Mn1 O1—Mn1—N1—C1 O1i—Mn1—N1—C1 N3i—Mn1—N1—C1 N3—Mn1—N1—C1 N1i—Mn1—N1—C1 O1—Mn1—N1—C4 O1i—Mn1—N1—C4 N3i—Mn1—N1—C4

−173.0 (3) 8.7 (5) −172.7 (3) 4.3 (5) 5.2 (5) −177.8 (3) −2.0 (5) 176.0 (3) 1.0 (6) 0.3 (7) 1.9 (6) −176.1 (4) 0.3 (5) 177.3 (3) −1.7 (5) 179.9 (3) −179.2 (2) 2.4 (3) 168.0 (3) −76.4 (3) −4.0 (3) 177.6 (3) 67.4 (3) −14.9 (3) 100.8 (2) 173.2 (2)

C6—C5—N3—N4 C4—C5—N3—Mn1 C6—C5—N3—Mn1 O1—Mn1—N3—C5 O1i—Mn1—N3—C5 N3i—Mn1—N3—C5 N1i—Mn1—N3—C5 N1—Mn1—N3—C5 O1—Mn1—N3—N4 O1i—Mn1—N3—N4 N3i—Mn1—N3—N4 N1i—Mn1—N3—N4 N1—Mn1—N3—N4 O1—C7—N4—N3 C8—C7—N4—N3 C5—N3—N4—C7 Mn1—N3—N4—C7 C8—C12—N5—C11 C10—C11—N5—C12 N4—C7—O1—Mn1 C8—C7—O1—Mn1 O1i—Mn1—O1—C7 N3i—Mn1—O1—C7 N3—Mn1—O1—C7 N1i—Mn1—O1—C7 N1—Mn1—O1—C7

−2.7 (5) −9.9 (4) 167.4 (2) −177.5 (3) −80.8 (3) −128.9 (3) 94.2 (3) 8.6 (3) −7.3 (2) 89.4 (2) 41.3 (2) −95.6 (2) 178.8 (2) −4.1 (5) 179.2 (3) 178.6 (3) 8.2 (3) −0.6 (7) −0.5 (7) −2.1 (4) 174.5 (2) −99.2 (2) −173.4 (2) 4.8 (2) 114.2 (2) 14.4 (3)

Symmetry code: (i) −x, −y+1, z.

Hydrogen-bond geometry (Å, º) D—H···A ii

C3—H3···O1 C11—H11···N2iii

D—H

H···A

D···A

D—H···A

0.93 0.93

2.43 2.62

3.273 (4) 3.405 (5)

151 142

Symmetry codes: (ii) x+1/2, −y+1, z−1/2; (iii) −x+1/2, y−1/2, z+1.

(III) Poly[[(acetato-κ2O,O′){µ3-N′-[1-(pyrazin-2-yl-κ2N1:N4)ethylidene]nicotinohydrazidatoκ3N′,O:N1}cadmium(II)] chloroform disolvate] Crystal data [Cd(C12H10N5O)(C2H3O2)]·2CHCl3 Mr = 650.43 Orthorhombic, P212121 a = 10.4215 (4) Å b = 10.5323 (4) Å c = 22.2477 (10) Å V = 2441.96 (17) Å3 Z=4 F(000) = 1280

Acta Cryst. (2015). C71, 116-121

Dx = 1.769 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9979 reflections θ = 2.7–30.1° µ = 1.58 mm−1 T = 273 K Block, yellow 0.26 × 0.25 × 0.25 mm

sup-10

supporting information Data collection Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) Tmin = 0.684, Tmax = 0.694

24532 measured reflections 4778 independent reflections 4608 reflections with I > 2σ(I) Rint = 0.029 θmax = 26.0°, θmin = 2.2° h = −12→12 k = −12→10 l = −27→27

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.022 wR(F2) = 0.053 S = 1.07 4778 reflections 282 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0236P)2 + 1.4602P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.002 Δρmax = 0.53 e Å−3 Δρmin = −0.40 e Å−3 Absolute structure: Flack (1983), with 2061 Friedel pairs Absolute structure parameter: −0.028 (19)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Acta Cryst. (2015). C71, 116-121

sup-11

supporting information Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. TITL mo_QJ_68_0m in P2(1)2(1)2(1) CELL 0.71073 10.4215 10.5323 22.2477 90.000 90.000 90.000 ZERR 4.00 0.0004 0.0004 0.0010 0.000 0.000 0.000 LATT -1 SYMM 0.5-X, -Y, 0.5+Z SYMM -X, 0.5+Y, 0.5-Z SYMM 0.5+X, 0.5Y, -Z SFAC C H N O Cl Cd UNIT 64 60 20 12 24 4 OMIT -1.00 52.00 L.S. 50 ACTA BOND FMAP 2 PLAN 20 delu 0.0.01 0.005 Cd1 O3 size 0.26 0.25 0.25 CONF HTAB C15 O2 HTAB C15 O1 HTAB C16 O2_$1 EQIV $1 X-1/2, Y+1/2, -Z+1 HTAB FREE C4 C1 FREE Cd1 C14 WGHT 0.023600 1.474500 FVAR 0.146690 TEMP 0.000 MOLE 1 N5 3 0.628994 0.436175 0.657542 11.000000 0.032910 0.033810 = 0.023360 0.004400 0.004250 -0.000130 C12 1 0.571817 0.393432 0.707219 11.000000 0.027000 0.032510 = 0.026310 0.003590 0.003160 0.003740 C8 1 0.621603 0.295632 0.741880 11.000000 0.027750 0.026740 = 0.021530 0.001140 0.000630 -0.001250 Cd1 6 0.479411 0.080513 0.903263 11.000000 0.029110 0.024120 = 0.020070 0.000780 0.000570 0.000230 C1 1 0.248893 0.111841 1.011243 11.000000 0.039200 0.031090 = 0.030840 0.007000 0.009050 0.004210 AFIX 43 H1 2 0.278015 0.032893 1.024067 11.000000 -1.200000 AFIX 0 C2 1 0.161353 0.176493 1.045890 11.000000 0.041670 0.040050 = 0.028810 0.006170 0.011010 -0.000550 AFIX 43 H2 2 0.133790 0.140915 1.081904 11.000000 -1.200000 AFIX 0 C3 1 0.157911 0.335046 0.976978 11.000000 0.038460 0.031070 = 0.031390 0.003940 0.007450 0.007180 AFIX 43 H3 2 0.125537 0.412118 0.963333 11.000000 -1.200000 AFIX 0 C4 1 0.249162 0.272335 0.942237 11.000000 0.028660 0.028790 = 0.025310 0.001620 0.003710 0.002140 C5 1 0.302241 0.328108 0.886751 11.000000 0.037480 0.032340 = 0.030910 0.005880 0.007520 0.008250 C6 1 0.248328 0.448319 0.861193 11.000000 0.076780 0.058610 = 0.064170 0.032310 0.037430 0.038940 AFIX 137 H6A 2 0.282033 0.519661 0.882918 11.000000 -1.500000 H6B 2 0.156518 0.447239 0.864674 11.000000 -1.500000 H6C 2 0.271868 0.455130 0.819600 11.000000 -1.500000 AFIX 0 C7 1 0.556212 0.249454 0.797486 11.000000 0.028580 0.029440 = 0.020770 0.001400 0.000310 -0.001180 C9 1 0.736472 0.240680 0.723313 11.000000 0.038470 0.034620 = 0.032880 0.007910 0.003270 0.009370 AFIX 43 H9 2 0.772543 0.173952 0.744853 11.000000 -1.200000 AFIX 0 C10 1 0.795751 0.286889 0.672474 11.000000 0.036620 0.050040 = 0.042870 0.010320 0.015970 0.011770 AFIX 43 H10 2 0.873105 0.252376 0.659533 11.000000 -1.200000 AFIX 0 C11 1 0.739910 0.383734 0.641306 11.000000 0.037680 0.045010 = 0.031600 0.009780 0.013240 0.001890 AFIX 43 H11 2 0.781138 0.414485 0.607211 11.000000 -1.200000 H12 2 0.495002 0.430784 0.719121 11.000000 -1.200000 AFIX 0 C13 1 0.631126 -0.239060 0.993704 11.000000 0.131620 0.068830 = 0.066540 0.033900 0.024750 0.056570 AFIX 137 H13A 2 0.592466 -0.243388 1.032817 11.000000 -1.500000 H13B 2 0.722528 -0.231828 0.997840 11.000000 -1.500000 H13C 2 0.610855 -0.314680 0.971564 11.000000 -1.500000 AFIX 0 C14 1 0.580054 -0.124682 0.960504 11.000000 0.054280 0.033230 = 0.034630 0.006180 -0.004060 0.005920 C15 1 0.878010 0.088435 0.877451 11.000000 0.035810 0.073780 = 0.062570 -0.008380 -0.003100 0.006430 AFIX 13 H15 2 0.784280 0.087667 0.880984 11.000000 -1.200000 AFIX 0 C16 1 0.259916 0.817672 0.169235 11.000000 0.054940 0.053530 = 0.053200 0.003070 -0.002940 0.003760 AFIX 13 H16 2 0.233867 0.730343 0.160166 11.000000 -1.200000 AFIX 0 Cl1 5 0.942635 0.037382 0.945285 11.000000 0.076200 0.160780 = 0.069890 0.016090 -0.018700 0.002220 Cl2 5 0.921708 -0.013493 0.818790 11.000000 0.092950 0.067850 = 0.080810 -0.009470 0.010420 0.018980 Cl3 5 0.926748 0.243341 0.861635 11.000000 0.086480 0.076530 = 0.104260 -0.016230 -0.007070 -0.016400 Cl4 5 0.326552 0.819883 0.241170 11.000000 0.134280 0.132370 = 0.055460 0.002790 -0.019550 0.004420 Cl5 5 0.372756 0.864623 0.115618 11.000000 0.060390 0.100920 = 0.081930 0.031750 0.009510 0.010840 Cl6 5 0.123673 0.914053 0.165954 11.000000 0.072610 0.074650 = 0.090040 0.006680 0.016010 0.020790 N1 3 0.293102 0.159479 0.959710 11.000000 0.032390 0.030000 = 0.025610 0.000450 0.003650 0.001660 N2 3 0.115124 0.288855 1.029079 11.000000 0.036260 0.033630 = 0.026790 0.000560 0.008030 0.003010 N3 3 0.398978 0.269338 0.863985 11.000000 0.028850 0.030880 = 0.021180 0.002660 0.003960 0.001510 N4 3 0.454971 0.318346 0.813513 11.000000 0.037980 0.034190 = 0.025120 0.008920 0.009690 0.004280 O1 4 0.602447 0.153102 0.823520 11.000000 0.031860 0.036750 = 0.030720 0.010330 0.005510 0.007440 O2 4 0.636401 -0.087223 0.914242 11.000000 0.047520 0.045530 = 0.047570 0.012130 0.005630 0.008130 O3 4 0.484459 -0.068993 0.981507 11.000000 0.057790 0.034710 = 0.035210 0.007360 0.005580 0.009430 HKLF 4 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N5 C12 C8

x

y

z

Uiso*/Ueq

0.6290 (2) 0.5718 (3) 0.6216 (3)

0.4362 (2) 0.3934 (3) 0.2956 (3)

0.65754 (10) 0.70722 (12) 0.74188 (11)

0.0300 (5) 0.0286 (6) 0.0253 (5)

Acta Cryst. (2015). C71, 116-121

sup-12

supporting information Cd1 C1 H1 C2 H2 C3 H3 C4 C5 C6 H6A H6B H6C C7 C9 H9 C10 H10 C11 H11 H12 C13 H13A H13B H13C C14 C15 H15 C16 H16 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 N1 N2 N3 N4 O1 O2 O3

0.479411 (17) 0.2489 (3) 0.2780 0.1614 (3) 0.1338 0.1579 (3) 0.1255 0.2492 (3) 0.3022 (3) 0.2483 (4) 0.2820 0.1565 0.2719 0.5562 (2) 0.7365 (3) 0.7725 0.7958 (3) 0.8731 0.7399 (3) 0.7811 0.4950 0.6311 (6) 0.5925 0.7225 0.6109 0.5801 (4) 0.8780 (3) 0.7843 0.2599 (4) 0.2339 0.94263 (13) 0.92171 (13) 0.92675 (14) 0.32655 (18) 0.37276 (11) 0.12367 (11) 0.2931 (2) 0.1151 (2) 0.3990 (2) 0.4550 (2) 0.60245 (19) 0.6364 (2) 0.4845 (2)

0.080513 (17) 0.1118 (3) 0.0329 0.1765 (3) 0.1409 0.3350 (3) 0.4121 0.2723 (3) 0.3281 (3) 0.4483 (4) 0.5197 0.4472 0.4551 0.2495 (3) 0.2407 (3) 0.1740 0.2869 (3) 0.2524 0.3837 (3) 0.4145 0.4308 −0.2391 (5) −0.2434 −0.2318 −0.3147 −0.1247 (3) 0.0884 (5) 0.0877 0.8177 (4) 0.7303 0.03738 (17) −0.01349 (12) 0.24334 (13) 0.81988 (17) 0.86462 (13) 0.91405 (13) 0.1595 (2) 0.2889 (2) 0.2693 (2) 0.3183 (2) 0.15310 (19) −0.0872 (2) −0.0690 (2)

0.903263 (7) 1.01124 (13) 1.0241 1.04589 (14) 1.0819 0.97698 (13) 0.9633 0.94224 (12) 0.88675 (12) 0.86119 (18) 0.8829 0.8647 0.8196 0.79749 (11) 0.72331 (13) 0.7449 0.67247 (15) 0.6595 0.64131 (14) 0.6072 0.7191 0.9937 (2) 1.0328 0.9978 0.9716 0.96050 (14) 0.87745 (17) 0.8810 0.16924 (17) 0.1602 0.94528 (6) 0.81879 (6) 0.86164 (7) 0.24117 (6) 0.11562 (6) 0.16595 (6) 0.95971 (10) 1.02908 (10) 0.86398 (9) 0.81351 (10) 0.82352 (9) 0.91424 (10) 0.98151 (9)

0.02443 (6) 0.0337 (7) 0.040* 0.0368 (7) 0.044* 0.0336 (6) 0.040* 0.0276 (6) 0.0336 (6) 0.0665 (13) 0.100* 0.100* 0.100* 0.0263 (5) 0.0353 (7) 0.042* 0.0432 (8) 0.052* 0.0381 (7) 0.046* 0.046* 0.0890 (18) 0.133* 0.133* 0.133* 0.0407 (8) 0.0574 (9) 0.069* 0.0539 (9) 0.065* 0.1023 (5) 0.0805 (3) 0.0891 (4) 0.1074 (5) 0.0811 (4) 0.0791 (3) 0.0293 (5) 0.0322 (5) 0.0270 (5) 0.0324 (5) 0.0331 (5) 0.0469 (5) 0.0426 (5)

Atomic displacement parameters (Å2)

N5

U11

U22

U33

U12

U13

U23

0.0329 (12)

0.0338 (14)

0.0234 (11)

−0.0001 (11)

0.0042 (9)

0.0044 (10)

Acta Cryst. (2015). C71, 116-121

sup-13

supporting information C12 C8 Cd1 C1 C2 C3 C4 C5 C6 C7 C9 C10 C11 C13 C14 C15 C16 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 N1 N2 N3 N4 O1 O2 O3

0.0270 (12) 0.0277 (13) 0.02911 (9) 0.0392 (16) 0.0417 (17) 0.0385 (16) 0.0287 (14) 0.0375 (16) 0.077 (3) 0.0286 (14) 0.0385 (16) 0.0366 (17) 0.0377 (17) 0.132 (5) 0.054 (2) 0.0358 (17) 0.055 (2) 0.0762 (8) 0.0929 (8) 0.0865 (8) 0.1343 (13) 0.0604 (6) 0.0726 (7) 0.0324 (13) 0.0363 (14) 0.0288 (12) 0.0380 (15) 0.0319 (11) 0.0475 (12) 0.0578 (13)

0.0325 (17) 0.0267 (14) 0.02412 (9) 0.0311 (17) 0.0400 (18) 0.0311 (16) 0.0288 (15) 0.0323 (16) 0.059 (3) 0.0294 (14) 0.0346 (16) 0.050 (2) 0.045 (2) 0.069 (3) 0.0332 (17) 0.074 (3) 0.054 (2) 0.1608 (15) 0.0678 (7) 0.0765 (8) 0.1324 (13) 0.1009 (9) 0.0746 (7) 0.0300 (13) 0.0336 (14) 0.0309 (13) 0.0342 (13) 0.0368 (12) 0.0455 (13) 0.0347 (11)

0.0263 (13) 0.0215 (12) 0.02007 (8) 0.0308 (15) 0.0288 (15) 0.0314 (15) 0.0253 (13) 0.0309 (15) 0.064 (2) 0.0208 (12) 0.0329 (15) 0.0429 (17) 0.0316 (15) 0.067 (3) 0.0346 (16) 0.063 (2) 0.053 (2) 0.0699 (7) 0.0808 (8) 0.1043 (9) 0.0555 (7) 0.0819 (8) 0.0900 (8) 0.0256 (12) 0.0268 (12) 0.0212 (11) 0.0251 (11) 0.0307 (10) 0.0476 (13) 0.0352 (10)

0.0037 (11) −0.0012 (11) 0.00023 (7) 0.0042 (12) −0.0005 (14) 0.0072 (12) 0.0021 (11) 0.0082 (12) 0.039 (2) −0.0012 (11) 0.0094 (13) 0.0118 (14) 0.0019 (13) 0.057 (3) 0.0059 (14) 0.006 (2) 0.0038 (18) 0.0022 (8) 0.0190 (6) −0.0164 (7) 0.0044 (11) 0.0108 (6) 0.0208 (7) 0.0017 (10) 0.0030 (11) 0.0015 (10) 0.0043 (11) 0.0074 (9) 0.0081 (11) 0.0094 (12)

0.0032 (11) 0.0006 (10) 0.00057 (7) 0.0091 (13) 0.0110 (13) 0.0075 (13) 0.0037 (11) 0.0075 (12) 0.037 (2) 0.0003 (10) 0.0033 (12) 0.0160 (14) 0.0132 (13) 0.025 (3) −0.0041 (15) −0.0031 (16) −0.0029 (18) −0.0187 (6) 0.0104 (7) −0.0071 (7) −0.0196 (8) 0.0095 (6) 0.0160 (6) 0.0036 (10) 0.0080 (10) 0.0040 (9) 0.0097 (10) 0.0055 (9) 0.0056 (10) 0.0056 (10)

0.0036 (11) 0.0011 (10) 0.00078 (7) 0.0070 (11) 0.0062 (13) 0.0039 (12) 0.0016 (11) 0.0059 (11) 0.032 (2) 0.0014 (10) 0.0079 (13) 0.0103 (15) 0.0098 (12) 0.034 (2) 0.0062 (13) −0.008 (2) 0.0031 (17) 0.0161 (8) −0.0095 (6) −0.0162 (7) 0.0028 (8) 0.0318 (7) 0.0067 (7) 0.0004 (10) 0.0006 (10) 0.0027 (9) 0.0089 (10) 0.0103 (9) 0.0121 (12) 0.0074 (7)

Geometric parameters (Å, º) N5—C11 N5—C12 N5—Cd1i C12—C8 C12—H12 C8—C9 C8—C7 Cd1—O1 Cd1—N5ii Cd1—N3 Cd1—O3 Cd1—O2 Cd1—N1 Cd1—N2iii C1—N1

Acta Cryst. (2015). C71, 116-121

1.331 (4) 1.334 (3) 2.328 (2) 1.387 (4) 0.9304 1.392 (4) 1.494 (3) 2.3186 (19) 2.328 (2) 2.328 (2) 2.348 (2) 2.420 (2) 2.457 (2) 2.482 (2) 1.334 (3)

C6—H6A C6—H6B C6—H6C C7—O1 C7—N4 C9—C10 C9—H9 C10—C11 C10—H10 C11—H11 C13—C14 C13—H13A C13—H13B C13—H13C C14—O3

0.9600 0.9600 0.9600 1.264 (3) 1.329 (3) 1.378 (4) 0.9300 1.364 (4) 0.9300 0.9300 1.510 (5) 0.9600 0.9600 0.9600 1.247 (4)

sup-14

supporting information C1—C2 C1—H1 C2—N2 C2—H2 C3—N2 C3—C4 C3—H3 C4—N1 C4—C5 C5—N3 C5—C6

1.375 (4) 0.9300 1.331 (4) 0.9300 1.334 (4) 1.392 (4) 0.9300 1.332 (4) 1.475 (4) 1.287 (4) 1.497 (4)

C14—O2 C15—Cl1 C15—Cl3 C15—Cl2 C15—H15 C16—Cl4 C16—Cl5 C16—Cl6 C16—H16 N2—Cd1iv N3—N4

1.249 (4) 1.738 (4) 1.745 (5) 1.750 (4) 0.9800 1.745 (4) 1.747 (4) 1.747 (4) 0.9800 2.482 (2) 1.367 (3)

C11—N5—C12 C11—N5—Cd1i C12—N5—Cd1i N5—C12—C8 N5—C12—H12 C8—C12—H12 C12—C8—C9 C12—C8—C7 C9—C8—C7 O1—Cd1—N5ii O1—Cd1—N3 N5ii—Cd1—N3 O1—Cd1—O3 N5ii—Cd1—O3 N3—Cd1—O3 O1—Cd1—O2 N5ii—Cd1—O2 N3—Cd1—O2 O3—Cd1—O2 O1—Cd1—N1 N5ii—Cd1—N1 N3—Cd1—N1 O3—Cd1—N1 O2—Cd1—N1 O1—Cd1—N2iii N5ii—Cd1—N2iii N3—Cd1—N2iii O3—Cd1—N2iii O2—Cd1—N2iii N1—Cd1—N2iii N1—C1—C2 N1—C1—H1 C2—C1—H1 N2—C2—C1 N2—C2—H2 C1—C2—H2

118.2 (3) 122.33 (19) 119.02 (18) 123.0 (2) 118.5 118.5 117.7 (2) 122.1 (2) 120.2 (2) 92.24 (8) 68.30 (7) 99.50 (9) 140.90 (7) 90.22 (8) 149.22 (7) 86.79 (7) 84.84 (8) 154.79 (8) 54.58 (7) 135.76 (7) 97.73 (8) 67.56 (7) 82.29 (7) 136.85 (7) 88.06 (8) 172.41 (9) 87.67 (8) 84.80 (8) 87.61 (8) 87.29 (8) 121.7 (3) 119.2 119.2 121.5 (3) 119.2 119.2

H6A—C6—H6C H6B—C6—H6C O1—C7—N4 O1—C7—C8 N4—C7—C8 C10—C9—C8 C10—C9—H9 C8—C9—H9 C11—C10—C9 C11—C10—H10 C9—C10—H10 N5—C11—C10 N5—C11—H11 C10—C11—H11 C14—C13—H13A C14—C13—H13B H13A—C13—H13B C14—C13—H13C H13A—C13—H13C H13B—C13—H13C O3—C14—O2 O3—C14—C13 O2—C14—C13 Cl1—C15—Cl3 Cl1—C15—Cl2 Cl3—C15—Cl2 Cl1—C15—H15 Cl3—C15—H15 Cl2—C15—H15 Cl4—C16—Cl5 Cl4—C16—Cl6 Cl5—C16—Cl6 Cl4—C16—H16 Cl5—C16—H16 Cl6—C16—H16 C4—N1—C1

109.5 109.5 128.2 (2) 117.8 (2) 114.0 (2) 118.8 (3) 120.6 120.6 119.4 (3) 120.3 120.3 122.9 (3) 118.6 118.6 109.5 109.5 109.5 109.5 109.5 109.5 122.4 (3) 118.3 (3) 119.3 (3) 110.6 (2) 110.9 (2) 110.3 (2) 108.3 108.3 108.3 110.8 (2) 110.7 (2) 110.7 (2) 108.2 108.2 108.2 117.9 (2)

Acta Cryst. (2015). C71, 116-121

sup-15

supporting information N2—C3—C4 N2—C3—H3 C4—C3—H3 N1—C4—C3 N1—C4—C5 C3—C4—C5 N3—C5—C4 N3—C5—C6 C4—C5—C6 C5—C6—H6A C5—C6—H6B H6A—C6—H6B C5—C6—H6C

122.5 (3) 118.7 118.7 119.8 (2) 118.1 (2) 122.1 (3) 115.6 (3) 123.5 (3) 120.9 (3) 109.5 109.5 109.5 109.5

C4—N1—Cd1 C1—N1—Cd1 C2—N2—C3 C2—N2—Cd1iv C3—N2—Cd1iv C5—N3—N4 C5—N3—Cd1 N4—N3—Cd1 C7—N4—N3 C7—O1—Cd1 C14—O2—Cd1 C14—O3—Cd1

115.12 (18) 125.80 (19) 116.6 (3) 121.91 (19) 121.0 (2) 118.4 (2) 123.04 (18) 118.51 (16) 110.7 (2) 113.86 (16) 89.77 (19) 93.18 (18)

C11—N5—C12—C8 Cd1i—N5—C12—C8 N5—C12—C8—C9 N5—C12—C8—C7 N1—C1—C2—N2 N2—C3—C4—N1 N2—C3—C4—C5 N1—C4—C5—N3 C3—C4—C5—N3 N1—C4—C5—C6 C3—C4—C5—C6 C12—C8—C7—O1 C9—C8—C7—O1 C12—C8—C7—N4 C9—C8—C7—N4 C12—C8—C9—C10 C7—C8—C9—C10 C8—C9—C10—C11 C12—N5—C11—C10 Cd1i—N5—C11—C10 C9—C10—C11—N5 C3—C4—N1—C1 C5—C4—N1—C1 C3—C4—N1—Cd1 C5—C4—N1—Cd1 C2—C1—N1—C4 C2—C1—N1—Cd1 O1—Cd1—N1—C4 N5ii—Cd1—N1—C4 N3—Cd1—N1—C4 O3—Cd1—N1—C4 O2—Cd1—N1—C4 N2iii—Cd1—N1—C4 O1—Cd1—N1—C1

−1.2 (4) 171.4 (2) 0.0 (4) 179.8 (3) 1.1 (5) 2.6 (5) −175.8 (3) −8.5 (4) 170.0 (3) 173.9 (3) −7.6 (5) 174.2 (3) −6.0 (4) −6.4 (4) 173.4 (3) 1.0 (4) −178.8 (3) −0.8 (5) 1.4 (5) −171.0 (3) −0.4 (5) −1.3 (4) 177.2 (3) −169.7 (2) 8.8 (3) −0.4 (5) 166.6 (2) −0.9 (2) −102.2 (2) −5.05 (19) 168.7 (2) 167.13 (18) 83.5 (2) −168.2 (2)

C6—C5—N3—N4 C4—C5—N3—Cd1 C6—C5—N3—Cd1 O1—Cd1—N3—C5 N5ii—Cd1—N3—C5 O3—Cd1—N3—C5 O2—Cd1—N3—C5 N1—Cd1—N3—C5 N2iii—Cd1—N3—C5 O1—Cd1—N3—N4 N5ii—Cd1—N3—N4 O3—Cd1—N3—N4 O2—Cd1—N3—N4 N1—Cd1—N3—N4 N2iii—Cd1—N3—N4 O1—C7—N4—N3 C8—C7—N4—N3 C5—N3—N4—C7 Cd1—N3—N4—C7 N4—C7—O1—Cd1 C8—C7—O1—Cd1 N5ii—Cd1—O1—C7 N3—Cd1—O1—C7 O3—Cd1—O1—C7 O2—Cd1—O1—C7 N1—Cd1—O1—C7 N2iii—Cd1—O1—C7 O3—C14—O2—Cd1 C13—C14—O2—Cd1 O1—Cd1—O2—C14 N5ii—Cd1—O2—C14 N3—Cd1—O2—C14 O3—Cd1—O2—C14 N1—Cd1—O2—C14

−0.6 (5) 3.6 (4) −178.9 (3) −176.3 (3) 95.0 (2) −11.7 (3) −166.8 (2) 0.5 (2) −87.5 (2) 5.41 (18) −83.22 (19) 170.02 (17) 14.9 (3) −177.7 (2) 94.25 (19) −1.7 (4) 179.0 (2) 177.4 (3) −4.3 (3) 6.6 (4) −174.11 (18) 93.6 (2) −5.74 (18) −173.31 (17) 178.3 (2) −9.9 (2) −94.00 (19) −2.6 (3) 179.4 (4) 174.9 (2) −92.5 (2) 166.1 (2) 1.41 (19) 3.3 (2)

Acta Cryst. (2015). C71, 116-121

sup-16

supporting information N5ii—Cd1—N1—C1 N3—Cd1—N1—C1 O3—Cd1—N1—C1 O2—Cd1—N1—C1 N2iii—Cd1—N1—C1 C1—C2—N2—C3 C1—C2—N2—Cd1iv C4—C3—N2—C2 C4—C3—N2—Cd1iv C4—C5—N3—N4

N2iii—Cd1—O2—C14 O2—C14—O3—Cd1 C13—C14—O3—Cd1 O1—Cd1—O3—C14 N5ii—Cd1—O3—C14 N3—Cd1—O3—C14 O2—Cd1—O3—C14 N1—Cd1—O3—C14 N2iii—Cd1—O3—C14

90.5 (2) −172.3 (3) 1.4 (2) −0.2 (3) −83.7 (2) 0.1 (5) −171.9 (2) −1.9 (5) 170.2 (2) −178.1 (2)

86.7 (2) 2.7 (4) −179.3 (4) −11.7 (3) 82.1 (2) −168.7 (2) −1.42 (19) 179.9 (2) −92.2 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x+1/2, −y+1/2, −z+2; (iv) x−1/2, −y+1/2, −z+2.

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

C15—H15···O2 C15—H15···O1 C16—H16···O2v

0.98 0.98 0.98

2.51 2.39 2.46

3.230 (5) 3.186 (4) 3.316 (5)

130 138 146

Symmetry code: (v) x−1/2, −y+1/2, −z+1.

Acta Cryst. (2015). C71, 116-121

sup-17

Mononuclear and three-dimensional metal complexes based on a multidentate hydrazone ligand.

A potentially pentadentate hydrazone ligand, N'-[1-(pyrazin-2-yl)ethylidene]nicotinohydrazide (HL), was prepared from the condensation reaction of nic...
1MB Sizes 0 Downloads 13 Views