research papers terephthalate anion; 2,20 -bipyrimidine; metal–organic frameworks; magnetic interactions.

Acta Crystallographica Section C

Structural Chemistry ISSN 2053-2296

1. Introduction II

II

Mixed-ligand Mn and Cu complexes with alternating 2,20 -bipyrimidine and terephthalate bridges Dejan Poleti,a* Jelena Rogan,a Marko V. Rodic´b and Lidija Radovanovic´c a

Department of General and Inorganic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia, bFaculty of Sciences, University of Novi Sad, Trg Dositeja Obradovic´a 3, 21000 Novi Sad, Serbia, and cInnovation Center, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia Correspondence e-mail: [email protected] Received 4 December 2014 Accepted 24 December 2014

The novel polymeric complexes catena-poly[[diaquamangan0 0 ese(II)]--2,20 -bipyrimidine-4N1,N1 :N3,N3 -[diaquamanganese(II)]-bis(-terephthalato-2O1:O4)], [Mn2(C8H4O4)2(C8H6N4)(H2O)4]n, (I), and catena-poly[[[aquacopper(II)]--aqua0 -hydroxido--terephthalato-2O1:O1 -copper(II)--aqua-0 hydroxido--terephthalato-2O1:O1 -[aquacopper(II)]--2,20 0 0 bipyrimidine-4N1,N1 :N3,N3 ] tetrahydrate], {[Cu3(C8H4O4)2(OH)2(C8H6N4)(H2O)4]4H2O}n, (II), containing bridging 2,20 bipyrimidine (bpym) ligands coordinated as bis-chelates, have been prepared via a ligand-exchange reaction. In both cases, quite unusual coordination modes of the terephthalate (tpht2) anions were found. In (I), two tpht2 anions acting as bis-monodentate ligands bridge the MnII centres in a parallel fashion. In (II), the tpht2 anions act as endo-bridges and connect two CuII centres in combination with additional aqua and hydroxide bridges. In this way, the binuclear [Mn2(tpht)2(bpym)(H2O)4] entity in (I) and the trinuclear [Cu3(tpht)2(OH)2(bpym)(H2O)4]4H2O coordination entity in (II) build up one-dimensional polymeric chains along the b axis. In (I), the MnII cation lies on a twofold axis, whereas the four central C atoms of the bpym ligand are located on a mirror plane. In (II), the central CuII cation is also on a special position (site symmetry 1). In the crystal structures, the packing of the chains is further strengthened by a system of hydrogen bonds [in both (I) and (II)] and weak face-to-face – interactions [in (I)], forming three-dimensional metal– organic frameworks. The MnII cation in (I) has a trigonally deformed octahedral geometry, whereas the CuII cations in (II) are in distorted octahedral environments. The CuII polyhedra are inclined relative to each other and share common edges. Keywords: crystal structure; one-dimensional coordination polymers; copper(II) complex; manganese(II) complex; Acta Cryst. (2015). C71

In coordination chemistry, the dianion of terephthalic acid (denoted tpht2; systematic name: benzene-1,4-dicarboxylate) is a well known linker between two metal sites, with wide application in the production of metal–organic frameworks (MOFs), materials from the Institut Lavoisier (MILs), zeolitelike metal–organic frameworks (ZMOFs), porous coordination polymers (PCPs) and similar functional materials (Janiak & Vieth, 2010). Comparable with other benzenedicarboxylates (see, for example, Baca & Decurtins, 2012), tpht2 can coordinate up to eight metal centres (Lu et al., 2012), resulting in enormously diverse structural architectures of various dimensionalities. In addition to their many useful properties, some tpht2 complexes exhibit interesting magnetic interactions. Bakalbassis et al. (1985, 1988) showed for the first time that moderately strong magnetic interactions between two ˚ tpht2-linked CuII sites could exist even if they are about 11 A apart. In our previous studies of mixed-ligand complexes containing benzene polycarboxylates, tpht2 anions were, as a rule, bis-monodentate ligands yielding chain complexes (Karanovic´ et al., 2002; Rogan et al., 2004), although there were also two examples of discrete complexes with one chelating and one uncoordinated carboxylate group (Rogan et al., 2000).

2,20 -Bipyrimidine (bpym) is a rigid ligand with four N atoms as potential donor sites. Bpym can act as either a terminal or a

doi:10.1107/S2053229614028113

# 2015 International Union of Crystallography

1 of 6

research papers Table 1 Experimental details. (I)

(II)

Crystal data Chemical formula

[Mn2(C8H4O4)2(C8H6N4)(H2O)4]

Mr Crystal system, space group Temperature (K) ˚) a, b, c (A , ,  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm)

668.34 Monoclinic, C2/m 294 14.4270 (3), 15.6350 (3), 6.4420 (1) 90, 115.789 (2), 90 1308.37 (5) 2 Mo K 1.04 0.44  0.32  0.12

[Cu3(C8H4O4)2(OH)2(C8H6N4)(H2O)4]4H2O 855.15 Triclinic, P1 295 6.7148 (2), 10.7900 (3), 11.7620 (5) 69.565 (3), 75.167 (3), 81.404 (3) 770.25 (5) 1 Cu K 3.21 0.63  0.23  0.12

Oxford Gemini S diffractometer with a Sapphire3 CCD area detector Multi-scan (CrysAlis PRO; Agilent, 2014) 0.756, 1.000 12759, 1333, 1284

Oxford Gemini S diffractometer with a Sapphire3 CCD area detector Multi-scan (CrysAlis PRO; Agilent, 2014) 0.487, 1.000 8206, 3036, 2885

0.022 0.617

0.021 0.617

0.024, 0.066, 1.04 1333 107 2 H atoms treated by a mixture of independent and constrained refinement 0.30, 0.23

0.030, 0.086, 1.05 3036 249 9 H atoms treated by a mixture of independent and constrained refinement 0.61, 0.36

Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin / )max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters No. of restraints H-atom treatment ˚ 3)  max,  min (e A

Computer programs: CrysAlis PRO (Agilent, 2014), SIR2011 (Burla et al., 2012), SHELXL2013 (Sheldrick, 2015), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012), ATOMS (Dowty, 2006), publCIF (Westrip, 2010), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

bridging ligand (Rodrı´guez-Martı´n et al., 2001; Albore´s & Rentschler, 2013), coordinating as a mono- or bis-chelate, respectively. A survey of the Cambridge Structural Database (CSD, Version 5.35 of November 2013; Groom & Allen, 2014) showed that these two modes of coordination appear with approximately the same frequency. Some recent examples (Thue´ry, 2013; Thue´ry & Rivie`re, 2013) simultaneously contain both modes of bpym coordination. This could result in complexes of various dimensionalities, with interesting optical and magnetic properties, especially in the case of lanthanide compounds (Zucchi, 2011). So far, our research has been focused on bulky aromatic diamines, such as 2,20 -bipyridine (bipy), 1,10-phenanthroline (phen) and 2,20 -dipyridylamine (dpya), which are typical terminal ligands (Rogan et al., 2000, 2006, 2011; Rogan & Poleti, 2004). Therefore, the choice of bpym, since it is similar to bipy but with a possible bridging function, is logical for a continuation of our studies. The title complexes [Mn2(tpht)2(bpym)(H2O)4]n, (I), and {[Cu3(tpht)2(OH)2(bpym)(H2O)4]4H2O}n, (II), have been prepared and their structures determined.

2. Experimental 2.1. Synthesis and crystallization

For the synthesis of complex (I), an EtOH solution (5 ml) of bpym (0.0157 g, 0.1 mmol) was added dropwise to an aqueous

2 of 6

Poleti et al.



solution (100 ml) containing Mn(CH3COO)24H2O (0.0245 g, 0.1 mmol) and the resulting solution stirred for 10 min. The mixture was light yellow with pH ’ 7. An aqueous solution (50 ml) of Na2tpht (0.0210 g, 0.1 mmol) was added slowly with continuous mixing. The final solution was filtered, transferred to a crystallization dish and left under ambient conditions for slow evaporation. Yellow single crystals of (I) of suitable size were obtained after five months. Complex (II) was prepared in an analogous manner but starting with an aqueous solution containing Cu(NO3)23H2O (0.0188 g, 0.1 mmol). The intermediate mixture was light blue with pH ’ 5. Although the first very small crystals of (II) appeared after only 4 d, a further three months were necessary to obtain green single crystals of suitable size for X-ray analysis. In both cases, the yield was very low and only a few crystals of each complex were obtained. The complexes are insoluble in H2O, EtOH and dimethyl sulfoxide. 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All C-bound H atoms were generated geometrically and refined using a riding model, with ˚ and Uiso(H) = 1.2Ueq(C). The H atoms of the C—H = 0.93 A coordinated water molecules and bridging OH groups were ˚. located in difference maps and refined with O—H = 0.85 A Two of the solvent water molecules in (II) were treated in

[Mn2(C8H4O4)2(C8H6N4)(H2O)4] and a Cu3 analogue

Acta Cryst. (2015). C71

research papers

Figure 1 The binuclear complex entity of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x + 2, y, z; (ii) x, y, z; (iii) x + 2, y + 1, z; (iv) x, y + 1, z; (v) x + 2, y, z.]

different ways. For the first (O8), the H atoms were found in a ˚ and Uiso(H) = difference map and refined with O—H = 0.85 A 1.5Ueq(O). The other water molecule (O9) was problematic since, according to the program PLATON (Spek, 2009), it is ˚ 3, which is larger than located in a void with a volume of 56 A 3 ˚ usual (40 A ) for a hydrogen-bonded water molecule. One H atom was located easily in a difference map, while the position of the other was calculated with the program HYDROGEN (Nardelli, 1999) using 0.45 e as the partial atomic charge. Both H atoms were then added to the structural model with fixed coordinates and with Uiso(H) = 1.5Ueq(O). However, this water molecule acts as a hydrogen-bond donor only once, because there are no suitable acceptors in its vicinity. Large displacement parameters also indicate a possible disorder of the O9 water molecule, but this was not accounted for in the refinement.

3. Results and discussion In [Mn2(tpht)2(bpym)(H2O)4]n, (I), only a quarter of the 2,20 bipyrimidine (bpym) ligand, half of a terephthalate (tpht2) ligand, half of an MnII cation and one aqua ligand belong to the asymmetric unit. However, the basic building unit should be presented as the binuclear {[Mn2(tpht)2(bpym)(H2O)4]}n entity (Fig. 1). It can be understood as an [Mn2(bpym)(H2O)4] unit bridged by two tpht2 anions, or vice versa as an [Mn2(tpht)2(H2O)4] unit bridged by a bpym ligand. In this way, one-dimensional chains extending along the [010] direction are formed. Mn  Mn distances along the chain are alternately ˚ , while the distances between the 6.1705 (10) and 9.4645 (12) A

Table 2 ˚ ,  ) for (I). Selected geometric parameters (A Mn1—O1 Mn1—O3

2.0770 (12) 2.1709 (13)

Mn1—N1

2.3298 (11)

O1—Mn1—O1i O1—Mn1—O3

102.39 (8) 93.90 (6)

O3—Mn1—O3i N1—Mn1—N1i

170.32 (7) 70.76 (6)

Symmetry code: (i) x þ 2; y; z.

Acta Cryst. (2015). C71

˚ . This means that no chains are 6.4420 (10) and 7.3991 (11) A direct or strong magnetic interactions should be expected. The MnII centre is in a trigonally distorted octahedral coordination, with the Mn—N bonds being the longest and the Mn—O(carboxylate) bonds on the opposite side of the equatorial plane being the shortest. The trans O3—Mn1—O3i [symmetry code: (i) x + 2, y, z] angle involving the aqua ligands is 170.32 (7) (Table 2). The N1—Mn1—N1i angle of 70.76 (6) deviates significantly from 90 due to the formation of a five-membered chelate ring and long Mn—N bond distances (Table 2). The bond distances and angles within the ligands are as expected. The aromatic rings of the tpht2 and bpym ligands are perfectly planar due to symmetry constraints. The angle between their two least-squares planes is only 17.84 (7) , whereas the angles between the aromatic tpht2 ring and the carboxylate groups are 27.10 (7) . Thus, the whole chain is rather planar, not taking into account the two coordinated water molecules in apical positions. Also, the two aromatic rings of the tpht2 ligands that bridge the MnII cations in a parallel fashion are perfectly coplanar. In the structure of (I), there are only two hydrogen bonds of the interchain type. They are found between the coordinating water molecules and the noncoordinating carboxylate O atoms (Fig. 2 and Table 3), and form centrosymmetric R24 (8) rings [for graph-set notation, see Bernstein et al. (1995)]. Additional interactions between chains are weak face-to-face – contacts, as shown in Fig. 2. The most interesting feature of (I) is the existence of a double tpht2 bridge, which, together with the coordinated MnII cations, makes an 18-membered ring (Fig. 1). Although tpht2 anions are typical bridging ligands and their bismonodentate coordination mode is quite common, parallel double bridges are extremely rare; only one similar complex has been reported so far, a mixed-valence two-dimensional vanadium(IV,V) complex, [V4O4(OH)2(tpht)4]DMF (DMF is dimethylformamide), the structure of which was solved ab initio from synchrotron powder diffraction data (Djerdj et al., 2012). Even in that case the tpht2 anions are tridentate, since

Poleti et al.



[Mn2(C8H4O4)2(C8H6N4)(H2O)4] and a Cu3 analogue

3 of 6

research papers

Figure 3 The trinuclear complex entity of (II), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, z + 1; (ii) x, y + 1, z + 1; (iii) x, y + 1, z.]

Figure 2 (a) A projection of the structure of (I) onto the ab plane, with hydrogen bonds shown as dotted lines. (b) A projection of the structure of (I) onto the ac plane, showing the – interactions (dotted lines) and the ˚ ngstro¨m). Cg1 denotes the centroids centroid-to-centroid distances (in A of the pyrimidine rings and Cg2 those of the tpht2 aromatic rings.

Table 3 ˚ ,  ) for (I). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

O3—H3A  O2ii O3—H3B  O2iii

0.81 (2) 0.81 (2)

1.91 (2) 1.92 (2)

2.708 (2) 2.719 (2)

168 (2) 174 (2)

polymerize into chains parallel to the b-axis direction, due to the bridging role of the bpym ligand. These chains are interconnected by hydrogen bonds involving all water molecules and bridging OH groups, as well as O atoms from uncoordinated tpht2 carboxylate groups, resulting in a three-dimensional framework of moderate-to-weak hydrogen bonds (Fig. 4 and Table 5). It is interesting that the O8 and O9 water molecules and their symmetry-related congeners make a small four-membered cluster located around the symmetry centre at (12, 12, 0).

Symmetry codes: (ii) x; y; z  1; (iii) x þ 32; y þ 12; z.

one of the carboxylate groups coordinates as a bridge. Therefore, complex (I) can be considered as unprecedented. Similar to (I), the structure of (II) should be presented as a trinuclear {[Cu3(tpht)2(OH)2(bpym)(H2O)4]4H2O}n complex entity with tpht2 anions coordinating via only one of their carboxylate groups (Fig. 3 and Table 4). The entities further Table 4 ˚ ,  ) for (II). Selected geometric parameters (A Cu1—O7 Cu1—O1 Cu1—O5 Cu1—Cu2 Cu2—O7

1.9076 (15) 2.0402 (14) 2.4302 (18) 3.0433 (3) 1.9096 (15)

N2—Cu2—N1i

80.00 (7)

Symmetry code: (i) x; y þ 1; z þ 1.

4 of 6

Poleti et al.



Cu2—O2 Cu2—N2 Cu2—N1i Cu2—O5 Cu2—O6

1.9522 (15) 2.0521 (18) 2.0875 (18) 2.3891 (18) 2.392 (2)

Figure 4 A projection of the structure of (II) onto the ab plane, with hydrogen bonds shown as dotted lines.

[Mn2(C8H4O4)2(C8H6N4)(H2O)4] and a Cu3 analogue

Acta Cryst. (2015). C71

research papers Table 5 ˚ ,  ) for (II). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

O5—H5A  O8 O5—H5B  O4ii O6—H6A  O3iii O6—H6B  O3iv O7—H7A  O4iv O8—H8A  O4v O8—H8B  O7vi O9—H9A  O8

0.83 (2) 0.82 (3) 0.82 (2) 0.82 (2) 0.77 (2) 0.83 (3) 0.83 (4) 0.84

1.95 (2) 1.99 (3) 1.90 (2) 2.06 (2) 2.18 (2) 1.98 (2) 2.07 (4) 2.10

2.770 (3) 2.805 (3) 2.714 (3) 2.857 (2) 2.950 (2) 2.805 (3) 2.895 (3) 2.913 (4)

169 (2) 172 (3) 173 (2) 161 (2) 174 (2) 175 (3) 170 (3) 162

Symmetry codes: (ii) x; y; z þ 1; (iii) x; y þ 1; z; (iv) x  1; y; z þ 1; (v) x þ 1; y; z; (vi) x þ 1; y; z.

Figure 5 A polyhedral representation of the trinuclear core of (II), showing the mutual orientation of the distorted CuII octahedra. For the sake of clarity, only CuII atoms are labelled. [Symmetry code: (i) x, y, z + 1.]

The central Cu1 atom of (II) is on a special position (site symmetry 1) and is directly surrounded by two Cu2 atoms in ˚ . The intrachain general positions at distances of 3.0434 (3) A distance between two Cu2 atoms across the bpym ligand is ˚ ], while the shortest interchain Cu  Cu longer [5.5452 (6) A ˚ . Both CuII contacts vary between 6.7148 (5) and 7.5620 (5) A cations are in an expected elongated pseudo-octahedral coordination, although Cu1 is surrounded by six O atoms and Cu2 is surrounded by four O and two N atoms. One aqua and one hydroxide ligand bridge two CuII cations, i.e. the CuII polyhedra share common edges (Fig. 5). In both octahedra, the water molecules are at the longest distances and define the apical positions. The angle between the equatorial planes of the polyhedra is 67.14 (5) , so the polyhedra are strongly inclined towards each other. The Cu2—N bond lengths in (II) are much shorter than the Mn1—N bond lengths in (I). The N1—Cu1—N2 bond angle is closer to 90 (Table 4). CuII complexes with different combinations of hydroxide (OH) and aqua (H2O) bridges are quite common and the crystal structures of about 500 such complexes are present in the CSD. Structures with two hydroxide bridges are prevalent, whereas complexes with two aqua bridges are rare. In this way, binuclear complexes usually arise, although examples of more complicated polynuclear species with, for example, discrete Cu15 clusters are also known (Fang et al., 2010). The microporous complex [Cu3(dmtrz)2(HCOO)(2-O)(3-OH)(H2O)3(2-H2O)]H2O (where dmtrz is dimethyltriazolate), simultaneously containing aqua, hydroxide and oxide (O2) species that triply bridge two symmetry-related CuII cations, was also described recently (Xia et al., 2013). It is of interest that, in the cases of combined hydroxide and aqua bridges, additional carboxylate anions are often present. In this way, CuII sites are actually triply bridged, with carboxylate groups further supporting more common binuclear or less common polynuclear units, as in (II). One overview and a possible classification of binuclear five-coordinated CuII complexes has been published by Youngme et al. (2008). Many of these compounds contain the already mentioned dpya, phen and bipy as N,N0 -chelating ligands (Wu Acta Cryst. (2015). C71

et al., 1992; Chailuecha et al., 2006; Chen et al., 2008; Youngme et al., 2008; Li et al., 2009; Wannarit et al., 2013). Six-coordinated complexes of this type are also known (Elliot et al., 1998; Xiao et al., 2008) but are not so common. In all cases, the ˚, Cu  Cu distances range between about 2.9 and 3.4 A suggesting the presence of moderate magnetic interactions between CuII cations. The situation where only one of the tpht2 carboxylate groups coordinates is quite uncommon. Among about 800 first-row transition metal complexes of tpht2 found in the CSD, there are only 13 (less than 2%) similar examples. Only one CuII complex, namely {[Cu2(tpht)2(H2O)4]2H2O}n (Deakin et al., 1999), with tpht2 anions as endo-bridges, together with two additional bridging water molecules, has been described ˚ so far. In this complex, the Cu  Cu distances are 3.1520 (7) A and a moderate antiferromagnetic coupling (J/kB = 9.1 K) typical for chains was found. In summary, introducing bpym instead of dpya, bipy or phen as terminal ligands, in combination with tpht2 anions, results in chain complexes with alternating bpym and tpht2 ligands and quite unusual architectures, especially regarding the coordination of the tpht2 anions. The authors gratefully acknowledge financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant No. III45007). We are indebted to Dr Tamara Ðord-evic´ for help with the artwork.

References Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England. Albore´s, P. & Rentschler, E. (2013). Dalton Trans. 42, 9621–9627. Baca, S. G. & Decurtins, S. (2012). Phthalates: Chemical Properties, Impacts on Health and the Environment, edited by G. L. Moretti & D. Romano, pp. 1–60. Hauppauge, New York: Nova Science Publishers. Bakalbassis, E. G., Bozopoulos, A. P., Mrozinski, J., Rentzeperis, P. J. & Tsipis, C. A. (1988). Inorg. Chem. 27, 529–532. Bakalbassis, E. G., Tsipis, C. A. & Mrozinski, J. (1985). Inorg. Chem. 24, 4231– 4233. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Chailuecha, C., Youngme, S., Pakawatchai, C., Chaichit, N., van Albada, G. A. & Reedijk, J. (2006). Inorg. Chim. Acta, 359, 4168–4178. Chen, Y., Du, S.-C., Liu, Z.-F., Hong, H.-L. & Chen, J.-Z. (2008). Z. Kristallogr. New Cryst. Struct. 223, 92–94.

Poleti et al.



[Mn2(C8H4O4)2(C8H6N4)(H2O)4] and a Cu3 analogue

5 of 6

research papers Deakin, L., Arif, A. M. & Miller, J. S. (1999). Inorg. Chem. 38, 5072–5077. Djerdj, I., Sˇkapin, S. D., Cˇeh, M., Jaglicˇic´, Z., Pajic´, D., Kozlevcˇar, B., Orel, B. & Orel, Z. C. (2012). Dalton Trans. 41, 581–589. Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA. Elliot, D. J., Martin, L. L. & Taylor, M. R. (1998). Acta Cryst. C54, 1259–1261. Fang, S.-M., Zhang, Q., Hu, M., San˜udo, E. C., Du, M. & Liu, C.-S. (2010). Inorg. Chem. 49, 9617–9626. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Janiak, C. & Vieth, J. K. (2010). New J. Chem. 34, 2366–2388. Karanovic´, L., Poleti, D., Rogan, J., Bogdanovic´, G. A. & Spasojevic´-de Bire´, A. (2002). Acta Cryst. C58, m275–m279. Li, F.-F., An, D.-L. & Jin, L.-F. (2009). Huaxue Yanjiu, 6, 527–532. Lu, W.-G., Deng, J.-H. & Zhong, D.-C. (2012). Inorg. Chem. Commun. 20, 312– 316. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Nardelli, M. (1999). J. Appl. Cryst. 32, 563–571. Rodrı´guez-Martı´n, Y., Sanchiz, J., Ruiz-Pe´rez, C., Lloret, F. & Julve, M. (2001). Inorg. Chim. Acta, 326, 20–26.

6 of 6

Poleti et al.



Rogan, J. & Poleti, D. (2004). Thermochim. Acta, 413, 227–234. Rogan, J., Poleti, D. & Karanovic´, L. (2004). J. Serb. Chem. Soc. 69, 353–362. Rogan, J., Poleti, D. & Karanovic´, L. (2006). Z. Anorg. Allg. Chem. 632, 133– 139. Rogan, J., Poleti, D., Karanovic´, L., Bogdanovic´, G., Spasojevic´-de Bire´, A. & Petrovic´, D. M. (2000). Polyhedron, 19, 1415–1421. Rogan, J., Poleti, D., Karanovic´, L. & Jaglicˇic´, Z. (2011). J. Mol. Struct. 985, 371–379. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Thue´ry, P. (2013). CrystEngComm, 15, 2401–2410. Thue´ry, P. & Rivie`re, E. (2013). Dalton Trans. 42, 10551–10558. Wannarit, N., Pakawatchai, C., Mutikainen, I., Costa, R., de P. R. Moreira, I., Youngme, S. & Illas, F. (2013). Phys. Chem. Chem. Phys. 15, 1966–1975. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Wu, L.-P., Keniry, M. E. & Hathaway, B. (1992). Acta Cryst. C48, 35–40. Xia, B., Chen, Z., Zheng, Q., Zheng, H., Deng, M., Ling, Y., Weng, L. & Zhou, Y. (2013). CrystEngComm, 15, 3484–3489. Xiao, H.-P., Li, X.-H., Shi, Q., Zhang, W.-B., Wang, J.-G. & Morsali, A. (2008). J. Coord. Chem. 61, 2905–2915. Youngme, S., Phatchimkun, J., Wannarit, N., Chaichit, N., Meejoo, S., van Albada, G. A. & Reedijk, J. (2008). Polyhedron, 27, 304–318. Zucchi, G. (2011). Int. J. Inorg. Chem. article No. 918435.

[Mn2(C8H4O4)2(C8H6N4)(H2O)4] and a Cu3 analogue

Acta Cryst. (2015). C71

supporting information

supporting information Acta Cryst. (2015). C71

[doi:10.1107/S2053229614028113]

Mixed-ligand MnII and CuII complexes with alternating 2,2′-bipyrimidine and terephthalate bridges Dejan Poleti, Jelena Rogan, Marko V. Rodić and Lidija Radovanović Computing details For both compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010), PLATON (Spek, 2009) and PARST (Nardelli, 1995). (I) catena-Poly[[diaquamanganese(II)]-µ-2,2′-bipyrimidine-κ4N1,N1′:N3,N3′-[diaquamanganese(II)]-bis(µterephthalato-κ2O1:O4)], Crystal data [Mn2(C8H4O4)2(C8H6N4)(H2O)4] Mr = 668.34 Monoclinic, C2/m a = 14.4270 (3) Å b = 15.6350 (3) Å c = 6.4420 (1) Å β = 115.789 (2)° V = 1308.37 (5) Å3 Z=2

F(000) = 680 Dx = 1.696 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 7117 reflections θ = 4.1–28.7° µ = 1.04 mm−1 T = 294 K Prism, yellow 0.44 × 0.32 × 0.12 mm

Data collection Oxford Gemini S diffractometer with Sapphire3 CCD area detector Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.3280 pixels mm-1 ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014)

Tmin = 0.756, Tmax = 1.000 12759 measured reflections 1333 independent reflections 1284 reflections with I > 2σ(I) Rint = 0.022 θmax = 26.0°, θmin = 4.1° h = −17→17 k = −19→19 l = −7→7

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.024 wR(F2) = 0.066 S = 1.04 1333 reflections

Acta Cryst. (2015). C71

107 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

sup-1

supporting information w = 1/[σ2(Fo2) + (0.0385P)2 + 0.9699P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.30 e Å−3 Δρmin = −0.23 e Å−3

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement

Special details Experimental. CrysAlis PRO (Agilent Technologies, 2014) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Mn1 O1 O2 O3 H3A H3B N1 C1 C2 C3 H3 C4 H4 C5 H5 C6 C7 H7

x

y

z

Uiso*/Ueq

1.0000 0.93763 (11) 0.82353 (9) 0.85749 (10) 0.8528 (18) 0.8046 (14) 0.94283 (9) 0.87734 (12) 0.87117 (11) 0.89433 (12) 0.9100 0.84600 (12) 0.8290 0.88655 (12) 0.8665 0.96834 (14) 0.85806 (17) 0.8207

0.19733 (2) 0.28058 (9) 0.27461 (7) 0.18562 (9) 0.2172 (14) 0.1948 (13) 0.07584 (7) 0.31443 (9) 0.41076 (9) 0.45565 (10) 0.4261 0.45565 (10) 0.4261 0.07539 (9) 0.1271 0.0000 0.0000 0.0000

0.0000 0.1567 (3) 0.3003 (2) −0.3125 (2) −0.415 (3) −0.303 (4) 0.1191 (2) 0.2247 (3) 0.2154 (2) 0.0583 (3) −0.0477 0.3696 (3) 0.4736 0.2396 (3) 0.2789 0.0666 (3) 0.3059 (4) 0.3927

0.03014 (13) 0.0567 (4) 0.0420 (3) 0.0451 (3) 0.066 (7)* 0.058 (7)* 0.0287 (3) 0.0338 (3) 0.0309 (3) 0.0366 (3) 0.044* 0.0372 (4) 0.045* 0.0336 (3) 0.040* 0.0239 (4) 0.0357 (5) 0.043*

Atomic displacement parameters (Å2)

Mn1 O1 O2 O3 N1 C1 C2 C3 C4 C5

U11

U22

U33

U12

U13

U23

0.03450 (19) 0.0626 (8) 0.0480 (6) 0.0370 (6) 0.0334 (6) 0.0345 (8) 0.0303 (7) 0.0423 (8) 0.0536 (9) 0.0409 (8)

0.02257 (18) 0.0420 (7) 0.0314 (6) 0.0558 (8) 0.0243 (6) 0.0321 (8) 0.0313 (7) 0.0416 (8) 0.0313 (8) 0.0277 (7)

0.0454 (2) 0.0905 (10) 0.0587 (7) 0.0500 (7) 0.0367 (6) 0.0406 (8) 0.0377 (7) 0.0385 (7) 0.0441 (8) 0.0441 (8)

0.000 0.0065 (6) 0.0062 (5) 0.0069 (5) 0.0007 (5) 0.0046 (6) 0.0019 (6) 0.0006 (7) 0.0010 (7) 0.0019 (6)

0.02865 (15) 0.0565 (8) 0.0345 (6) 0.0258 (5) 0.0229 (5) 0.0219 (6) 0.0210 (6) 0.0293 (7) 0.0376 (8) 0.0296 (7)

0.000 −0.0119 (7) 0.0074 (5) 0.0148 (6) −0.0005 (5) −0.0029 (6) −0.0016 (6) −0.0039 (6) 0.0027 (6) −0.0035 (6)

Acta Cryst. (2015). C71

sup-2

supporting information C6 C7

0.0244 (9) 0.0405 (11)

0.0239 (9) 0.0361 (11)

0.0270 (9) 0.0443 (11)

0.000 0.000

0.0144 (7) 0.0314 (10)

0.000 0.000

Geometric parameters (Å, º) Mn1—O1 Mn1—O1i Mn1—O3 Mn1—O3i Mn1—N1 Mn1—N1i O1—C1 O2—C1 O3—H3A O3—H3B N1—C6 N1—C5 C1—C2

2.0770 (12) 2.0770 (12) 2.1709 (13) 2.1709 (13) 2.3298 (11) 2.3298 (12) 1.2487 (19) 1.2478 (19) 0.806 (16) 0.806 (16) 1.3284 (14) 1.3452 (17) 1.508 (2)

C2—C3 C2—C4 C3—C3ii C3—H3 C4—C4ii C4—H4 C5—C7 C5—H5 C6—N1iii C6—C6iv C7—C5iii C7—H7

1.387 (2) 1.388 (2) 1.387 (3) 0.9300 1.387 (3) 0.9300 1.3761 (18) 0.9300 1.3283 (14) 1.501 (3) 1.3761 (18) 0.9300

O1—Mn1—O1i O1—Mn1—O3 O1i—Mn1—O3 O1—Mn1—O3i O1i—Mn1—O3i O3—Mn1—O3i O1—Mn1—N1 O1i—Mn1—N1 O3—Mn1—N1 O3i—Mn1—N1 O1—Mn1—N1i O1i—Mn1—N1i O3—Mn1—N1i O3i—Mn1—N1i N1—Mn1—N1i Mn1—O3—H3A Mn1—O3—H3B H3A—O3—H3B C6—N1—C5 C6—N1—Mn1 C5—N1—Mn1

102.39 (8) 93.90 (6) 92.16 (6) 92.16 (6) 93.90 (6) 170.32 (7) 93.47 (5) 164.02 (5) 84.75 (4) 87.36 (5) 164.02 (5) 93.47 (5) 87.36 (5) 84.75 (4) 70.76 (6) 114.7 (17) 117.4 (16) 102 (2) 116.49 (12) 117.83 (9) 125.68 (9)

O2—C1—O1 O2—C1—C2 O1—C1—C2 C3—C2—C4 C3—C2—C1 C4—C2—C1 C2—C3—C3ii C2—C3—H3 C3ii—C3—H3 C4ii—C4—C2 C4ii—C4—H4 C2—C4—H4 N1—C5—C7 N1—C5—H5 C7—C5—H5 N1iii—C6—N1 N1iii—C6—C6iv N1—C6—C6iv C5—C7—C5iii C5—C7—H7 C5iii—C7—H7

124.89 (15) 118.52 (13) 116.58 (14) 119.20 (14) 120.36 (13) 120.40 (13) 120.41 (9) 119.8 119.8 120.38 (9) 119.8 119.8 121.35 (13) 119.3 119.3 126.42 (16) 116.79 (8) 116.79 (8) 117.88 (18) 121.1 121.1

Symmetry codes: (i) −x+2, y, −z; (ii) x, −y+1, z; (iii) x, −y, z; (iv) −x+2, −y, −z.

Hydrogen-bond geometry (Å, º) D—H···A O3—H3A···O2

v

Acta Cryst. (2015). C71

D—H

H···A

D···A

D—H···A

0.81 (2)

1.91 (2)

2.708 (2)

168 (2)

sup-3

supporting information O3—H3B···O2vi

0.81 (2)

1.92 (2)

2.719 (2)

174 (2)

Symmetry codes: (v) x, y, z−1; (vi) −x+3/2, −y+1/2, −z.

(II) catena-Poly[[[aquacopper(II)]-µ-aqua-µ-hydroxido-µ-terephthalato-κ2O1:O1′-copper(II)-µ-aqua-µ-hydroxidoµ-terephthalato-κ2O1:O1′-[aquacopper(II)]-µ-2,2′-bipyrimidine-κ4N1,N1′:N3,N3′] tetrahydrate] Crystal data [Cu3(C8H4O4)2(OH)2(C8H6N4)(H2O)4]·4H2O Mr = 855.15 Triclinic, P1 a = 6.7148 (2) Å b = 10.7900 (3) Å c = 11.7620 (5) Å α = 69.565 (3)° β = 75.167 (3)° γ = 81.404 (3)° V = 770.25 (5) Å3

Z=1 F(000) = 435 Dx = 1.844 Mg m−3 Cu Kα radiation, λ = 1.54178 Å Cell parameters from 4736 reflections θ = 4.9–72.5° µ = 3.21 mm−1 T = 295 K Rod, translucent green 0.63 × 0.23 × 0.12 mm

Data collection Oxford Gemini S CCD area-detector diffractometer Radiation source: Enhance (Cu) X-ray source Graphite monochromator Detector resolution: 16.3280 pixels mm-1 ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) Tmin = 0.487, Tmax = 1.000

8206 measured reflections 3036 independent reflections 2885 reflections with I > 2σ(I) Rint = 0.021 θmax = 72.1°, θmin = 4.4° h = −8→8 k = −13→9 l = −14→14

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.030 wR(F2) = 0.086 S = 1.05 3036 reflections 249 parameters 9 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0468P)2 + 0.7262P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.61 e Å−3 Δρmin = −0.36 e Å−3

Special details Experimental. CrysAlis PRO (Agilent Technologies, 2014) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Cu1

x

y

z

Uiso*/Ueq

0.0000

0.0000

0.5000

0.02179 (13)

Acta Cryst. (2015). C71

sup-4

supporting information Cu2 O1 O2 O3 O4 O5 H5A H5B O6 H6A H6B O7 H7A O8 H8A H8B O9 H9A H9B N1 N2 C1 C2 C3 H3 C4 H4 C5 C6 H6 C7 H7 C8 C9 C10 H10 C11 H11 C12 H12

−0.06720 (5) 0.0838 (3) 0.0370 (3) 0.3524 (3) 0.4082 (3) 0.2310 (3) 0.327 (3) 0.273 (5) −0.3930 (3) −0.391 (5) −0.473 (4) −0.2095 (2) −0.304 (3) 0.5818 (3) 0.588 (6) 0.655 (5) 0.6362 (6) 0.5926 0.7713 0.1136 (3) 0.0682 (3) 0.0862 (3) 0.1563 (3) 0.1813 (4) 0.1538 0.2467 (4) 0.2648 0.2856 (3) 0.2580 (6) 0.2829 0.1935 (7) 0.1750 0.3532 (3) 0.0503 (3) 0.1958 (4) 0.2371 0.2204 (4) 0.2782 0.1570 (4) 0.1762

0.30070 (3) 0.05372 (15) 0.27565 (15) 0.33471 (17) 0.11759 (17) 0.16542 (18) 0.167 (3) 0.156 (3) 0.41295 (18) 0.4912 (19) 0.377 (3) 0.14152 (14) 0.132 (3) 0.1520 (2) 0.074 (2) 0.151 (4) 0.3844 (4) 0.3230 0.3779 0.65456 (18) 0.47817 (18) 0.1677 (2) 0.1811 (2) 0.3044 (2) 0.3798 0.3172 (2) 0.4010 0.2065 (2) 0.0838 (3) 0.0084 0.0712 (3) −0.0126 0.2209 (2) 0.5366 (2) 0.7240 (2) 0.8086 0.6720 (2) 0.7203 0.5466 (2) 0.5088

0.41875 (3) 0.31075 (13) 0.25681 (13) −0.36946 (15) −0.32075 (15) 0.47498 (16) 0.413 (2) 0.537 (2) 0.38533 (18) 0.379 (3) 0.451 (2) 0.48389 (14) 0.539 (2) 0.2934 (2) 0.297 (4) 0.341 (3) 0.0706 (3) 0.1357 0.0530 0.41706 (17) 0.35082 (17) 0.23341 (19) 0.09742 (19) 0.0080 (2) 0.0320 −0.1164 (2) −0.1752 −0.15496 (19) −0.0660 (2) −0.0900 0.0589 (2) 0.1177 −0.29157 (19) 0.43620 (19) 0.2994 (2) 0.2813 0.2043 (2) 0.1226 0.2339 (2) 0.1716

0.02385 (11) 0.0294 (3) 0.0298 (3) 0.0373 (4) 0.0386 (4) 0.0323 (4) 0.031 (7)* 0.043 (9)* 0.0395 (4) 0.037 (8)* 0.050 (9)* 0.0230 (3) 0.027 (7)* 0.0430 (4) 0.065* 0.065* 0.1041 (11) 0.156* 0.156* 0.0241 (4) 0.0255 (4) 0.0244 (4) 0.0258 (4) 0.0364 (6) 0.044* 0.0363 (6) 0.044* 0.0247 (4) 0.0535 (9) 0.064* 0.0599 (10) 0.072* 0.0255 (4) 0.0219 (4) 0.0293 (5) 0.035* 0.0351 (5) 0.042* 0.0326 (5) 0.039*

Atomic displacement parameters (Å2)

Cu1 Cu2 O1 O2

U11

U22

U33

U12

U13

U23

0.0326 (2) 0.0381 (2) 0.0470 (9) 0.0490 (9)

0.0164 (2) 0.01706 (17) 0.0234 (8) 0.0231 (8)

0.0148 (2) 0.01669 (17) 0.0153 (7) 0.0166 (7)

−0.00029 (16) −0.00609 (13) −0.0006 (7) −0.0057 (7)

−0.00166 (17) 0.00014 (13) −0.0019 (6) 0.0007 (6)

−0.00615 (16) −0.00857 (12) −0.0074 (6) −0.0099 (6)

Acta Cryst. (2015). C71

sup-5

supporting information O3 O4 O5 O6 O7 O8 O9 N1 N2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

0.0601 (11) 0.0627 (12) 0.0356 (9) 0.0509 (11) 0.0299 (8) 0.0484 (11) 0.100 (2) 0.0307 (9) 0.0344 (9) 0.0310 (10) 0.0351 (11) 0.0618 (16) 0.0618 (16) 0.0303 (10) 0.110 (3) 0.130 (3) 0.0302 (10) 0.0282 (10) 0.0386 (12) 0.0469 (14) 0.0467 (13)

0.0290 (9) 0.0302 (9) 0.0392 (9) 0.0263 (9) 0.0179 (7) 0.0384 (10) 0.087 (2) 0.0192 (8) 0.0212 (9) 0.0250 (11) 0.0250 (11) 0.0234 (11) 0.0247 (11) 0.0268 (11) 0.0237 (12) 0.0207 (12) 0.0289 (11) 0.0177 (9) 0.0233 (11) 0.0331 (13) 0.0314 (12)

0.0191 (8) 0.0217 (8) 0.0258 (8) 0.0346 (10) 0.0194 (7) 0.0464 (11) 0.098 (2) 0.0227 (9) 0.0218 (9) 0.0183 (10) 0.0170 (10) 0.0232 (11) 0.0183 (10) 0.0173 (10) 0.0220 (12) 0.0182 (12) 0.0183 (10) 0.0211 (10) 0.0247 (11) 0.0223 (11) 0.0207 (10)

−0.0053 (8) −0.0002 (8) −0.0017 (7) −0.0017 (8) −0.0031 (6) −0.0033 (8) −0.0194 (19) −0.0030 (7) −0.0029 (7) −0.0027 (8) −0.0022 (8) −0.0049 (11) −0.0053 (11) −0.0013 (8) 0.0012 (14) −0.0009 (15) −0.0037 (8) −0.0014 (8) −0.0095 (9) −0.0129 (10) −0.0075 (10)

−0.0018 (7) −0.0009 (8) −0.0059 (7) 0.0007 (8) 0.0009 (6) −0.0099 (9) −0.020 (2) −0.0040 (7) −0.0017 (7) −0.0024 (8) −0.0021 (8) −0.0010 (11) −0.0007 (10) −0.0021 (8) −0.0022 (14) −0.0011 (15) −0.0014 (8) −0.0033 (8) −0.0043 (9) −0.0010 (10) −0.0007 (9)

−0.0072 (7) −0.0141 (7) −0.0162 (7) −0.0094 (8) −0.0076 (6) −0.0190 (9) 0.0080 (19) −0.0079 (7) −0.0109 (7) −0.0101 (8) −0.0091 (8) −0.0116 (9) −0.0067 (9) −0.0100 (8) −0.0126 (10) −0.0051 (10) −0.0107 (9) −0.0094 (8) −0.0050 (9) −0.0059 (9) −0.0125 (9)

Geometric parameters (Å, º) Cu1—O7 Cu1—O7i Cu1—O1i Cu1—O1 Cu1—O5i Cu1—O5 Cu1—Cu2i Cu1—Cu2 Cu2—O7 Cu2—O2 Cu2—N2 Cu2—N1ii Cu2—O5 Cu2—O6 O1—C1 O2—C1 O3—C8 O4—C8 O5—H5A O5—H5B O6—H6A O6—H6B O7—H7A O8—H8A

Acta Cryst. (2015). C71

1.9076 (15) 1.9076 (15) 2.0402 (14) 2.0402 (14) 2.4301 (18) 2.4302 (18) 3.0433 (3) 3.0433 (3) 1.9096 (15) 1.9522 (15) 2.0521 (18) 2.0875 (18) 2.3891 (18) 2.392 (2) 1.248 (3) 1.267 (3) 1.250 (3) 1.255 (3) 0.835 (17) 0.816 (18) 0.823 (18) 0.825 (18) 0.770 (17) 0.827 (19)

O9—H9A O9—H9B N1—C9 N1—C10 N1—Cu2ii N2—C9 N2—C12 C1—C2 C2—C7 C2—C3 C3—C4 C3—H3 C4—C5 C4—H4 C5—C6 C5—C8 C6—C7 C6—H6 C7—H7 C9—C9ii C10—C11 C10—H10 C11—C12 C11—H11

0.836 0.875 1.328 (3) 1.338 (3) 2.0875 (18) 1.334 (3) 1.340 (3) 1.508 (3) 1.379 (3) 1.379 (3) 1.380 (3) 0.9300 1.387 (3) 0.9300 1.374 (3) 1.512 (3) 1.384 (4) 0.9300 0.9300 1.465 (4) 1.382 (3) 0.9300 1.379 (3) 0.9300

sup-6

supporting information O8—H8B

0.833 (19)

C12—H12

0.9300

O7—Cu1—O7i O7—Cu1—O1i O7i—Cu1—O1i O7—Cu1—O1 O7i—Cu1—O1 O1i—Cu1—O1 O7—Cu1—O5i O7i—Cu1—O5i O1i—Cu1—O5i O1—Cu1—O5i O7—Cu1—O5 O7i—Cu1—O5 O1i—Cu1—O5 O1—Cu1—O5 O5i—Cu1—O5 O7—Cu1—Cu2i O7i—Cu1—Cu2i O1i—Cu1—Cu2i O1—Cu1—Cu2i O5i—Cu1—Cu2i O5—Cu1—Cu2i O7—Cu1—Cu2 O7i—Cu1—Cu2 O1i—Cu1—Cu2 O1—Cu1—Cu2 O5i—Cu1—Cu2 O5—Cu1—Cu2 Cu2i—Cu1—Cu2 O7—Cu2—O2 O7—Cu2—N2 O2—Cu2—N2 O7—Cu2—N1ii O2—Cu2—N1ii N2—Cu2—N1ii O7—Cu2—O5 O2—Cu2—O5 N2—Cu2—O5 N1ii—Cu2—O5 O7—Cu2—O6 O2—Cu2—O6 N2—Cu2—O6 N1ii—Cu2—O6 O5—Cu2—O6 O7—Cu2—Cu1 O2—Cu2—Cu1 N2—Cu2—Cu1

180.0 91.05 (6) 88.95 (6) 88.95 (6) 91.05 (6) 180.0 94.13 (6) 85.87 (6) 84.51 (6) 95.49 (6) 85.87 (6) 94.13 (6) 95.49 (6) 84.51 (6) 180.0 142.85 (5) 37.15 (5) 77.04 (4) 102.96 (4) 50.24 (4) 129.76 (4) 37.15 (5) 142.85 (5) 102.96 (4) 77.04 (4) 129.76 (4) 50.24 (4) 180.0 92.02 (7) 176.41 (7) 89.72 (7) 98.71 (7) 166.90 (7) 80.00 (7) 87.00 (6) 85.67 (7) 96.26 (7) 87.40 (6) 85.93 (7) 98.20 (7) 90.71 (7) 90.09 (7) 172.05 (6) 37.11 (5) 79.98 (5) 146.43 (5)

Cu2—O5—H5B Cu1—O5—H5B H5A—O5—H5B Cu2—O6—H6A Cu2—O6—H6B H6A—O6—H6B Cu1—O7—Cu2 Cu1—O7—H7A Cu2—O7—H7A H8A—O8—H8B H9A—O9—H9B C9—N1—C10 C9—N1—Cu2ii C10—N1—Cu2ii C9—N2—C12 C9—N2—Cu2 C12—N2—Cu2 O1—C1—O2 O1—C1—C2 O2—C1—C2 C7—C2—C3 C7—C2—C1 C3—C2—C1 C2—C3—C4 C2—C3—H3 C4—C3—H3 C3—C4—C5 C3—C4—H4 C5—C4—H4 C6—C5—C4 C6—C5—C8 C4—C5—C8 C5—C6—C7 C5—C6—H6 C7—C6—H6 C2—C7—C6 C2—C7—H7 C6—C7—H7 O3—C8—O4 O3—C8—C5 O4—C8—C5 N1—C9—N2 N1—C9—C9ii N2—C9—C9ii N1—C10—C11 N1—C10—H10

125 (2) 115 (2) 112 (3) 109 (2) 103 (2) 108 (3) 105.74 (7) 116 (2) 121 (2) 104 (4) 109 116.64 (18) 112.64 (14) 130.72 (15) 116.34 (19) 113.73 (14) 129.75 (16) 126.72 (19) 117.84 (18) 115.43 (19) 118.3 (2) 121.1 (2) 120.60 (19) 120.8 (2) 119.6 119.6 120.8 (2) 119.6 119.6 118.3 (2) 120.9 (2) 120.7 (2) 120.7 (2) 119.6 119.6 121.0 (2) 119.5 119.5 123.4 (2) 118.45 (19) 118.1 (2) 126.60 (19) 116.8 (2) 116.6 (2) 121.0 (2) 119.5

Acta Cryst. (2015). C71

sup-7

supporting information N1ii—Cu2—Cu1 O5—Cu2—Cu1 O6—Cu2—Cu1 C1—O1—Cu1 C1—O2—Cu2 Cu2—O5—Cu1 Cu2—O5—H5A Cu1—O5—H5A

104.19 (5) 51.44 (4) 122.22 (5) 128.12 (14) 128.09 (14) 78.32 (5) 112.4 (19) 108.3 (19)

C11—C10—H10 C12—C11—C10 C12—C11—H11 C10—C11—H11 N2—C12—C11 N2—C12—H12 C11—C12—H12

119.5 118.1 (2) 120.9 120.9 121.2 (2) 119.4 119.4

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

O5—H5A···O8 O5—H5B···O4iii O6—H6A···O3iv O6—H6B···O3v O7—H7A···O4v O8—H8A···O4vi O8—H8B···O7vii O9—H9A···O8

0.83 (2) 0.82 (3) 0.82 (2) 0.82 (2) 0.77 (2) 0.83 (3) 0.83 (4) 0.84

1.95 (2) 1.99 (3) 1.90 (2) 2.06 (2) 2.18 (2) 1.98 (2) 2.07 (4) 2.10

2.770 (3) 2.805 (3) 2.714 (3) 2.857 (2) 2.950 (2) 2.805 (3) 2.895 (3) 2.913 (4)

169 (2) 172 (3) 173 (2) 161 (2) 174 (2) 175 (3) 170 (3) 162

Symmetry codes: (iii) x, y, z+1; (iv) −x, −y+1, −z; (v) x−1, y, z+1; (vi) −x+1, −y, −z; (vii) x+1, y, z.

Acta Cryst. (2015). C71

sup-8

Mixed-ligand MnII and CuII complexes with alternating 2,2'-bipyrimidine and terephthalate bridges.

The novel polymeric complexes catena-poly[[diaquamanganese(II)]-μ-2,2'-bipyrimidine-κ(4)N(1),N(1'):N(3),N(3')-[diaquamanganese(II)]-bis(μ-terephthalat...
1MB Sizes 0 Downloads 11 Views