Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2014.

Supporting Information for Adv. Healthcare Mater., DOI: 10.1002/adhm.201400053

Mesoporous Silica-Coated Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Detection and Photothermal Therapy Jianping Yang, Dengke Shen, Lei Zhou, Wei Li, Jianwei Fan, Ahmed Mohamed El-Toni, Wei-xian Zhang, Fan Zhang*, and Dongyuan Zhao*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information Mesoporous Silica Coated Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Detection and Photothermal Therapy Jianping Yang, Dengke Shen, Lei Zhou, Wei Li, Jianwei Fan, Ahmed Mohamed El-Toni, Weixian Zhang, Fan Zhang,* and Dongyuan Zhao* Dr. J. P. Yang, Dr. D. K. Shen, L. Zhou, Dr. W. Li, Prof. Dr. F. Zhang, Prof. Dr. D. Y. Zhao Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China E-mail: [email protected], [email protected] Homepage: http://www.mesogroup.fudan.edu.cn Tel: 86-21-5163-0205; Fax: 86-21-5163-0307 Dr. J. P. Yang, Dr. J. W. Fan, Prof. Dr. W. X. Zhang College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, P. R. China Prof. Dr. A. M. El-Toni King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia Central Metallurgical Research and Development Institute, CMRDI, Helwan 11421, Cairo, Egypt

Figure S1. SEM images of (A) core-shell Ag@SiO2 and (B) Ag@SiO2 @mSiO2, (C) yolkshell Ag@mSiO2 and (D) Ag@mSiO2-100H (after hydrothermal treatment). The inset is the corresponding FESEM images with the scale of 50 nm.

1

Figure S2. TEM images of (A) core-shell Ag@SiO2 and (B) Ag@SiO2 @mSiO2, (C) yolk-shell Ag@mSiO2 and (D) Ag@mSiO2-100H (after hydrothermal treatment). All scales are 50 nm.

Figure S3. Small-angle X-ray scattering (SAXS) pattern of (a) core-shell Ag@SiO2 @mSiO2, (b) yolk-shell Ag@mSiO2 and (c) Ag@mSiO2-100H (after hydrothermal treatment). Table S1. Physicochemical properties of Ag@SiO2@mSiO2, yolk-shell Ag@mSiO2 (b) and Ag@mSiO2-100H (after hydrothermal treatment).

Sample

SBET (m2g-1)

Vt (cm3g-1)

Pore size(nm)

Ag@SiO2 @mSiO2

437

0.41

2.2

YS-Ag@mSiO2

439

0.57

2.4

Ag@mSiO2-100H

383

0.51

2.4

2

Figure S4. UV/Vis spectra of (a) Ag nanoparticles, (b) Ag@SiO2, (c) Ag@SiO2 @mSiO2, (d) yolk-shell Ag@mSiO2 and (e) Ag@mSiO2-100H. The corresponding SPR peaks were centered at 415, 450, 462, 450 and 450 nm, respectively.

Figure S5. Fourier transform infrared (FTIR) spectra of (a) as-made yolk-shell Ag@mSiO2100H/CTAB and (b) yolk-shell Ag@mSiO2-100H after the NH4NO3/ethanol solution extraction for twice. The strong absorption bands around 2920 cm-1 and 2849 cm-1 were assigned the stretching of the C–H bonds of the CTAB molecules. No FTIR adsorption peaks can be observed in the range of 2840-2950 cm-1 for yolk-shell Ag@mSiO2-100H, indicating that the CTAB molecules are completely removed.

Figure S6. X-Ray diffraction (XRD) patterns of the (a) yolk-shell Ag@mSiO2-100H (after hydrothermal treatment) and (b) Au-Ag@mSiO2 (synthesized with 1.0 mL of 0.5 mM HAuCl4 solution).

3

Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy.

The design and fabrication of core-shell and yolk-shell nanostructures with surface plasmon resonance (SPR)-active center protected by permeable mesop...
475KB Sizes 0 Downloads 4 Views