www.advmat.de www.MaterialsViews.com

Dechao Niu, Zuojin Liu, Yongsheng Li,* Xiaofeng Luo, Junyong Zhang, Jianping Gong,* and Jianlin Shi* Since the discovery of MCM-41 in 1992,[1] mesoporous materials have attracted more and more attentions due to their unique physical and chemical features including large specific surface area and pore volume, ordered pore channels and great potentials across a wide variety of fields such as catalysis,[2] biomedicine,[3] optics,[4] and so on. Among these applications, the biological medicine is one of the most promising fields of applying mesoporous silica nanoparticles (MSNs) as drug/gene delivery carriers due to their tunable pore sizes and morphologies, easily modified inner/outer surfaces and good biocompatibility.[5] Up to now, with the development of nanoscience and nanotechnology, MSNs with different morphologies such as hollow mesoporous nanocapsules,[6] branched mesoporous nanoparticles,[7] yolk-shell mesoporous structure,[8] and so on, have been successfully prepared and displayed a great application potentials in biological fields, especially in the cancer diagnosis/imaging and treatment by loading functional nanoparticles (magnetite, gold, quantum dots, et al) and anti-tumor drugs into the interiors or pore channels of mesoporous nanostructure.[9] However, the pore sizes of these mesoporous nanostructures are usually very small (2–5 nm) resulting from the use of cetyltrimethyl ammonium bromide (CTAB) or other alkylammonium surfactants as templates, which greatly hindered their further bio-applications in the encapsulation of biomacromolecules, such as proteins or DNA with high molecular weight.

Dr. D. Niu, Prof. Y. Li, X. Luo, Prof. J. Shi Lab of Low-Dimensional Materials Chemistry Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237, China E-mail: [email protected]; [email protected] Dr. Z. Liu, J. Zhang, Prof. J. Gong Hepatopathy Therapeutic Center of Chongqing Second Affiliated Hospital Chongqing University of Medical Sciences Chongqing 400010, China E-mail: [email protected] Prof. J. Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050, China

DOI: 10.1002/adma.201400815

Adv. Mater. 2014, 26, 4947–4953

COMMUNICATION

Monodispersed and Ordered Large-Pore Mesoporous Silica Nanospheres with Tunable Pore Structure for Magnetic Functionalization and Gene Delivery

Recently, two main approaches have been developed to produce large-pore mesoporous materials. One is to adopt a solvent evaporation-induced self-assembly (EISA) approach by using block copolymers of high molecular weight such as nonionic F108, poly(ethylene oxide)-b-poly(butylenes oxide)-b-poly(ethylene oxide) (PEO-PBO-PEO), polystyreneb-poly(ethylene oxide) (PS-b-PEO), poly(ethylene oxide)-b-poly(εcaprolactone) (PEO-b-PCL) or poly(ethylene oxide)-b-polymethylmethacrylate (PEO-b-PMMA) as pore templates.[10] In this case, although ultra-large pore channels could be created, the resulted mesoporous materials usually possess irregular particle morphologies and micrometer particle sizes, which are unfavorable for their applications in biomedical fields. Very recently, Deng et al. reported that uniform mesoporous silica particles with a large pore size (ca. 8 nm) were synthesized by using 3-dimensional macroporous carbon as the nanoreactor via a simple and controllable interface-directed co-assembly approach.[11] The other is to introduce a swelling agent such as 1, 3, 5-trimethylbenzene (TMB) during the synthetic process of MSNs.[12] Unfortunately, the swelling agent tends to induce disordering or heterogeneity in the resulting structures, which makes this approach less useful in biomedicine. Besides, most of the reported large-pore MSNs always display broadened pore size distributions, resulting in the formation of disordered mesostructures, though MSNs with uniform pore size of 20 nm have been synthesized at low temperature by using mixed surfactants of block copolymer (F127) and a fluorocarbon surfactant (FC-4) in the presence of a swelling agent (TMB).[13] In our previous work, a novel dual-templating route has been developed to synthesize core-shell structured dual-mesoporous silica spheres consisting of smaller pores in the shell and ordered larger pores in the core.[14] However, the presence of small pores in the shell greatly limited its applications as bio-macromolecule delivery vehicles, in which open and large enough pore channels (e.g., >10 nm) throughout the mesoporous spheres are very necessary. Therefore, developing an approach and exploring new synthetic route to prepare mesoporous silica nanoparticles simultaneously with accessible large pores (>10 nm), small particle dimensions (12 nm), which are distributed throughout the whole LPSNs. Importantly, the mesostructure of the resultant LPSNs can be easily tuned between cubic, hexagonal and lamellar by changing the amount of CTAB during synthesis. In addition, hydrophobic magnetite nanoparticles can be successfully loaded into the lager pores, resulting in the formation of magnetic-functionalized LPSNs, which display excellent T2-weighted MR imaging capability with a high transverse relaxivity of 379.6 mM−1•S−1. Finally, the in vitro as well as in vivo tests demonstrate that the amino groups modified LPSNs have low toxicity, high pDNA loading, high transfection efficiency into SMMC-7721 cells, remarkable inhibition effect on VEGF gene expression both in mRNA and protein levels, and effective inhibition of tumor growth in pDNA/LPSNs-NH2 treated mice. Therefore, such a new kind of ordered largepore silica nanospheres would provide a promising candidate as an advanced delivery system for functional nanoparticles, proteins or genes.

Supporting Information Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements This work was financially supported by the National Basic Research Program of China (973 Program, 2012CB933602); Program for New Century Excellent Talents in University (NCET-10–0379); NSFC (Grant Nos. 51172070, 51132009, 51202068); Shuguang Project (11SG30); The Fundamental Research Funds for the Central Universities. Dr D. Niu and Dr Z. Liu contributed equally to this work. Received: February 20, 2014 Revised: March 12, 2014 Published online: April 7, 2014

[1] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710. [2] J. L. Shi, Chem. Rev. 2013, 113, 2139.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Adv. Mater. 2014, 26, 4947–4953

www.advmat.de www.MaterialsViews.com

Adv. Mater. 2014, 26, 4947–4953

[11] [12]

[13] [14] [15]

[16] [17] [18] [19]

[20] [21]

[22]

[23]

Z. K. Sun, Y. H Deng, D. Y. Zhao, Angew. Chem. Int. Ed. 2012, 51, 6149. M. Wang, Z. Sun, Q. Yue, J. Yang, X. Wang, Y. Deng, C. Yu, D. Zhao, J. Am. Chem. Soc. 2014, 136, 1884. a) T. Suteewong, H. Sai, R. Cohen, S. T. Wang, M. Bradbury, B. Baird, S. M. Gruner, U. Wiesner, J. Am. Chem. Soc. 2011, 133, 172; b) H. K. Na, M. H. Kim, K. Park, S. R. Ryoo, K. E. Lee, H. Jeon, R. Ryoo, C. Hyeon, D. H. Min, Small 2012, 8, 1752; c) M. H. Kim, H. K. Na, Y. K. Kim, S. R. Ryoo, H. S. Cho, K. E. Lee, H. Jeon, R. Ryoo, D. H. Min, ACS Nano 2011, 5, 3568; d) S. B. Hartono, W. Y. Gu, F. Kleitz, J. Liu, L. Z. He, A. P. J. Middelberg, C. Z. Yu, G. Q. Lu, S. Z. Qiao, ACS Nano 2012, 17, 2104; e) L. H. Chen, G. S. Zhu, D. L. Zhang, H. Zhao, M. Y. Guo, W. Shi, S. L. Qiu, J. Mater. Chem. 2009, 19, 2013. F. Gao, P. Botella, A. Corma, J. Blesa, L. Dong, J. Phys. Chem. B 2009, 113, 1796. D. C. Niu, Z. Ma, Y. S. Li, J. L. Shi, J. Am. Chem. Soc. 2010, 132, 15144. Y. Huang, H. Q. Cai, T. Yu, F. Q. Zhang, F. Zhang, Y. Meng, D. Gu, Y. Wan, X. L. Sun, B. Tu, D. Y. Zhao, Angew. Chem. Int. Ed. 2007, 46, 1089. a) L. Zhang, A. Eisenberg, Science 1995, 268, 1728; b) L. Zhang, A. Eisenberg, J. Am. Chem. Soc. 1996, 118, 3168. P. F. Fulvio, S. Pikusb, M. Jaroniec, J. Mater. Chem. 2005, 15, 5049. S. E. Burke, A. Eisenberg, Langmuir 2001, 17, 8341. a) Y. Lee, J. Lee, C. J. Bae, J. G. Park, H. J. Noh, J. H. Park, T. Hyeon, Adv. Funct. Mater. 2005, 15, 503; b) K. R. Hurley, Y.-S. Lin, J. Zhang, S. M. Egger, C. L. Haynes, Chem. Mater. 2013, 25, 1968. J. S. Choi, J. H. Lee, T. H. Shin, H. T. Song, E. Y. Kim, J. Cheon, J. Am. Chem. Soc. 2010, 132, 11015. J. M. Kinsella, S. Ananda, J. S. Andrew, J. F. Grondek, M. P. Chien, M. Scadeng, N. C. Gianneschi, E. Ruoslahti, M. J. Sailor, Adv. Mater. 2011, 23, 248. a) H. Ai, C. Flask, B. Weinberg, X. Shuai, M. D. Pagel, D. Farrell, J. Duerk, J. M. Gao, Adv. Mater. 2005, 17, 1949; b) D. C. Niu, X. H. Liu, Y. S. Li, Z. Ma, W. J. Dong, S. Chang, W. R. Zhao, J. L. Gu, S. J. Zhang, J. L. Shi, J. Mater. Chem. 2011, 21, 13825; c) D. Niu, Z. Zhang, S. Jiang, Z. Ma, X. Liu, Y. Li, L. Zhou, C. Liu, Y. Li, J. Shi, J. Mater. Chem. 2012, 22, 24936. X. Du, B. Shi, J. Liang, J. Bi, S. Dai, S. Z. Qiao, Adv. Mater. 2013, 25, 5981.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

wileyonlinelibrary.com

COMMUNICATION

[3] a) Q. J. He, J. L. Shi, J. Mater. Chem. 2011, 21, 5845; b) Z. X. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, Chem. Soc. Rev. 2012, 41, 2590. [4] B. J. Scott, G. Wirnsberger, G. D. Stucky, Chem. Mater. 2001, 13, 3140. [5] a) I. I. Slowing, B. G. Trewyn, V. S. Y. Lin, J. Am. Chem. Soc. 2007, 129, 8845; b) I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu, V. S. Y. Lin, Adv. Drug Deliver. Rev. 2008, 60, 1278; c) F. Q. Tang, L. L. Li, D. Chen, Adv. Mater. 2012, 24, 1504; d) A. Popat, B. P. Ross, J. Liu, S. Jambhrunkar, F. Kleitz, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 12486. [6] a) Z. T. Chen, D. C. Niu, Y. S. Li, J. L. Shi, RSC Adv. 2013, 3, 6767; b) X. Wang, H. R. Chen, Y. Chen, M. Ma, K. Zhang, F. Q. Li, Y. Y. Zheng, D. P. Zeng, Q. Wang, J. L. Shi, Adv. Mater. 2012, 24, 785. [7] T. Suteewong, H. Sai, R. Hovden, D. Muller, M. S. Bradbury, S. M. Gruner, U. Wiesner, Science 2013, 340, 337. [8] J. Liu, H. Q. Yang, F. Kleitz, Z. G. Chen, T. Y. Yang, E. Strounina, G. Q. Lu, S. Z. Qiao, Adv. Funct. Mater. 2012, 22, 591. [9] a) K. Dimos, L. Jankovic, I. B. Koutselas, M. A. Karakassides, R. Zboril, P. Komadel, J. Phys. Chem. C 2012, 116, 1185; b) J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 2008, 47, 8438; c) J. E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon, T. Hyeon, J. Am. Chem. Soc. 2010, 132, 552; d) M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889; e) Z. J. Zhang, L. M. Wang, J. Wang, X. M. Jiang, X. H. Li, Z. J. Hu, Y. H. Ji, X. C. Wu, C. Y. Chen, Adv. Mater. 2012, 24, 1418. [10] a) C. Z. Yu, Y. H. Yu, D. Y. Zhao, Chem. Commun. 2000, 575; b) C. Z. Yu, B. Z. Tian, J. Fan, G. D. Stucky, D. Y. Zhao, J. Am. Chem. Soc. 2002, 124, 4556; c) Y. H. Deng, T. Yu, Y. Wan, Y. F. Shi, Y. Meng, D. Gu, L. J. Zhang, Y. Huang, C. Liu, X. J. Wu, D. Y. Zhao, J. Am. Chem. Soc. 2007, 129, 1690; d) E. Bloch, P. L. Llewellyn, T. Phan, D. Bertin, V. Hornebecq, Chem. Mater. 2009, 21, 48; e) J. G. Li, Y. D. LinS. W. Kuo, Macromolecules 2011, 44, 9295. f) Q. Yue, M. H. Wang, J. Wei, Y. H. Deng, T. Y. Liu, R. C. Che, B. Tu, D. Y Zhao, Angew. Chem. Int. Ed. 2012, 51, 10368; g) J. Wei, H. Wang, Y. H. Deng, Z. K. Sun, L. Shi, B. Tu, M. Luqman, D. Y. Zhao, J. Am. Chem. Soc. 2011, 133, 20369; h) J. Wei, Q. Yue,

4953

Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery.

It can be larger: A facile self-assembly/solvothermal approach to synthesize monodispersed, large-pore (>12 nm) silica nanospheres (LPSNs) with ordere...
3MB Sizes 0 Downloads 3 Views