Article

Microwave Annealing for NiSiGe Schottky Junction on SiGe P-Channel Yu-Hsien Lin 1, *, Yi-He Tsai 1 , Chung-Chun Hsu 2 , Guang-Li Luo 3 , Yao-Jen Lee 3 and Chao-Hsin Chien 2,3 Received: 10 September 2015 ; Accepted: 5 November 2015 ; Published: 10 November 2015 Academic Editor: Jung Ho Je 1 2 3

*

Department of Electronic Engineering, National United University, Miaoli 36003, Taiwan; [email protected] Department of Electronics Engineering and Institute of Electronics, National Chiao-Tung University, Hsinchu 30010, Taiwan; [email protected] (C.-C.H.); [email protected] (C.-H.C.) National Nano Device Laboratories, Hsinchu 30010, Taiwan; [email protected] (G.-L.L.); [email protected] (Y.-J.L.) Correspondence: [email protected]; Tel.: +886-3-738-2533; Fax: +886-3-736-2809

Abstract: In this paper, we demonstrated the shallow NiSiGe Schottky junction on the SiGe P-channel by using low-temperature microwave annealing. The NiSiGe/n-Si Schottky junction was formed for the Si-capped/SiGe multi-layer structure on an n-Si substrate (Si/Si0.57 Ge0.43 /Si) through microwave annealing (MWA) ranging from 200 to 470 ˝ C for 150 s in N2 ambient. MWA has the advantage of being diffusion-less during activation, having a low-temperature process, have a lower junction leakage current, and having low sheet resistance (Rs) and contact resistivity. In our study, a 20 nm NiSiGe Schottky junction was formed by TEM and XRD analysis at MWA 390 ˝ C. The NiSiGe/n-Si Schottky junction exhibits the highest forward/reverse current (ION /IOFF ) ratio of ~3 ˆ 105 . The low temperature MWA is a very promising thermal process technology for NiSiGe Schottky junction manufacturing. Keywords: germanium; microwave annealing; NiSiGe; Schottky junction

1. Introduction As the devices are being continuously scaled down for logic circuits, higher mobility channel materials such as Ge or SiGe have been considered to boost the driving current [1–5]. However, most high mobility materials have a significantly smaller bandgap as compared to Si, which will result in a higher band-to-band tunneling leakage. Therefore, S/D (Source/Drain) and channel engineering must play leading roles for boosting device performance. First, the parasitic series resistance should be reduced. The low dopant solid solubility in Ge results in the large S/D series resistance. A large S/D series resistance can be restrained by introducing metal germanide S/D. Second, the shallow junction is needed. The interface between the metal and the semiconductor is abrupt and can be easily governed by the reactant metal thickness and the process thermal budget, which indicates a high potential for scalability [6]. Third, simpler device fabrication could be achieved for the Schottky device without ion implantations and the high temperature annealing for dopant activation [7,8]. NiSiGe is the most promising candidate due to its low resistivity for the junction contact [9–12]. For reducing the thickness of the NiSiGe layer of the Schottky junction, the process temperature needs to be reduced. However, a lower process temperature results in a higher NiSiGe resistance due to the small crystallite size of the NiSiGe layer. These are the major challenges of scaling Ge CMOS (Complementary Metal-Oxide-Semiconductor) into nanoscale devices. Therefore, in order to avoid the dopant diffusion effect, which is dominant at high annealing temperatures,

Materials 2015, 8, 7519–7523; doi:10.3390/ma8115403

www.mdpi.com/journal/materials

Materials 2015, 8, page–page  Materials 2015, 8, 7519–7523

avoid the dopant diffusion effect, which is dominant at high annealing temperatures, low‐temperature  annealing  with  microwave  excitation  appears  to  offer  a  promising  microwave  annealing  (MWA)  low-temperature annealing with microwave excitation appears to offer a promising microwave process  that  may  be  an  alternative  to  other  rapid  thermal  processing  methods  in  silicon   annealing (MWA) process that may be an alternative to other rapid thermal processing methods in Materials 2015, 8, page–page  processing  [13–15].  Microwaves  could  repair  the  damage  in  the  Schottky  junction  formation  and  silicon processing [13–15]. Microwaves could repair the damage in the Schottky junction formation avoid the dopant diffusion effect, which is dominant at high annealing temperatures, low‐temperature  provide the lower leakage current for the Schottky junction device.  and provide the lower leakage current for the Schottky junction device. annealing  with we microwave  appears  to  offer  junction a  promising  microwave  annealing annealing (MWA)  in In this paper, we propose a NiSiGe/n‐Si Schottky junction formed by microwave annealing in  In this paper, propose excitation  a NiSiGe/n-Si Schottky formed by microwave process  that  may  be  an  alternative  to  other  rapid  thermal  processing  methods  in  silicon   the Si-capped Si‐capped  SiGe  Schottky  junction  devices  (Si/Si xGe /Si,  x  shallow junction junction  with aa  the SiGe Schottky junction devices (Si/Si x =  = 0~1).  0~1). The  The shallow with x Ge 1´1‐x x /Si, processing  [13–15].  Microwaves  could  repair  the  damage  in  the  Schottky  junction  formation  and  eff 20 nm depth has been fabricated with a high effective barrier height (φeff ) and low leakage current in  20 nm depth has been fabricated with a high effective barrier height ( ) and low leakage current  B B provide the lower leakage current for the Schottky junction device.  the devices. in the devices.  In this paper, we propose a NiSiGe/n‐Si Schottky junction formed by microwave annealing in  the  Si‐capped  SiGe  Schottky  junction  devices  (Si/SixGe1‐x/Si,  x  =  0~1).  The  shallow  junction  with  a 

2.2. Experimental Section  Experimental Section 20 nm depth has been fabricated with a high effective barrier height ( eff B ) and low leakage current  Figure 1 shows the schematic diagram and process flow of fabricating the NiSiGe/n-Si Schottky in the devices.  Figure 1 shows the schematic diagram and process flow of fabricating the NiSiGe/n‐Si Schottky  junction structure. The Schottky junction devices were fabricated on a four-inch silicon wafer. junction structure. The Schottky junction devices were fabricated on a four‐inch silicon wafer. The  2. Experimental Section  The multi-layer structure of Si/Si 0.57 Ge0.43 (1 nm/2 nm/n-Si) was grown by an ultra-high vacuum multi‐layer structure of Si/Si 0.57Ge0.43 (1 nm/2 nm/n‐Si) was grown by an ultra‐high vacuum chemical  chemical vapor deposition system (UHVCVD, CANON ANELVA Corporation (Kanagawa, Japan)) Figure 1 shows the schematic diagram and process flow of fabricating the NiSiGe/n‐Si Schottky  vapor  deposition  system  (UHVCVD,  CANON  ANELVA  Corporation  (Kanagawa,  Japan))  on  an   on anjunction structure. The Schottky junction devices were fabricated on a four‐inch silicon wafer. The  n-type Si substrate. The channel was composed of a 1-nm-thick Si cap and a 2-nm-thick n‐type Si substrate. The channel was composed of a 1‐nm‐thick Si cap and a 2‐nm‐thick SiGe layer  multi‐layer structure of Si/Si 0.57Ge0.43strain  (1 nm/2 nm/n‐Si) was grown by an ultra‐high vacuum chemical  SiGe layer with biaxial compressive and was grown at 420–500 ˝ C and 550 ˝ C, respectively. with biaxial compressive strain and was grown at 420–500 °C and 550 °C, respectively. The isolation  vapor  deposition  system  CANON  ANELVA  Corporation  (Kanagawa, after Japan))  on  surface an   The filmSiO of 420 nm (UHVCVD,  SiO2 was deposited on the multi-layer architecture series film isolation of  420  nm  2  was  deposited  on  the  multi‐layer  architecture  after  series  surface  cleaning.  n‐type Si substrate. The channel was composed of a 1‐nm‐thick Si cap and a 2‐nm‐thick SiGe layer  cleaning. Then, the definition of the junction active area was accomplished with lithography and Then, the definition of the junction active area was accomplished with lithography and wet‐etching.  with biaxial compressive strain and was grown at 420–500 °C and 550 °C, respectively. The isolation  wet-etching. Because of the bulk annealing characteristics of the microwave, the technique was Because of the bulk annealing characteristics of the microwave, the technique was utilized to form  film  of  420  nm  SiO2  was  deposited  on  the  multi‐layer  architecture  after  series  surface  cleaning.  ˝ for 150 s utilized to NiSiGe asSchottky  a low-leakage Schottky junction ranging from for  200150  to 470 NiSiGe  as form a  low‐leakage  junction  ranging  from  200  to  470 °C  s  in  C N2  ambient.   Then, the definition of the junction active area was accomplished with lithography and wet‐etching.  inThe un‐reacted Ni film was removed, followed by Al deposition as the back contact.  N2Because of the bulk annealing characteristics of the microwave, the technique was utilized to form  ambient. The un-reacted Ni film was removed, followed by Al deposition as the back contact. NiSiGe  as  a  low‐leakage  Schottky  junction  ranging  from  200  to  470 °C  for  150  s  in  N2  ambient.   The un‐reacted Ni film was removed, followed by Al deposition as the back contact.  •UHVCVD Si/SiGe (~1 / ~2nm) on n-Si

Al

SiO2

SiO2

Al

SiGe SiGe SiO2

SiGe SiO2

NiSiGe

SiGe SiGe

NiSiGe

SiGe

(100) n-Si (100) Al n-Si

•DHF(HF:H2O = 1:20) surface treatment

•PECVD @ SiO2 (~1 (420 nm) on n-Si •UHVCVD Si/SiGe / ~2nm) •Electrode2patterning by lithography O = 1:20) surface treatment and •DHF(HF:H wet etch •PECVD @ SiO2 (420 nm) •Sputter @ Ni (10 nm) and lift-offand •Electrode patterning by lithography wet etch •Microwave Annealing (Splits) •Sputter @ Ni (10 nm) and lift-off •Backside contact (Al) •Microwave Annealing (Splits) •Backside contact (Al)

Al

 

  Figure 1. Schematic diagram and process flow of fabricating the NiSiGe/n‐Si Schottky junction structure.  Figure 1. Schematic diagram and process flow of fabricating the NiSiGe/n-Si Schottky junction structure. Figure 1. Schematic diagram and process flow of fabricating the NiSiGe/n‐Si Schottky junction structure. 

3.3. Results and Discussion  Results and Discussion

3. Results and Discussion 

Figure 2 shows the high resolution TEM images of an approximately 1 nm/2 nm Si/SiGe film  Figure 2 shows the high resolution TEM images of an approximately 1 nm/2 nm Si/SiGe film for Figure 2 shows the high resolution TEM images of an approximately 1 nm/2 nm Si/SiGe film  for multi-layer the  multi‐layer  Si/Si 0.57 Ge 0.43/n‐Si  structure  before  MWA.  The  SiGe/Si  lattice  interface  image  the Si/Si0.57 Ge /n-Si structure before MWA. The SiGe/Si lattice interface image shows 0.43 for  the  multi‐layer  Si/Si 0.57Ge0.43/n‐Si  structure  before  MWA.  The  SiGe/Si  lattice  interface  image  ˝ shows  the  good  polycrystalline  The  inset  figure  shows  NiSiGe  film  MWA  the good polycrystalline structure.structure.  The insetThe  figure shows the NiSiGe film after at 390 shows  the  good  polycrystalline  structure.  inset  figure  shows  the the  NiSiGe  film MWA after after  MWA  at C. Aat  390 °C. A 20‐nm relative uniformity of the NiSiGe film and a distinct interface between the NiSiGe  20-nm relative uniformity of the NiSiGe film and a distinct interface between the NiSiGe and Si could 390 °C. A 20‐nm relative uniformity of the NiSiGe film and a distinct interface between the NiSiGe  and Si could be observed.  be observed. and Si could be observed. 

Si Si Cap Cap NiSiGe

SiGe

NiSiGe

SiGe

n-Si

n-Si

 

  in  the  Si/SiGe/n‐Si  Figure  2.  The  cross‐sectional  TEM  images  show  the  polycrystalline  structure 

Figure 2. The cross-sectional TEM images show the polycrystalline structure in the Si/SiGe/n-Si lattice interface image. The inset figure shows the NiSiGe Schottky junction through MWA at 390 °C.  Figure  2.  The  cross‐sectional  TEM  images  show  the  polycrystalline  structure  in  the  Si/SiGe/n‐Si  lattice interface image. The inset figure shows the NiSiGe Schottky junction through MWA at 390 ˝ C. lattice interface image. The inset figure shows the NiSiGe Schottky junction through MWA at 390 °C.  2

2 7520

Materials 2015, 8, 7519–7523

Materials 2015, 8, page–page  Materials 2015, 8, page–page 

The result the grazing incidence of X-ray diffraction (GIXRD) analysisanalysis  was shown Figure in  3. The  result ofof  the  grazing  incidence  of  X‐ray  diffraction  (GIXRD)  was inshown  From this figure, the descriptions of power 0.5, power 2, power 4 are 300 W, 1200 W, 2400 W, The  From  result this  of  the  grazing  incidence  of  was  in  Figure 3.  figure,  the  descriptions  of X‐ray  power diffraction  0.5,  power (GIXRD)  2,  power analysis  4  are  300  W, shown  1200  W,  ˝ C, respectively. thethe  temperature measurements the above splits 200 are  Figure 3. respectively.  From Moreover, this  figure,  descriptions  of  power  0.5, of power  2,  4  are  300  are W,  1200  W,  2400 W,  Moreover,  the  temperature  measurements  of power  the power above  power  splits  ˝ C, and 470 ˝ C, respectively. Many peaks are shown, which correspond to the crystalline nickel 390 2400 W,  respectively.  Moreover,  the  temperature  measurements  of  the  above  power  splits  are  200 °C, 390 °C, and 470 °C, respectively. Many peaks are shown, which correspond to the crystalline  monogermanide; implementing 390 ˝ C for MWA sufficient to form polycrystalline NiGe and 200 °C, 390 °C, and 470 °C, respectively. Many peaks are shown, which correspond to the crystalline  nickel  monogermanide;  implementing  390 150 °C  sfor  150  is s  MWA  is  sufficient  to  form  polycrystalline  NiSiGe. The peaks The  corresponding to (011), (112), and NiSi and (111) NiSiGe were nickel and  monogermanide;  implementing  390 (200), °C to  for  150  (200),  s (211), MWA  is  (020) sufficient  to  form  polycrystalline  NiGe  NiSiGe.  peaks  corresponding  (011),  (112),  (211),  and  (020)  NiSi  and  (111)  ˝ C for 150 s was sufficient to form the NiSi and clearly identified [16]. Performing the MWA at 390 NiGe  and  NiSiGe.  The  peaks  corresponding  to  (011),  (200),  (112),  (211),  and  (020)  NiSi  and  (111)  NiSiGe were clearly identified [16]. Performing the MWA at 390 °C for 150 s was sufficient to form  NiSiGe phase for forming the Schottky junction. NiSiGe were clearly identified [16]. Performing the MWA at 390 °C for 150 s was sufficient to form  the NiSi and NiSiGe phase for forming the Schottky junction.  the NiSi and NiSiGe phase for forming the Schottky junction. 

    Figure 3. The GIXRD spectra for MWA with different power splits, confirming the NiSiGe formation. 

Figure 3. The GIXRD spectra for MWA with different power splits, confirming the NiSiGe formation. Figure 3. The GIXRD spectra for MWA with different power splits, confirming the NiSiGe formation. 

Figure  4  shows  the  I–V  characteristics  of  the  fabricated  NiSiGe/n‐Si  Schottky  junction;  the  Figure 44  shows the of fabricated NiSiGe/n-Si Schottky junction; Figure  shows  the I–V I–V  characteristics characteristics  of the the  fabricated  NiSiGe/n‐Si  Schottky  junction;  the  NiSiGe  formation  during  MWA  conditions  was  at  200  °C,  330  °C,  390  °C, ˝420  °C,  and  470  °C  the for  ˝ ˝ ˝ ˝ NiSiGe formation during MWA conditions was at 200 C, 330 C, 390 C, 420 C, and 470 C for 150 s, NiSiGe  formation  during  MWA  conditions  was  at  200  °C,  330  °C,  390  °C,  420  °C,  and  470  °C  for  150 s,  respectively.  After  forming  NiSiGe  with  MWA  annealing, the  forward currents and reverse  respectively. After forming NiSiGe with MWA annealing, the forward currents and reverse leakage 150 s,  respectively.  After  forming  NiSiGe  with  MWA  annealing, the  forward currents and reverse  leakage currents of all NiSiGe/n‐Si contacts gradually decreased from 200 °C to 390 °C. However,  ˝ C to 390 ˝ C. However, increasing currents of the  all NiSiGe/n-Si contacts gradually decreased from°C,  200the  leakage currents of all NiSiGe/n‐Si contacts gradually decreased from 200 °C to 390 °C. However,  increasing  annealing  temperature  from  200  °C  to  470  forward  currents  and  reverse  ˝ ˝ the annealing from 200 C to 470 200  C, the forward currents and reverse leakage increasing  the temperature annealing  temperature  from  °C  to  470  °C,  the  forward  currents  and currents reverse  leakage currents are degraded accordingly. The NiSiGe/n‐Si Schottky junction exhibits the highest  are degraded accordingly. The NiSiGe/n-Si Schottky junction exhibits the highest forward/reverse 5 leakage currents are degraded accordingly. The NiSiGe/n‐Si Schottky junction exhibits the highest  forward/reverse current ratio of ~2.5 × 10  at MWA 390 °C. This result also indicates that the series  current ratio of ~2.5 ˆ 105 at MWA 390 ˝ C. This result also indicates that the series resistance can be 5 at MWA 390 °C. This result also indicates that the series  forward/reverse current ratio of ~2.5 × 10 resistance can be significantly reduced after the SiNiGe formation at the condition of MWA 390 °C.  ˝ C. Note that if using significantly reduced after the SiNiGe formation the condition of MWA 390°C,  resistance can be significantly reduced after the SiNiGe formation at the condition of MWA 390 °C.  Note  that  if  using  relatively  high  temperature atMWA  annealing  at  >470  the  crystallization  ˝ C, the crystallization became more significant relatively high temperature MWA annealing at >470 Note  that  if  using  relatively  high  temperature  MWA  annealing  at  >470  °C,  the  crystallization  became  more  significant  and  which  was  shown  by  the  increased  intensity  of  the  GIXRD  peak  in  and which was shown by the increased intensity of the GIXRD peak in Figure 3. This issue became 3. more  which  was  shown  by uniformity,  the  increased  intensity  the  GIXRD  peak  in  Figure  This significant  issue  will and  potentially  degrade  the  cause  more  of  defects  induce  at will the  potentially degrade the uniformity, cause more defects induce at the interface, and affect the leakage Figure  3.  This  issue  will  potentially  degrade  the  uniformity,  cause  more  defects  induce  at  the  interface, and affect the leakage current of the junction increase.  current of the junction increase. interface, and affect the leakage current of the junction increase.  2) 2) Current Density (A/cm Current Density (A/cm

3

10 3 102 10 2 101 10 1 100 10 0 10-1 10 -1 10-2 10 -2 10-3 10 -3 10-4 10 -4 10-5 10 -5 10-6 10 -6 -1.0 10 -1.0

MWA@330C MWA@390C MWA@330C MWA@420C MWA@390C MWA@470C MWA@420C MWA@200C MWA@470C MWA@200C

-0.5 0.0 0.5 -0.5 0.0 Voltage(volt)0.5 Voltage(volt)

1.0 1.0

Figure 4. The I–V characteristics of the NiSiGe/n‐Si Schottky junction annealed at different MWA temperatures.  Figure 4. The I–V characteristics of the NiSiGe/n‐Si Schottky junction annealed at different MWA temperatures.  Figure 4. The I–V characteristics of the NiSiGe/n-Si Schottky junction annealed at different Figure  5  shows  the  effective  electron  SBH  (Schottky  barrier  height)  and  ideality  factor  of  MWA temperatures.

Figure  5  shows  the  effective  electron  SBH  (Schottky  barrier  height)  and  ideality  factor  of  NiSiGe/n‐Si Schottky junctions with different MWA temperatures. For a typical or moderate doped  NiSiGe/n‐Si Schottky junctions with different MWA temperatures. For a typical or moderate doped  semiconductor, the I–V characteristics of the Schottky diode could be described by:   7521 semiconductor, the I–V characteristics of the Schottky diode could be described by:   3 3

Materials 2015, 8, page–page  Materials 2015, 8, 7519–7523

 qVa  I  I S exp  1 (1)  Figure 5 shows the effective electron SBH (Schottky nK BT barrier height) and ideality factor of NiSiGe/n-Si Schottky junctions with different MWA temperatures. For a typical or moderate doped with  semiconductor, the I–V characteristics of the Schottky diode could be described by:

 q Beff˙  qV a IIS “ IAA T exp ´ 1  S exp nK B T K BT  *

ˆ 2

(2)  (1)

with Is is  the  saturation  current,  A is  the  diode  area,  the  applied  voltage,  A* is  the  effective  where  ˜ Vae is  ¸ ff eff qφ Richardson  constant  [17,18],  B  is  the  SBH,  n is  the Bideality  factor.  The  ideality  factor  n  and  IS “ AA˚and  T 2 exp (2) KB T eff SBH  B  can be derived as:   where Is is the saturation current, A is the diode area, Va is the applied voltage, A* is the effective  q  V  factor. The ideality factor n and SBH Richardson constant [17,18], φeff B is the SBH,    n  and n isthe ideality (3)  eff φB can be derived as:  K BT˙ˆ[ln I ]˙ ˆ q BV n“ (3) and  KB T BrlnIs and

eff ef f  φ B “

B

K T ˆ AT 2 ˙ K BBT ln A˚ T 2    ln   qq  JJSS 

(4)  (4)

1.6

0.75

1.5

0.70

1.3

0.60

1.2

0.55

1.1

0.50

Ideal Factor

1.4

0.65

1.0 270 300 330 360 390 420 450 480 °

Effective Barrier Hieght(ev)

eff from each MWA sample of a By using Equation (3), we extract the ideal factor n and SBH φeff By using Equation (3), we extract the ideal factor n and SBH  BB  from each MWA sample of a  different temperature in the I–V characteristics of Figure 4. From Figure 5, we can observe that the different temperature in the I–V characteristics of Figure 4. From Figure 5, we can observe that the  SBH and the ideality factor of the MWA 390 ˝ C condition are 0.63 eV and 1.01, and it shows good SBH and the ideality factor of the MWA 390 °C condition are 0.63 eV and 1.01, and it shows good  electrical characteristics of Schottky junctions. electrical characteristics of Schottky junctions. 

Temperature( C)

 

Figure 5. SBH and ideality factor of NiSiGe/n‐Si Schottky contact with different MWA temperatures.  Figure 5. SBH and ideality factor of NiSiGe/n-Si Schottky contact with different MWA temperatures.

4. Conclusions  4. Conclusions This paper realized the shallow NiSiGe Schottky junction on the SiGe P‐channel by using low‐ This paper realized the shallow NiSiGe Schottky junction on the SiGe P-channel by using temperature  microwave  annealing.  The  formation  of  junction  defects  could  be  suppressed  and  low-temperature microwave annealing. The formation of junction defects could be suppressed and prevent the agglomeration due to the lower forming temperature. The microwave‐annealed NiSiGe  prevent the agglomeration due to the lower forming temperature. The microwave-annealed NiSiGe Schottky junction exhibited a superior ION/IOFF ratio of about 3 × 105 formed at 390 °C as well as more  Schottky junction exhibited a superior ION /IOFF ratio of about 3 ˆ 105 formed at 390 ˝ C as well as stable off‐current characteristics with an SBH of 0.63 eV and an ideality factor of 1.01. We believe  more stable off-current characteristics with an SBH of 0.63 eV and an ideality factor of 1.01. We believe our microwave annealing NiSiGe Schottky junction is promising for high performance logic circuits  our microwave annealing NiSiGe Schottky junction is promising for high performance logic circuits and will enable SiGe channel devices to be integrated on the Si substrate for the future applications.  and will enable SiGe channel devices to be integrated on the Si substrate for the future applications. Acknowledgments:  Acknowledgments: The  The authors  authors thank  thank the  the National  National Science  Science Council  Council of  of the  the Republic  Republic of  of China,  China, Taiwan,  Taiwan, for  for supporting  this  research  (104‐2221‐E‐239‐017).  National  Nano  Device  Laboratories  (NDL),  Taiwan,  supporting this research (104-2221-E-239-017). National Nano Device Laboratories (NDL), Taiwan, is  is highly  highly appreciated for its technical support. appreciated for its technical support.  Author Contributions:  Contributions: Yu‐Hsien  Yu-Hsien Lin  Lin organized  organized the  the research  research and  and wrote  wrote the  the manuscript;  manuscript; Yi‐He  Yi-He Tsai  Tsai and   and Author  Chung-Chun Hsu performed the experiments and performed data analysis; Yu-Hsien Lin, Guang-Li Luo, Chung‐Chun  Hsu  performed  the  experiments  and  performed  data  analysis;  Yu‐Hsien  Lin,  Guang‐Li  Luo,   Yao-Jen Lee, and Chao-Hsin Chien discussed the experiments and the manuscript. Yao‐Jen Lee, and Chao‐Hsin Chien discussed the experiments and the manuscript. 

4 7522

Materials 2015, 8, 7519–7523

Conflicts of Interest: The authors declare no conflict of interest.

References 1.

2. 3. 4.

5.

6. 7. 8. 9. 10.

11. 12.

13. 14.

15. 16. 17. 18.

Datta, M.S.; Dewey, G.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Kotlyar, R.; Metz, M.; Zelick, N.; Chau, R. High Mobility Si/SiGe Strained Channel MOS Transistors with HfO2 /TiN Gate Stack. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 8–10 December 2003; p. 23. Goley, P.S.; Hudait, M.K. Germanium based field-effect transistors: Challenges and opportunities. Materials 2014, 7, 2301–2339. [CrossRef] Claeys, C.; Simoen, E. Germanium-Based Technologies: From Materials to Devices, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–480. Delabie, A.; Bellenger, F.; Houssa, M.; Conard, T.; Elshocht, S.V.; Caymax, M.; Heyns, M.; Meuris, M. Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide. Appl. Phys. Lett. 2007, 91, 082904–082906. [CrossRef] Gu, J.J.; Liu, Y.Q.; Xu, M.; Celler, G.K.; Gordon, R.G.; Ye, P.D. High performance atomic-layer-deposited LaLuO3 /Ge-on-insulator p-channel metal-oxide-semiconductor field-effect transistor with thermally grown GeO2 as interfacial passivation layer. Appl. Phys. Lett. 2010, 97, 012106–012108. [CrossRef] Larson, J.M.; Snyder, J.P. Overview and status of metal s/d schottky-barrier mosfet technology. IEEE Trans. Elec. Dev. 2006, 53, 1048–1058. [CrossRef] Calvet, L.E.; Luebben, H.; Reed, M.A.; Wang, C.; Snyder, J.P.; Tucker, J.R. Suppression of leakage current in Schottky barrier metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2002, 91. [CrossRef] Koike, M.; Kamimuta, Y.; Tezuka, T. Modulation of NiGe/Ge Schottky barrier height by S and P co-introduction. Appl. Phys. Lett. 2013, 102, 032108–032110. [CrossRef] Iwai, H.; Ohguro, T.; Ohmi, S.I. NiSi salicide technology for scaled CMOS. Mater. Adv. Met. 2002, 60, 157–169. [CrossRef] Roy, S.; Midya, K.; Duttagupta, S.P.; Ramakrishnan, D. Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation. J. Appl. Phys. 2014, 116. [CrossRef] Zaima, S.; Nakatsuka, O.; Kondo, H.; Sakashita, M.; Sakai, A.; Ogawa, M. Silicide and germanide technology for contacts and metal gates in MOSFET applications. ECS Trans. 2007, 11, 197–205. Hsu, S.L.; Chien, C.H.; Yang, M.J.; Huang, R.H.; Leu, C.C.; Shen, S.W.; Yang, T.H. Study of thermal stability of nickel monogermanide on single- and polycrystalline germanium substrates. Appl. Phys. Lett. 2005, 86, 251906–251908. [CrossRef] Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6285. [CrossRef] [PubMed] Lee, Y.J.; Hsueh, F.K.; Current, M.I.; Wu, C.Y.; Chao, T.S. Susceptor coupling for the uniformity and dopant activation efficiency in implanted Si under fixed-frequency microwave anneal. IEEE Electron. Device Lett. 2012, 33, 248–250. [CrossRef] Alford, T.L.; Thompson, D.C.; Mayer, J.W.; Theodore, N.D. Dopant activation in ion implanted silicon by microwave annealing. J. Appl. Phys. 2009, 106. [CrossRef] Sinha, M.; Lee, R.T.P.; Chor, E.F.; Yeo, Y.C. Schottky barrier height modulation of Nickel–dysprosium-alloy germanosilicide contacts for strained P-FinFETs. IEEE Electron. Device Lett. 2009, 30, 1278–1280. [CrossRef] Sze, S.M. Physics of Semiconductor Devices, 2nd ed.; Wiley: New York, NY, USA, 1981; pp. 256–263. Dimoulas, A.; Tsipas, P.; Sotiropoulos, A.; Evangelou, E.K. Fermi-level pinning and charge neutrality level in germanium. Appl. Phys. Lett. 2006, 89. [CrossRef] © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

7523

Microwave Annealing for NiSiGe Schottky Junction on SiGe P-Channel.

In this paper, we demonstrated the shallow NiSiGe Schottky junction on the SiGe P-channel by using low-temperature microwave annealing. The NiSiGe/n-S...
NAN Sizes 1 Downloads 12 Views