Hindawi Computational and Mathematical Methods in Medicine Volume 2017, Article ID 7837109, 9 pages https://doi.org/10.1155/2017/7837109

Research Article Kalman Filtering for Genetic Regulatory Networks with Missing Values Qiongbin Lin,1 Qiuhua Liu,1 Tianyue Lai,1 and Wu Wang1,2 1

College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350116, China Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou, Fujian 350116, China

2

Correspondence should be addressed to Qiongbin Lin; [email protected] Received 17 March 2017; Accepted 8 June 2017; Published 26 July 2017 Academic Editor: Konstantin Blyuss Copyright ยฉ 2017 Qiongbin Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The filter problem with missing value for genetic regulation networks (GRNs) is addressed, in which the noises exist in both the state dynamics and measurement equations; furthermore, the correlation between process noise and measurement noise is also taken into consideration. In order to deal with the filter problem, a class of discrete-time GRNs with missing value, noise correlation, and time delays is established. Then a new observation model is proposed to decrease the adverse effect caused by the missing value and to decouple the correlation between process noise and measurement noise in theory. Finally, a Kalman filtering is used to estimate the states of GRNs. Meanwhile, a typical example is provided to verify the effectiveness of the proposed method, and it turns out to be the case that the concentrations of mRNA and protein could be estimated accurately.

1. Introduction According to the genetic central dogma, a specific protein can be generated by a complex gene expression process (including transcription process, translation process, and other interaction process) among DNAs, RNAs, and gene products [1, 2]. To guide the gene expression correctly, each stage of the gene expression should be regulated. The regulation functions for each stage form genetic regulatory networks (GRNs). Cleary, gene expression levels can be determined by GRNs. For this, a lot of GRNs models have been built to track the concentration of mRNA and protein, like Boolean model [3, 4], Bayesian model [5โ€“7], differential equation model [8โ€“11], and statespace model [12, 13]. However, due to the uncertainties of the system, time-varying delays [14โ€“16] and data missing [17, 18] in real gene expression process, the measurements obtained from the sensor are usually contaminated by noise and cannot represent the true values well. Thus, a lot of filtering methods are proposed to reveal the true values. In studying the stability of genetic regulatory networks, noise disturbances are one of the main factors that cannot be ignored, and it is mainly composed of process noise and measurement noise. In order to restrain these noise

disturbances, many filtering methods like ๐ปโˆž filter [19] and Kalman filter [20] are proposed to obtain stable GRNs. Although process noise and measurement noise were usually taken into consideration, the correlation between process noise and measurement noise always is ignored in these methods, so it does not have the generality from this point of view. In this paper, in order to make the filtering method more representative, the correlation between process noise and measurement noise would be taken into consideration; meanwhile, the correlation will also be decoupled in theory. Generally, gene expression levels (the concentration of mRNA and protein) can be measured by the DNA microarray technology, but there are many reasons which can cause value miss like dust or scratch on the slide, inappropriate thresholds in preprocessing, insufficient resolution of the microarray, experimental errors during the laboratory processes, or image corruption [18]. So, the measured value for gene expression levels would contain a certain degree of distortion that would cause concentration value deviating from real concentration. To overcome this drawbacks, the setvalues filtering for GRNs with missing value was proposed in [17, 21]; although this method has dealt with the specific well, it did not give a detailed explanation about missing

2

Computational and Mathematical Methods in Medicine Table 1: The parameter descriptions of system (1).

Parameter ๐‘€(๐‘˜) ๐‘(๐‘˜) ๐ด(๐‘˜) ๐ถ(๐‘˜) ๐ต(๐‘˜) ๐ท(๐‘˜) ๐‘

Description The concentrations of mRNA The concentrations of protein The degradation rates of mRNA The degradation rates of protein The coupling coefficient of the genetic networks The translation rate The bounded constant which denotes the dimensionless transcriptional rate [21]

value in a detailed mathematical formula, so, in this paper, the observation model with missing value will be given; meanwhile, a Kalman filtering will also be designed to obtain stable GRNs with missing value. In this paper, an estimation problem for a class of discretetime GRNs model with time-varying delays, missing values, and correlation of noise is considered. The rest of the paper is organized as follows. In Section 2, a discrete model of genetic regulation networks is introduced; we also built observation model with missing value to give a detailed explanation about it in mathematical formula; meanwhile, the correlation between process noise and measurement noise is decoupled in theory. In Section 3, a Kalman filtering is designed to estimate the real concentrations of GRNs; meanwhile, the stability of Kalman filtering is analyzed. In the Section 4, a typical example is provided to illustrate the effectiveness of the proposed method.

Clearly, a discrete-time model of genetic regulatory networks (GRNs) can be described as follows [21โ€“23]:

๐‘ (๐‘˜ + 1) = ๐ถ (๐‘˜) ๐‘ (๐‘˜) + ๐ท (๐‘˜) ๐‘€ (๐‘˜ โˆ’ ๐œŽ) ,

(1)

๐‘ (๐‘˜) โ‰œ ๐‘ (๐‘˜) โˆ’ ๐‘โˆ— .

(2)

Thus, system (1) can be rewritten as

๐‘ (๐‘˜ + 1) = ๐ถ (๐‘˜) ๐‘ (๐‘˜) + ๐ท (๐‘˜) ๐‘€ (๐‘˜ โˆ’ ๐œŽ) .

๐‘ (๐‘˜ + 1) = ๐ถ (๐‘˜) ๐‘ (๐‘˜) + ๐ท (๐‘˜) ๐‘€ (๐‘˜ โˆ’ ๐œŽ) . In practice, the actual GRNs might be influenced by the dynamic reaction of the networks, time delays, and molecular noise. Based on system (4), discrete-time GRNs with observation equation and noises are considered: ฬƒ (๐‘˜) ๐‘š (๐‘˜) + ๐ตฬƒ (๐‘˜) ๐‘š (๐‘˜ โˆ’ ๐œŽ) ๐‘š (๐‘˜ + 1) = ๐ด + ๐น (๐‘˜) ๐‘ค (๐‘˜) ,

(5)

โ„Ž (๐‘˜) = ๐ธ (๐‘˜) ๐‘š (๐‘˜) + V (๐‘˜) , ๐‘‡

where ๐‘š(๐‘˜) โ‰œ [๐‘€(๐‘˜)๐‘‡ ๐‘(๐‘˜)๐‘‡ ] , โ„Ž(๐‘˜) โˆˆ R๐‘› is the sampled output, V(๐‘˜) is the external noise, ๐‘ค(๐‘˜) is the process noise, ๐น(๐‘˜) is the noise driven matrix, and ๐ธ(๐‘˜) is the observation matrix. In addition, ๐ด (๐‘˜) 0 ฬƒ (๐‘˜) โ‰œ [ ๐ด ], 0 ๐ถ (๐‘˜) ๐œ•๐‘“ ๓ต„จ๓ต„จ๓ต„จ๓ต„จ 0 ๐ต (๐‘˜) ๓ต„จ ๐ตฬƒ (๐‘˜) โ‰œ [ ๐œ•๐‘ ๓ต„จ๓ต„จ๓ต„จ๐‘=๐‘โˆ— ] . 0 [๐ท๐‘˜ ]

(6)

๐‘‡

๐‘ฅ (๐‘˜) โ‰œ [๐‘š๐‘‡ (๐‘˜) ๐‘š๐‘‡ (๐‘˜ โˆ’ 1) โ‹… โ‹… โ‹… ๐‘š๐‘‡ (๐‘˜ โˆ’ ๐œŽ)] .

(8)

๐‘ง (๐‘˜) = ๐ป (๐‘˜) ๐‘ฅ (๐‘˜) + V (๐‘˜) ,

where ๐‘ค(๐‘˜) and V(๐‘˜) are white, zero-mean, correlated noises; furthermore, [ [ [ [ ฮฆ (๐‘˜) = [ [ [ [ [

ฬƒ (๐‘˜) 0 โ‹… โ‹… โ‹… 0 ๐ตฬƒ (๐‘˜) ๐ด ๐ผ๐‘›

0 โ‹…โ‹…โ‹… 0

0

๐ผ๐‘› โ‹… โ‹… โ‹… 0

.. .

.. . . d ..

] 0 ] ] 0 ] ] ] .. ] ] . ]

[ 0

0 โ‹… โ‹… โ‹… ๐ผ๐‘›

0 ](๐‘›ร—๐œŽ)ร—(๐‘›ร—๐œŽ) ๐‘‡

(3)

(7)

Using the new state variable (7) gives

๐‘ค (๐‘˜) = [๐‘ค๐‘‡ (๐‘˜) 0 โ‹… โ‹… โ‹… 0](๐‘›ร—๐œŽ)ร—1 ,

๐‘€ (๐‘˜ + 1) = ๐ด (๐‘˜) ๐‘€ (๐‘˜) + ๐ต (๐‘˜) [๐‘“ (๐‘ (๐‘˜ โˆ’ ๐œŽ)) โˆ’ ๐‘“ (๐‘โˆ— )] ,

๐œ•๐‘“ ๓ต„จ๓ต„จ๓ต„จ๓ต„จ ๐‘ (๐‘˜ โˆ’ ๐œŽ) , ๓ต„จ ๐œ•๐‘ ๓ต„จ๓ต„จ๓ต„จ๐‘=๐‘โˆ— (4)

๐‘ฅ (๐‘˜ + 1) = ฮฆ (๐‘˜) ๐‘ฅ (๐‘˜) + ฮ“ (๐‘˜) ๐‘ค (๐‘˜) ,

where the descriptions of systemโ€™s parameters are shown in Table 1. In addition, ๐‘“(โ‹…) โˆˆ R is a monotonic function in Hill form, which represents the feedback regulation of the protein. Here, ๐‘“๐‘– (๐‘ฅ) = (๐‘ฅ/๐›ฝ๐‘– )๐ป๐‘– /(1 + (๐‘ฅ/๐›ฝ๐‘– )๐ป๐‘– ), where ๐ป๐‘– is the Hill coefficient and ๐›ฝ๐‘– is positive constant. Let ๐‘€โˆ— and ๐‘โˆ— denote the equilibrium points of system (1); define ๐‘€ (๐‘˜) โ‰œ ๐‘€ (๐‘˜) โˆ’ ๐‘€โˆ— ,

๐‘€ (๐‘˜ + 1) = ๐ด (๐‘˜) ๐‘€ (๐‘˜) + ๐ต (๐‘˜)

Then, in order to solve the time-delay of the system (5), a new state vector is defined as follows:

2. Problem Formulation

๐‘€ (๐‘˜ + 1) = ๐ด (๐‘˜) ๐‘€ (๐‘˜) + ๐ต (๐‘˜) ๐‘“ (๐‘ (๐‘˜ โˆ’ ๐œŽ)) + ๐‘,

Based on the first-order Taylor expansion, ๐‘“(๐‘(๐‘˜ โˆ’ ๐œŽ)) โˆ’ ๐‘“(๐‘โˆ— ) = (๐œ•๐‘“/๐œ•๐‘)|๐‘=๐‘โˆ— ๐‘(๐‘˜โˆ’๐œŽ), system (3) can be expressed as

V (๐‘˜) = V (๐‘˜) , ฮ“ (๐‘˜) = diag (๐น (๐‘˜) 0 โ‹… โ‹… โ‹… 0)(๐‘›ร—๐œŽ)ร—(๐‘›ร—๐œŽ) .

, (9)

Computational and Mathematical Methods in Medicine

3

As for the measurements model with missing value, it can be expressed as that measurement values lost at a certain probability, so, the measurements model with missing value can be described as follows [24]: ๐‘ฆ (๐‘˜) = ๐œ‰ (๐‘˜) ๐‘ง (๐‘˜) + (1 โˆ’ ๐œ‰ (๐‘˜)) ๐‘ฆ (๐‘˜ โˆ’ 1) ,

(10)

where ๐‘ฆ(๐‘˜) is received by the estimator, the initial state ๐‘ฅ(0) is independent of ๐œ‰(๐‘˜), ๐‘ค(๐‘˜), and V(๐‘˜) and satisfies the fact that E[๐‘ฅ(0)] = ๐œ‡0 , E[(๐‘ฅ(0) โˆ’ ๐œ‡)(๐‘ฅ(0) โˆ’ ๐œ‡)๐‘‡ ] = ๐‘ƒ0 , and ๐œ‰(๐‘˜) โˆˆ R obey the Bernoulli distribution, and it is uncorrelated with other random variables. There are two basic properties about ๐œ‰(๐‘˜): Prob {๐œ‰ (๐‘˜) = 1} = E {๐œ‰ (๐‘˜)} fl ๐›ผ (๐‘˜) , Prob {๐œ‰ (๐‘˜) = 0} = 1 โˆ’ E {๐œ‰ (๐‘˜)} fl 1 โˆ’ ๐›ผ (๐‘˜) ,

ฬƒ (๐‘˜) ๐‘‹ (๐‘˜) + ๐œ‰ (๐‘˜) V (๐‘˜) , ๐‘ฆ (๐‘˜) = ๐ป

๐‘„๐‘Š (๐‘˜) = E [

๐‘ค (๐‘˜) ๐‘ค๐‘‡ (๐‘˜) ๐‘ค (๐‘˜) V๐‘‡ (๐‘˜)

]

V (๐‘˜) ๐‘ค๐‘‡ (๐‘˜) V (๐‘˜) ๐‘ค๐‘‡ (๐‘˜)

๐‘„๐‘ค (๐‘˜) ๐‘†1 (๐‘˜) ], =[ ๐‘‡ ๐‘†1 (๐‘˜) ๐‘„V (๐‘˜) ๐‘ค (๐‘˜) ๐‘‡ ๐‘ค (๐‘˜) V๐‘‡ (๐‘˜) ๐‘† (๐‘˜) = E [ ] V (๐‘˜) = E [ ] V (๐‘˜) V (๐‘˜) V๐‘‡ (๐‘˜) =[

(15)

๐‘†1๐‘‡ (๐‘˜)

] ๐‘„V (๐‘˜)

(11)

where 0 โ‰ค ๐›ผ(๐‘˜) โ‰ค 1. If ๐›ผ(๐‘˜) = 0, it means the measurements value is lost at ๐‘˜, and there is no missing value with ๐›ผ(๐‘˜) = 1. More properties about the distribution of ๐œ‰(๐‘˜) are showed in [24]. Then, substituting the observation equation of system (8) into (10), thus, a discrete-time model of GRNs with the observation equation with missing value is established as follows: ฬƒ (๐‘˜) ๐‘‹ (๐‘ก) + ฮ“ฬƒ (๐‘˜) ๐‘Š (๐‘˜) , ๐‘‹ (๐‘˜ + 1) = ฮฆ

where

(12)

and where ๐‘†1 = ๐‘ค(๐‘˜)V๐‘‡ (๐‘˜). ฬƒ ฬƒ ฬƒ can be To simplify the calculation, ฮฆ(๐‘˜), ฮ“(๐‘˜), and ๐ป(๐‘˜) broken down into some simple separations as follows: ฮฆ (๐‘˜) 0 ฬƒ (๐‘˜) = [ ฮฆ ] ๐œ‰ (๐‘˜) ๐ป (๐‘˜) (1 โˆ’ ๐œ‰ (๐‘˜)) ๐ผ๐‘š ฮฆ (๐‘˜) 0 =[ ] ๐›ผ (๐‘˜) ๐ป (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜)) ๐ผ๐‘š + (๐œ‰ (๐‘˜) โˆ’ ๐›ผ (๐‘˜)) [

0

0

๐ป (๐‘ก) โˆ’๐ผ๐‘š

]

โ‰œ ฮฆ0 (๐‘˜) + (๐œ‰ (๐‘˜) โˆ’ ๐›ผ (๐‘˜)) ฮฆ1 (๐‘˜) ,

where

ฮ“ (๐‘˜) 0 ฮ“ฬƒ (๐‘˜) = [ ] 0 ๐œ‰ (๐‘˜) ๐ผ๐‘š

๐‘ฅ (๐‘˜)

๐‘‹ (๐‘˜) = [ ], ๐‘ฆ (๐‘˜ โˆ’ 1) ๐‘Š (๐‘˜) = [

๐‘ค (๐‘ก) V (๐‘ก)

ฮ“ (๐‘˜) 0 0 0 =[ ] + (๐œ‰ (๐‘˜) โˆ’ ๐›ผ (๐‘˜)) [ ] 0 ๐›ผ (๐‘˜) ๐ผ๐‘š 0 ๐ผ๐‘š

],

ฮฆ (๐‘˜)

0

ฬƒ (๐‘˜) = [ ฮฆ ], ๐œ‰ (๐‘˜) ๐ป (๐‘˜) (1 โˆ’ ๐œ‰ (๐‘˜)) ๐ผ๐‘š ฮ“ฬƒ (๐‘˜) = [

(16)

ฮ“ (๐‘˜)

0

0

๐œ‰ (๐‘˜) ๐ผ๐‘š

(13)

+ (๐œ‰ (๐‘˜) โˆ’ ๐›ผ (๐‘˜)) [๐ป (๐‘ก) โˆ’๐ผ๐‘š ]

ฬƒ (๐‘˜) = [๐œ‰ (๐‘˜) ๐ป (๐‘˜) (1 โˆ’ ๐œ‰ (๐‘˜)) ๐ผ๐‘š ] . ๐ป

โ‰œ ๐ป0 (๐‘˜) + (๐œ‰ (๐‘˜) โˆ’ ๐›ผ (๐‘˜)) ๐ป1 (๐‘˜) .

Let ๐‘„๐‘ค (๐‘˜) denote the autocovariance matrix of ๐‘ค(๐‘˜), ๐‘„V (๐‘˜) denote the autocovariance matrix of V(๐‘˜), and ๐‘†(๐‘˜) denote the cross-covariance matrix of ๐‘ค(๐‘˜) and V(๐‘˜). For (12), there is some statistical information:

V (๐‘˜) โˆผ N (0, ๐‘„V (๐‘˜)) ,

ฬƒ (๐‘˜) = [๐œ‰ (๐‘˜) ๐ป (๐‘˜) (1 โˆ’ ๐œ‰ (๐‘˜)) ๐ผ๐‘š ] ๐ป = [๐›ผ (๐‘˜) ๐ป (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜)) ๐ผ๐‘š ]

],

๐‘Š (๐‘˜) โˆผ N (0, ๐‘„๐‘Š (๐‘˜)) ,

โ‰œ ฮ“0 (๐‘˜) + (๐œ‰ (๐‘˜) โˆ’ ๐›ผ (๐‘˜)) ฮ“1 (๐‘˜) ,

(14)

Since the process noises of this system are correlated with the observation noises, to decouple the relevance about ฬƒ ๐‘ค(๐‘˜) and V(๐‘˜), according to system (12), ๐‘ฆ(๐‘ก) โˆ’ ๐ป(๐‘˜)๐‘‹(๐‘˜) โˆ’ ๐œ‰(๐‘˜)V(๐‘˜) = 0; obviously, ฬƒ (๐‘˜) ๐‘‹ (๐‘˜) โˆ’ ๐œ‰ (๐‘˜) V (๐‘˜)) = 0 ๐ฝ (๐‘˜) (๐‘ฆ (๐‘ก) โˆ’ ๐ป

(17)

4

Computational and Mathematical Methods in Medicine

and then adding (17) to the state equation of (12), we have ฬƒ (๐‘˜) ๐‘‹ (๐‘˜) + ฮ“ฬƒ (๐‘˜) ๐‘Š (๐‘˜) ๐‘‹ (๐‘˜ + 1) = ฮฆ ฬƒ (๐‘˜) ๐‘‹ (๐‘˜) โˆ’ ๐œ‰ (๐‘˜) V (๐‘˜)) + ๐ฝ (๐‘˜) (๐‘ฆ (๐‘ก) โˆ’ ๐ป ฬƒ (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐ป ฬƒ (๐‘˜)) ๐‘‹ (๐‘˜) + ๐ฝ (๐‘˜) ๐‘ฆ (๐‘˜) = (ฮฆ

(18)

ฬ‚ (๐‘˜ + 1 | ๐‘˜) = ฮฆ ฬƒ (๐‘˜) ๐‘‹ ฬ‚ (๐‘˜ | ๐‘˜) ๐‘‹

+ ฮ“ฬƒ (๐‘˜) ๐‘Š (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐œ‰ (๐‘˜) V (๐‘˜) , ๐‘›ร—๐‘š

where ๐ฝ(๐‘˜) โˆˆ ๐‘… process noises

the filtering error ๐‘ƒ is calculated, and then the Kalman gain ๐พ can be obtained by minimizing the covariance matrix of the filtering error ๐‘ƒ; at last, the recursion of the filtering error ๐‘ƒ is calculated; thus, the design of Kalman filtering is completed. According to system (12) and (18), the state prediction equation can be calculated as

ฬƒ (๐‘˜) ๐‘‹ ฬ‚ (๐‘˜ | ๐‘˜)] + ๐ฝ (๐‘˜) [๐‘ฆ (๐‘˜) โˆ’ ๐ป

. Clearly, the last two terms in (18) are the

(23)

and the measurement update equation is

ฬƒ (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐ป ฬƒ (๐‘˜) , ฮฆ (๐‘˜) = ฮฆ โˆ—

๐‘Š (๐‘˜) = ฮ“ฬƒ (๐‘˜) ๐‘Š (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐œ‰ (๐‘˜) V (๐‘˜) . โˆ—

(19)

E [๐‘Šโˆ— (๐‘˜) V๐‘‡ (๐‘˜)] = ฮ“0 (๐‘˜) ๐‘†1 (๐‘˜) โˆ’ ๐›ผ (๐‘˜) ๐ฝ (๐‘˜) ๐‘„V (๐‘˜) . (20) Let E[๐‘Šโˆ— (๐‘˜)V๐‘‡ (๐‘˜)] = 0, and then ๐ฝ(๐‘˜) is (21)

Clearly, if ๐ฝ(๐‘˜) is chosen as (21), ๐‘Šโˆ— (๐‘˜) and V(๐‘˜) are uncorrelated. Secondly, we discuss ๐‘Šโˆ— (๐‘˜),

ฬ‚ (๐‘˜ + 1 | ๐‘˜ + 1) ๐‘‹ ฬ‚ (๐‘˜ + 1 | ๐‘˜) =๐‘‹

(25)

+ ๐พ (๐‘˜ + 1) [๐‘ฆ (๐‘˜ + 1) โˆ’ ๐‘ฆฬ‚ (๐‘˜ + 1)] , where ๐พ(๐‘˜ + 1) denotes the Kalman gain. Then, the posterior estimation error can be computed as follows: ฬ‚ (๐‘˜ + 1 | ๐‘˜ + 1) ๐‘’ (๐‘˜ + 1 | ๐‘˜ + 1) = ๐‘‹ (๐‘˜ + 1) โˆ’ ๐‘‹ ฬ‚ (๐‘˜ + 1 | ๐‘˜) โˆ’ ๐พ (๐‘˜ + 1) = ๐‘‹ (๐‘˜ + 1) โˆ’ ๐‘‹ ฬƒ (๐‘˜ + 1) ๐‘‹ (๐‘˜ + 1) + ๐œ‰ (๐‘˜ + 1) V (๐‘˜ + 1) โ‹… [๐ป

E [๐‘Šโˆ— (๐‘˜)] = ฮ“ฬƒ (๐‘˜) E [๐‘Š (๐‘˜)] โˆ’ ๐›ผ (๐‘˜) ๐ฝ (๐‘˜) E [V (๐‘˜)]

ฬƒ (๐‘˜ + 1) ๐‘‹ ฬ‚ (๐‘˜ + 1 | ๐‘˜)] = [๐ผ โˆ’๐ป

= 0, ๐‘‡

(24)

So, the optimal state estimation is

Since Kalman filtering requires that the process noise and the measurement noise must be white uncorrelated Gaussian noise, then consider the correlation between process noise and measurement noise firstly:

๐ฝ (๐‘˜) = ๐›ผโˆ’1 (๐‘˜) ฮ“0 (๐‘˜) ๐‘†1 (๐‘˜) ๐‘„Vโˆ’1 .

ฬƒ (๐‘˜ + 1) ๐‘‹ ฬ‚ (๐‘˜ + 1 | ๐‘˜) . ๐‘ฆฬ‚ (๐‘˜ + 1) = ๐ป

๐‘‡

E [๐‘Šโˆ— (๐‘˜) ๐‘Šโˆ— (๐‘ก)] = cov [๐‘Šโˆ— (๐‘˜) , ๐‘Šโˆ— (๐‘ก)]

(26)

โˆ’ ๐พ (๐‘˜ + 1) ๐ป0 (๐‘˜ + 1)] ๐‘’ (๐‘˜ + 1 | ๐‘˜) โˆ’ (๐œ‰ (๐‘˜ + 1) โˆ’ ๐›ผ (๐‘˜ + 1)) ๐พ (๐‘˜ + 1) ๐ป1 (๐‘˜ + 1) ๐‘’ (๐‘˜ + 1 | ๐‘˜) โˆ’ ๐œ‰ (๐‘˜

= var [๐‘Šโˆ— (๐‘˜)] ๐›ฟ๐‘˜๐‘ก ,

+ 1) ๐พ (๐‘˜ + 1) V (๐‘˜ + 1)

var [๐‘Šโˆ— (๐‘˜)] = ๐‘„โˆ— = ฮ“0 ๐‘„๐‘ค ฮ“0๐‘‡ โˆ’ ๐›ผ (๐‘˜) ฮ“0 ๐‘† (๐‘˜) ๐ฝ๐‘‡ (๐‘˜)

(22)

+ ๐›ผ (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜)) ฮ“1 (๐‘˜) ๐‘„๐‘ค ฮ“1๐‘‡ (๐‘˜) ๐‘‡

โˆ’ ๐›ผ (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜)) ฮ“1 (๐‘˜) ๐‘† (๐‘˜) ๐ฝ (๐‘˜) โˆ’ ๐›ผ (๐‘˜) ๐ฝ (๐‘˜) ๐‘†๐‘‡ (๐‘˜) ฮ“0๐‘‡ (๐‘˜) ๐‘‡

and the covariance matrix of estimation error can be described as ๐‘ƒ (๐‘˜ + 1 | ๐‘˜ + 1) = E [๐‘’ (๐‘˜ + 1 | ๐‘˜ + 1) ๐‘’๐‘‡ (๐‘˜ + 1 | ๐‘˜ + 1)] . Substituting (26) into (27) gives

๐‘‡

โˆ’ ๐›ผ (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜)) ๐ฝ (๐‘˜) ๐‘†

(๐‘˜) ฮ“1๐‘‡ (๐‘˜)

๐‘‡

+ ๐›ผ (๐‘˜) ๐ฝ (๐‘˜) ๐‘„V ๐ฝ (๐‘˜) so if ๐ฝ(๐‘˜) = ๐›ผโˆ’1 (๐‘˜)ฮ“0 (๐‘˜)๐‘†1 (๐‘˜)๐‘„Vโˆ’1 , ๐‘Šโˆ— (๐‘˜) is a white, zeromean noise.

๐‘ƒ (๐‘˜ + 1 | ๐‘˜ + 1) = E [๐‘’ (๐‘˜ + 1 | ๐‘˜ + 1) ๐‘’๐‘‡ (๐‘˜ + 1 | ๐‘˜ + 1)] = [๐ผ โˆ’ ๐พ (๐‘˜ + 1) ๐ป0 (๐‘˜ + 1)] ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐‘‡

3. Main Results In this section, the Kalman filtering is designed for obtaining the minimum variance estimation. Firstly, the expression of

โ‹… [๐ผ โˆ’ ๐พ (๐‘˜ + 1) ๐ป0 (๐‘˜ + 1)] + ๐›ผ (๐‘˜ + 1) โ‹… (1 โˆ’ ๐›ผ (๐‘˜ + 1)) ๐พ (๐‘˜ + 1) ๐ป1 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) โ‹… ๐ป1๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜ + 1) ๐พ (๐‘˜ + 1) ๐‘„V ๐พ๐‘‡ (๐‘˜ + 1)

(27)

Computational and Mathematical Methods in Medicine

5

= ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) โˆ’ ๐พ (๐‘˜ + 1) ๐ป0 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜)

Furthermore, ๐พ (๐‘˜ + 1) = ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜ + 1) [๐ป0 (๐‘˜ + 1)

๐‘‡

โˆ’ ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) [๐พ (๐‘˜ + 1) ๐ป0 (๐‘˜ + 1)] + ๐พ (๐‘˜ + 1) โ‹… [๐ป0 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜ + 1)] + ๐›ผ (๐‘˜)

โ‹… ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜))

โ‹… (1 โˆ’ ๐›ผ (๐‘˜)) ๐ป1 (๐‘˜ + 1) ๐‘ž (๐‘˜ + 1) ๐ป1๐‘‡ (๐‘˜ + 1)

โ‹… ๐ป1 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป1๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜ + 1)

+ ๐›ผ (๐‘˜ + 1) ๐‘„V (๐‘˜ + 1) ๐พ๐‘‡ (๐‘˜ + 1) .

โ‹… ๐‘„V (๐‘˜ + 1)] ,

โˆ’1

(28)

๐‘ƒ (๐‘˜ + 1 | ๐‘˜ + 1) = ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) โˆ’ ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜

Then, ๐ฟ is designed to minimize ๐‘ƒ(๐‘˜ + 1/๐‘˜ + 1), and

+ 1) [๐ป0 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜)

๐ฟ = ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜ + 1)

โ‹… (1 โˆ’ ๐›ผ (๐‘˜)) ๐ป1 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป1๐‘‡ (๐‘˜ + 1)

โ‹… [๐ป0 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜)) ๐ป1 (๐‘˜ + 1) ๐‘ž (๐‘˜ + 1) ๐ป1๐‘‡ (๐‘˜ + 1)

โˆ’1

+ ๐›ผ (๐‘˜ + 1) ๐‘„V (๐‘˜ + 1)] ๐ป0 (๐‘˜ + 1) ๐‘ƒ๐‘‡ (๐‘˜ + 1 | ๐‘˜) .

(29)

ฬƒ According to (18) and (25), the estimation error ๐‘‹(๐‘˜+1/๐‘˜) can be obtained

โˆ’1

+ ๐›ผ (๐‘˜ + 1) ๐‘„V (๐‘˜ + 1)] ๐ป0 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ;

ฬƒ (๐‘˜ + 1 | ๐‘˜) = ๐‘‹ (๐‘˜ + 1) โˆ’ ๐‘‹ ฬ‚ (๐‘˜ + 1 | ๐‘˜) ๐‘‹

thus, ๐‘ƒ(๐‘˜ + 1/๐‘˜ + 1) can be rewritten as

ฬƒ (๐‘˜) ๐‘‹ (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐ป ฬƒ (๐‘˜) ๐‘‹ (๐‘˜) + ๐ฝ (๐‘˜) ๐‘ฆ (๐‘˜) =ฮฆ

๐‘ƒ (๐‘˜ + 1 | ๐‘˜ + 1) = ๐‘ƒ (๐‘˜ + 1 | ๐‘˜ + 1) โˆ’ ๐ฟ + ๐ฟ = ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) โˆ’ ๐‘ƒ (๐‘˜ + 1 |

๐‘˜) ๐ป0๐‘‡ (๐‘˜

(33)

ฬƒ (๐‘˜) ๐‘‹ ฬ‚ (๐‘˜ | ๐‘˜) + ๐‘Šโˆ— โˆ’ ฮฆ

+ 1) [๐ป0 (๐‘˜ + 1)

โ‹… ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜)) โ‹… ๐ป1 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป1๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜ + 1)

ฬƒ (๐‘˜) = [ฮฆ0 (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐ป0 (๐‘˜)] ๐‘‹

โˆ’1

ฬƒ (๐‘˜ + 1 | ๐‘˜) ๐‘‹ ฬƒ๐‘‡ (๐‘˜ + 1 | ๐‘˜)] ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) = E [๐‘‹ = [ฮฆ0 (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐ป0 (๐‘˜)] ๐‘ƒ (๐‘˜ | ๐‘˜)

where

๐‘‡

โ‹… [ฮฆ0 (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐ป0 (๐‘˜)] + (๐œ‰ (๐‘˜) โˆ’ ๐›ผ (๐‘˜))

๐ด = ๐‘ƒ (๐‘˜ + 1) ๐ป0๐‘‡ (๐‘˜) ,

๐‘‡

โ‹… [ฮฆ1 (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐ป1 (๐‘˜)] + ๐‘„โˆ— .

โˆ’ ๐›ผ (๐‘˜)) ๐ป1 (๐‘˜ + 1) ๐‘ž (๐‘˜ + 1) ๐ป1๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜ + 1) (31)

๐ถ = ๐พ (๐‘˜ + 1) [๐ป0 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜)) ๐ป1 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜)

The linear optimal filtering, (23), (25), (33), and (35), is uniformly asymptotically stable when the linear discretetime-varying stochastic system (12) is uniformly controllable and observable [24].

4. Numerical Example

โ‹… ๐ป1๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜ + 1) ๐‘„V (๐‘˜ + 1)] . Let ๐ด = ๐ถ; the covariance matrix of estimation error is minimized. Thus ๐‘ƒ (๐‘˜ + 1) ๐ป0๐‘‡ (๐‘˜) = ๐พ (๐‘˜ + 1) [๐ป0 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜)

โ‹… ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป1๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜ + 1) ๐‘„V (๐‘˜ + 1)] .

(35)

โ‹… [ฮฆ1 (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐ป1 (๐‘˜)] ๐‘ƒ (๐‘˜ | ๐‘˜)

๐ต = ๐ป0 (๐‘˜ + 1) ๐‘ƒ (๐‘˜ + 1 | ๐‘˜) ๐ป0๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜) (1

โ‹… ๐ป0๐‘‡ (๐‘˜ + 1) + ๐›ผ (๐‘˜) (1 โˆ’ ๐›ผ (๐‘˜)) ๐ป1 (๐‘˜ + 1)

+ ๐‘Šโˆ— ; thus

โ‹… ๐ตโˆ’1 (๐ด โˆ’ ๐ถ)๐‘‡ ,

โ‹… ๐‘„V (๐‘˜ + 1) ,

ฬƒ (๐‘˜) + (๐œ‰ (๐‘˜) โˆ’ ๐›ผ (๐‘˜)) [ฮฆ1 (๐‘˜) โˆ’ ๐ฝ (๐‘˜) ๐ป1 (๐‘˜)] ๐‘‹

(30)

โ‹… ๐‘„V (๐‘˜ + 1)] ๐ป0 (๐‘˜ + 1) ๐‘ƒ๐‘‡ (๐‘˜ + 1 | ๐‘˜) + (๐ด โˆ’ ๐ถ)

(34)

(32)

In this section, an example will be provided to show the effectiveness of the proposed method. In Escherichia coli [25], the dynamics of the networks have been experimentally studied, and the model of 3-gene repressilator is given as follows: ๐›ผ๐‘– , ๐‘€ฬ‡ ๐‘– = โˆ’๐‘€๐‘– + 1 + ๐‘๐‘—๐ป (36) ฬ‡ ๐‘๐‘– = โˆ’๐›ฝ๐‘– ๐‘๐‘– + ๐›พ๐‘– ๐‘€๐‘– ,

6

Computational and Mathematical Methods in Medicine

where ๐‘€๐‘– denotes the concentrations of three mRNA and ๐‘๐‘– denotes the concentrations of three repressor-proteins, ๐›ผ๐‘– is the feedback regulation coefficient, ๐›ฝ๐‘– denotes the ratio of the protein decay rate to the mRNA, and ๐ป is the Hill coefficient, ๐‘– = lacl, tetR, cl; ๐‘— = cl, lacl, tetR. The discrete-time GRNs model based on the method in [26] can be obtained as

1.2

1+

๐›ผ๐‘– ๐ป ๐‘๐‘— (๐‘˜

โˆ’ ๐œŽ)

, (37)

1 mRNA concentration

๐‘€๐‘– (๐‘˜ + 1) = ๐‘’โˆ’โ„Ž ๐‘€๐‘– (๐‘˜) + (1 โˆ’ ๐‘’โˆ’โ„Ž )

1.1

0.9 0.8 0.7 0.6 0.5 0.4

๐‘๐‘– (๐‘˜ + 1) = ๐‘’โˆ’๐›ฝ๐‘– โ„Ž ๐‘๐‘– (๐‘˜) + (1 โˆ’ ๐‘’โˆ’๐›พ๐‘– โ„Ž ) ๐‘€๐‘– (๐‘˜ โˆ’ ๐œŽ) .

0.3

Let โ„Ž = 1, the Hill coefficient ๐ป = 2, the time-delay ๐œŽ = 1, ๐‘“(๐‘ฅ) = ๐‘ฅ2 /(1 + ๐‘ฅ2 ), and the other parameters are taken as follows:

0.2

0

10

15 Time t

20

25

30

M๏ผฆ๏ผ›๏ผ๏ผฆ M๏ผฎ๏ผŸ๏ผฎ๏ผ’ M๏ผ๏ผฆ

๐›ผ1 = 1.2656, ๐›ผ2 = 0.6328,

Figure 1: The concentration of mRNA with ๐‘ค(๐‘ก) = 0.

๐›ผ3 = 1.4238,

0.7

๐›ฝ1 = ๐›ฝ2 = ๐›ฝ3 = 0.6703,

(38)

๐›พ1 = 0.6, ๐›พ3 = 0.5, ๐น = diag (0.2, 0.3, 0.2, 0.3, 0.2, 0.4) . So, the parameters of system (4) can be obtained: [ ๐ด=[

0.3679

0

0

0

0.3679

0

[

0

0

0 [โˆ’๐›ผ ๐ต = (1 โˆ’ ๐‘’ ) [ 2 โˆ’โ„Ž

[ 0 ๐›ฝ1 0 0 [0 ๐›ฝ 0] ๐ถ=[ ], 2

0.5 0.4 0.3 0.2 0.1

] ],

0

0.3679] 0

0.6 Protein concentration

๐›พ2 = 0.4,

[0

5

โˆ’๐›ผ1

0

0 ] ],

โˆ’๐›ผ3

0 ]

0

5

10

15 Time t

20

25

30

N๏ผ๏ผฆ N๏ผฆ๏ผ›๏ผ๏ผฆ N๏ผฎ๏ผŸ๏ผฎ๏ผ’

(39)

0 ๐›ฝ3 ]

๐›พ1 0 0 [0 ๐›พ 0] ๐ท=[ ]. 2 [ 0 0 ๐›พ3 ] According to system (3), we can get that the mRNA and proteins will adjust each other; they will also degrade along with the time, so the GRNs would tend to be equilibrium if there are no noise disturbances, and the unique equilibrium can be checked easily when ๐‘ค(๐‘ก) = 0; thus, the systemโ€™s states ๐‘€(๐‘˜) and ๐‘(๐‘˜) with ๐‘ค(๐‘ก) = 0 are shown in Figures 1 and 2.

Figure 2: The concentration of protein with ๐‘ค(๐‘ก) = 0.

From Figures 1 and 2, we can get that the states of the GRNs stay at a point stably, so the equilibrium can be calculated; that is, ๐‘€โˆ— = (0.6695, 0.3444, 0.8833) , ๐‘โˆ— = (0.4016, 0.1378, 0.4416) .

(40)

Now, check the states of system (37) under the excitation of external disturbances; let the initial states be ๐‘€ (โˆ’1) = [0.8695, 0.4444, 0.6833]๐‘‡ , ๐‘€ (0) = [0.7695, 0.3444, 0.7833]๐‘‡ ,

Computational and Mathematical Methods in Medicine

7 1.1 1.05 1 The concentration of M๏ผ๏ผฆ

The concentration of M๏ผฆ๏ผ›๏ผ๏ผฆ

0.85 0.8 0.75 0.7

0.95 0.9 0.85 0.8 0.75 0.7

0.65

0.65 0.6

0

5

10

15 Time t

20

25

0.6

30

0

The estimate of M๏ผฆ๏ผ›๏ผ๏ผฆ The equilibrium state of M๏ผฆ๏ผ›๏ผ๏ผฆ (0.6695)

5

10

15 Time t

20

25

30

The estimate of M๏ผ๏ผฆ The equilibrium state of M๏ผ๏ผฆ (0.8833)

Figure 3: The trajectory of concentration of ๐‘€lacl (missing rate 10%).

Figure 5: The trajectory of concentration of ๐‘€cl (missing rate 10%). 0.6 0.55

0.5

The concentration of N๏ผ๏ผฆ

The concentration of M๏ผฎ๏ผŸ๏ผฎ๏ผ’

0.55

0.45 0.4 0.35 0.3

0.45 0.4 0.35

0.25 0.2

0.5

0

5

10

15 Time t

20

25

30

The estimate of M๏ผฎ๏ผŸ๏ผฎ๏ผ’ The equilibrium state of M๏ผฎ๏ผŸ๏ผฎ๏ผ’ (0.3444)

0.3

0

5

10

15 Time t

20

25

30

The estimate of N๏ผ๏ผฆ The equilibrium state of N๏ผ๏ผฆ (0.4016)

Figure 4: The trajectory of concentration of ๐‘€tetR (missing rate 10%).

๐‘ (โˆ’1) = [0.5016, 0.0378, 0.7416]๐‘‡ , ๐‘ (0) = [0.4016, 0.2378, 0.6416]๐‘‡ , (41) and ๐‘„๐‘ค = 12, ๐‘„V = 36, and E[๐‘ค๐‘– V๐‘—๐‘‡ ] = 1.2 (where ๐‘– = 1, 2, . . . , ๐‘›, ๐‘— = 1, 2, . . . , ๐‘›); the estimate values of the concentration of mRNA and proteins are shown in Figures 3โ€“8. According to Figures 3โ€“8, the blue lines show the estimate values of mRNAs and protein, and the green lines illustrate the equilibrium of GRNs; we can get that the concentration of mRNAs and protein tends to the equilibrium well under the excitation of external disturbances, so, the Kalman filtering

Figure 6: The trajectory of concentration of ๐‘cl (missing rate 10%).

designed in this paper is effective for the GRNs with missing value and noise correlation. In order to test out the influence of the missing rate, the experiments with four missing rates of 10%, 20%, 30%, and 50% are carried out. In addition, the normalized root mean squared error (NRMSE) [27] is used to indicate the influence level of the missing rate, and the NRMSE is defined as NRMSE = โˆš

2

mean (๐‘ฅฬ‚๐‘˜ โˆ’ ๐‘ฅ๐‘˜ ) . mean ๐‘ฅ๐‘˜2

(42)

So, the NRMSE are shown in Table 2. Compared with the NRMSE obtained by set-membership filtering given in [17], in spite of the missing rate increases from 10% to 30%, the NRMSE listed in Table 2 increases

8

Computational and Mathematical Methods in Medicine 0.4

Table 2: The average values of NRMSE.

The concentration of N๏ผฆ๏ผ›๏ผ๏ผฆ

0.35

Method

0.3

10% 20% 30% 50%

0.25 0.2

Kalman 0.5389 0.5785 0.5800 0.6824

Method Set-membership [17] 0.4125 0.7074 โ€” 0.8792

0.15 0.1 0.05 0

0

5

10

15 Time t

20

25

30

The estimate of N๏ผฆ๏ผ›๏ผ๏ผฆ The equilibrium state of N๏ผฆ๏ผ›๏ผ๏ผฆ (0.1378)

Figure 7: The trajectory of concentration of ๐‘lacl (missing rate 10%).

process noise and measurement noise is decoupled in theory. Finally, a Kalman filtering is designed to obtain stable GRNs; meanwhile, the simulation result shows that the method proposed in this paper is effective for the GRNs with missing value, and compared with the set-membership filtering, the Kalman filtering has a better performance when the missing rate stays at a high level.

Conflicts of Interest The authors declare that they have no conflicts of interest.

References

The concentration of N๏ผฎ๏ผŸ๏ผฎ๏ผ’

0.8 0.7 0.6 0.5 0.4 0.3 0.2

0

5

10

15 Time t

20

25

30

The estimate of N๏ผฎ๏ผŸ๏ผฎ๏ผ’ The equilibrium state of N๏ผฎ๏ผŸ๏ผฎ๏ผ’ (0.4416)

Figure 8: The trajectory of concentration of ๐‘tetR (missing rate 10%).

slightly; however, the NRMSE increases greatly with the increasing of the missing rate in [17]. Moreover, at the low level of missing rate, the set-membership filtering has a better performance, but at the high level of missing rate, the method proposed in this paper is more appropriate than the setmembership filtering, and the cut-off point roughly equals 14.66%. Thus, it shows that the proposed method is more effective for the filtering problem for GRNs.

5. Conclusion In this paper, a discrete model of genetic regulation networks is introduced; we also built an observation model with missing value to give a detailed explanation about it in mathematical formula; meanwhile, the correlation between

[1] N. S. Hosseini and S. Ozgoli, โ€œDelay-dependent filtering for stochastic nonlinear genetic regulatory networks with timevarying delays and extrinsic noises,โ€ in Proceedings of the 2013 21st Iranian Conference on Electrical Engineering, ICEE 2013, pp. 1โ€“6, May 2013. [2] P. Smolen, D. A. Baxter, and J. H. Byrne, โ€œMathematical modeling of gene networks,โ€ Neuron, vol. 26, no. 3, pp. 567โ€“580, 2000. [3] S. Huang, โ€œGene expression profiling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery,โ€ Journal of Molecular Medicine, vol. 77, no. 6, pp. 469โ€“480, 1999. [4] R. Somogyi and C. A. Sniegoski, โ€œModeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation,โ€ Complexity, vol. 1, no. 6, pp. 45โ€“63, 1996. [5] P. Kellam, X. Liu, N. Martin, C. Orengo, S. Swift, and A. Tucker, โ€œA framework for modelling virus gene expression data,โ€ Intelligent Data Analysis, vol. 6, no. 3, pp. 267โ€“279, 2002. [6] T.-F. Liu, W.-K. Sung, and A. Mittal, โ€œModel gene network by semi-fixed bayesian network,โ€ Expert Systems with Applications, vol. 30, no. 1, pp. 42โ€“49, 2006. [7] K. Murphy et al., โ€œModelling gene expression data using dynamic bayesian networks,โ€ Technical report, Computer Science Division, University of California, Berkeley, CA, USA, 1999. [8] M. De Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, and S. Miyano, โ€œInferring gene regulatory networks from timeordered gene expression data of bacillus subtilis using differential equations,โ€ Pacific Symposium on Biocomputing, p. 17, 2002. [9] P. Dโ€™Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, โ€œLinear modeling of MRNA expression levels during CNS development and injury,โ€ in Proceedings of the Pacific Symposium on Biocomputing, vol. 4, pp. 41โ€“52, Mauna Lani, Hawaii, USA, 1999. [10] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, โ€œDynamic modeling of gene expression data,โ€

Computational and Mathematical Methods in Medicine

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1693โ€“1698, 2001. Z. Wang, H. Gao, J. Cao, and X. Liu, โ€œOn delayed genetic regulatory networks with polytopic uncertainties: Robust stability analysis,โ€ IEEE Transactions on Nanobioscience, vol. 7, no. 2, article no. 8, pp. 154โ€“163, 2008. C. Rangel, J. Angus, Z. Ghahramani et al., โ€œModeling Tcell activation using gene expression profiling and state-space models,โ€ Bioinformatics, vol. 20, no. 9, pp. 1361โ€“1372, 2004. F. X. Wu, W. J. Zhang, and A. J. Kusalik, โ€œModeling gene expression from microarray expression data with state-space equations,โ€ in Proceedings of the Pacific Symposium on Biocomputing, vol. 9, pp. 581โ€“592, Hawaii, USA, 2004. Q. Zhou, X. Shao, H. Reza Karimi, and J. Zhu, โ€œStability of genetic regulatory networks with time-varying delay: delta operator method,โ€ Neurocomputing, vol. 149, pp. 490โ€“495, 2015. R. Rakkiyappan, A. Chandrasekar, F. A. Rihan, and S. Lakshmanan, โ€œExponential state estimation of Markovian jumping genetic regulatory networks with mode-dependent probabilistic time-varying delays,โ€ Mathematical Biosciences, vol. 251, pp. 30โ€“53, 2014. T. Jiao, G. Zong, and W. Zheng, โ€œNew stability conditions for GRNs with neutral delay,โ€ Soft Computing, vol. 17, no. 4, pp. 703โ€“ 712, 2013. W. Wang, X. Liu, Y. Li, and Y. Liu, โ€œSet-membership filtering for genetic regulatory networks with missing values,โ€ Neurocomputing, vol. 175, pp. 466โ€“472, 2015. S. Oba, M.-A. Sato, I. Takemasa, M. Monden, K.-I. Matsubara, and S. Ishii, โ€œA Bayesian missing value estimation method for gene expression profile data,โ€ Bioinformatics, vol. 19, no. 16, pp. 2088โ€“2096, 2003. A. Liu, L. Yu, W.-a. Zhang, and B. Chen, โ€œHโˆž filtering for discrete-time genetic regulatory networks with random delays,โ€ Mathematical Biosciences, vol. 239, no. 1, pp. 97โ€“105, 2012. Z. Wang, X. Liu, Y. Liu, J. Liang, and V. Vinciotti, โ€œAn extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series,โ€ IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 6, no. 3, pp. 410โ€“419, 2009. D. Zhang, H. Song, L. Yu, Q.-G. Wang, and C. Ong, โ€œSet-values filtering for discrete time-delay genetic regulatory networks with time-varying parameters,โ€ Nonlinear Dynamics, vol. 69, no. 1-2, pp. 693โ€“703, 2012. C. Li, L. Chen, and K. Aihara, โ€œStability of genetic networks with SUM regulatory logic: Lurโ€™e system and lmi approach,โ€ IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 11, pp. 2451โ€“2458, 2006. Q. Ye and B. Cui, โ€œMean square exponential and robust stability of stochastic discrete-time genetic regulatory networks with uncertainties,โ€ Cognitive Neurodynamics, vol. 4, no. 2, pp. 165โ€“ 176, 2010. Y. Xu and W. Wang, โ€œKalman filtering for systems with multiple packet dropouts,โ€ in Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, WCICA 2010, pp. 4996โ€“ 5001, chn, July 2010. M. B. Elowitz and S. Leibier, โ€œA synthetic oscillatory network of transcriptional regulators,โ€ Nature, vol. 403, no. 6767, pp. 335โ€“ 338, 2000. J. Cao and F. Ren, โ€œExponential stability of discrete-time genetic regulatory networks with delays,โ€ IEEE Transactions on Neural Networks, vol. 19, no. 3, pp. 520โ€“523, 2008.

9 [27] J. Hu, H. Li, M. S. Waterman, and X. J. Zhou, โ€œIntegrative missing value estimation for microarray data,โ€ BMC Bioinformatics, vol. 7, article 449, 2006.

Kalman Filtering for Genetic Regulatory Networks with Missing Values.

The filter problem with missing value for genetic regulation networks (GRNs) is addressed, in which the noises exist in both the state dynamics and me...
NAN Sizes 0 Downloads 7 Views