‫ﺑﺴﺘﺮ ﺳﻴﺎﻝ‬ ‫ﺳﻮﻡ‪/‬ﻛﺘﻮﻥ‬ ‫ﻣﺘﻴﻞ ﺍﺗﻴﻞ‬ ‫ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ‬ ‫ﺭﺍﻛﺘﻮﺭ ‪1391‬‬ ‫ﭘﻴﺎﭘﻰﺩﺭ‪ /3‬ﺑﻬﺎﺭ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲﺷﻤﺎﺭﻩ‬ ‫ﺍﻳﻤﻨﻰ ﻛﺎﺭ‬ ‫ﻓﺼﻠﻨﺎﻣﻪ ﺑﻬﺪﺍﺷﺖ ﻭ‬

‫ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‬ ‫‪47‬‬

‫‪[email protected]‬‬

‫‪S‬‬ ‫‪f‬‬

‫‪o‬‬ ‫‪e‬‬

‫ﺭﻭﺵ ﻛﺎﺭ‪ :‬ﺩﺭ ﺍﻳﻦ ﭘﮋﻭﻫﺶ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﻳﻚ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﻣﻮﺭﺩ‬ ‫ﻣﻄﺎﻟﻌﻪ ﻗﺮﺍﺭ ﮔﺮﻓﺖ‪ .‬ﺍﺯ ﺩﻱﺍﻛﺴﻴﺪ ﺗﻴﺘﺎﻧﻴﻮﻡ ﻧﺸﺎﻧﺪﻩ ﺷﺪﻩ ﺑﺮ ﺭﻭﻱ ﺫﺭﺍﺕ ﮔﺎﻣﺎ ﺁﻟﻮﻣﻴﻨﺎ ﺗﺤﺖ ﻧﻮﺭ ﻓﺮﺍﺑﻨﻔﺶ ﺑﻪ ﻋﻨﻮﺍﻥ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺖ ﺍﺳﺘﻔﺎﺩﻩ ﮔﺮﺩﻳﺪ‪ .‬ﻛﺎﺭﺁﻳﻲ ﻓﺮﺍﻳﻨﺪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺑﺎ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﻏﻠﻈﺖ ﺑﺨﺎﺭ ﻣﺘﻴﻞ‬ ‫ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟﻲ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﺗﻌﻴﻴﻦ ﮔﺮﺩﻳﺪ‪.‬‬

‫‪v‬‬ ‫‪i‬‬ ‫‪h‬‬

‫ﻳﺎﻓﺘﻪ ﻫﺎ‪ :‬ﻣﻄﺎﻟﻌﻪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﮔﺴﺘﺮﻩ ﻏﻠﻈﺖ ‪ 100‬ﺗﺎ ‪ 800‬ﭘﻲ ﭘﻲ ﺍﻡ‬ ‫ﺩﺭ ﺩﻭ ﺭﻃﻮﺑﺖ ﻧﺴﺒﻲ ‪ ٪25‬ﻭ ‪ ٪45‬ﺍﻧﺠﺎﻡ ﮔﺮﻓﺖ‪ .‬ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﻃﻮﺑﺖ ﻧﺴﺒﻲ‬ ‫‪ ٪45‬ﻧﺴﺒﺘﺎ ﻛﻤﺘﺮ ﺍﺯ ﺭﻃﻮﺑﺖ ﻧﺴﺒﻲ ‪ ٪25‬ﺑﻮﺩ‪ .‬ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﻏﻠﻈﺖ ﺍﻭﻟﻴﻪ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺍﺯ ‪ 200‬ﺗﺎ ‪ 800‬ﭘﻲ ﭘﻲ‬ ‫ﺍﻡ‪ ،‬ﻛﺎﺭﺁﻳﻲ ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻛﺎﻫﺶ ﻳﺎﻓﺖ‪ .‬ﺩﺭ ﻏﻠﻈﺖ ﻫﺎﻱ ﺍﻭﻟﻴﻪ ‪ 100‬ﻭ ‪ 200‬ﭘﻲ ﭘﻲ ﺍﻡ‪ ،‬ﺍﻓﺰﺍﻳﺶ ﺳﺮﻋﺖ‬ ‫ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺩﺭ ﻛﺎﺭﺍﻳﻲ ﺗﺨﺮﻳﺐ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺗﻐﻴﻴﺮﻱ ﺍﻳﺠﺎﺩ ﻧﻨﻤﻮﺩ‪ ،‬ﻭﻟﻲ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﻏﻠﻈﺖ ﺍﺯ ‪ 200‬ﺑﻪ ‪800‬‬ ‫ﭘﻲ ﭘﻲ ﺍﻡ‪ ،‬ﺍﻓﺰﺍﻳﺶ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﻣﻨﺠﺮ ﺑﻪ ﻛﺎﻫﺶ ﺗﺨﺮﻳﺐ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﮔﺮﺩﻳﺪ‪.‬‬

‫‪c‬‬ ‫‪r‬‬

‫‪A‬‬

‫ﻧﺘﻴﺠﻪ ﮔﻴﺮﻯ‪ :‬ﺩﺭ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‪ ،‬ﺟﺬﺏ ﺭﻗﺎﺑﺘﻲ ﺑﻴﻦ‬ ‫ﻣﻮﻟﻜﻮﻝ ﻫﺎﻱ ﺁﺏ ﻭ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﻭ ﺩﺭ ﺭﻃﻮﺑﺖ ﺑﺎﻻﺗﺮ ﻣﻴﺰﺍﻥ ﺗﺨﺮﻳﺐ ﺁﻻﻳﻨﺪﻩ ﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ‪ .‬ﺩﺭ‬ ‫ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‪ ،‬ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺩﺭﺻﺪ ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺁﻻﻳﻨﺪﻩ ﺁﻟﻲ ﻛﺎﻫﺶ ﻣﻲ ﻳﺎﺑﺪ‪.‬‬ ‫ﺑﻪﺩﻟﻴﻞ ﺗﻌﺪﺍﺩ ﻣﺤﺪﻭﺩ ﻣﺤﻞ ﻫﺎﻱ ﻓﻌﺎﻝ ﺩﺭ ﺳﻄﺢ ﻛﺎﺗﺎﻟﻴﺴﺖ‪ ،‬ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﻏﻠﻈﺖ ﺍﻭﻟﻴﻪ ﺁﻻﻳﻨﺪﻩ‪ ،‬ﻛﺎﺭﺁﻳﻲ ﻭﺍﻛﻨﺶ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻛﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ‪.‬‬

‫ﻛﻠﻤﺎﺕ ﻛﻠﻴﺪﻯ‪ :‬ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‪ ،‬ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ‪ ،‬ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‪ ،‬ﺩﻱ ﺍﻛﺴﻴﺪ ﺗﻴﺘﺎﻧﻴﻮﻡ‬ ‫‪ -1‬ﺩﺍﻧﺸﺠﻮﻱ ﺩﻛﺘﺮﻱ ﻣﻬﻨﺪﺳﻲ ﺑﻬﺪﺍﺷﺖ ﺣﺮﻓﻪ ﺍﻱ‪ ،‬ﺩﺍﻧﺸﻜﺪﻩ ﺑﻬﺪﺍﺷﺖ ‪،‬ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻮﻡ ﭘﺰﺷﻜﻲ ﺗﻬﺮﺍﻥ‪.‬‬ ‫‪ -2‬ﺍﺳﺘﺎﺩ ﮔﺮﻭﻩ ﻣﻬﻨﺪﺳﻲ ﺑﻬﺪﺍﺷﺖ ﺣﺮﻓﻪ ﺍﻱ‪ ،‬ﺩﺍﻧﺸﻜﺪﻩ ﺑﻬﺪﺍﺷﺖ ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻮﻡ ﭘﺰﺷﻜﻲ ﺗﻬﺮﺍﻥ‪.‬‬ ‫‪ -3‬ﺍﺳﺘﺎﺩ ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻲ ﺷﻴﻤﻲ‪ ،‬ﭘﺮﺩﻳﺲ ﺩﺍﻧﺸﻜﺪﻩ ﻫﺎﻱ ﻓﻨﻲ ﺩﺍﻧﺸﮕﺎﻩ ﺗﻬﺮﺍﻥ‪.‬‬ ‫‪ -4‬ﺩﺍﻧﺸﻴﺎﺭ ﮔﺮﻭﻩ ﺷﻴﻤﻲ ﻣﻌﺪﻧﻲ‪ ،‬ﺩﺍﻧﺸﻜﺪﻩ ﺷﻴﻤﻲ‪ ،‬ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻢ ﻭ ﺻﻨﻌﺖ ﺍﻳﺮﺍﻥ‪.‬‬ ‫‪ -5‬ﺩﺍﻧﺸﺠﻮﻱ ﻛﺎﺭﺷﻨﺎﺳﻲ ﺍﺭﺷﺪ ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻲ ﺷﻴﻤﻲ‪ ،‬ﭘﺮﺩﻳﺲ ﺩﺍﻧﺸﻜﺪﻩ ﻫﺎﻱ ﻓﻨﻲ ﺩﺍﻧﺸﮕﺎﻩ ﺗﻬﺮﺍﻥ‪.‬‬ ‫‪ -6‬ﺩﺍﻧﺸﺠﻮﻱ ﻛﺎﺭﺷﻨﺎﺳﻲ ﺍﺭﺷﺪ ﻣﻬﻨﺪﺳﻲ ﺑﻬﺪﺍﺷﺖ ﺣﺮﻓﻪ ﺍﻱ‪ ،‬ﺩﺍﻧﺸﻜﺪﻩ ﺑﻬﺪﺍﺷﺖ‪،‬ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻮﻡ ﭘﺰﺷﻜﻲ ﺗﻬﺮﺍﻥ‪.‬‬

‫‪www.SID.ir‬‬

‫ﺷﻤﺎﺭﻩ ﺳﻮﻡ‪ /‬ﭘﻴﺎﭘﻰ ‪ /3‬ﺑﻬﺎﺭ ‪1391‬‬

‫‪D‬‬ ‫‪I‬‬

‫ﭼﻜﻴﺪﻩ‬ ‫ﻣﻘﺪﻣﻪ‪ :‬ﺍﺧﻴﺮﺍ ﺍﻧﺘﺸﺎﺭ ﺗﺮﻛﻴﺒﺎﺕ ﺁﻟﻲ ﻓﺮﺍﺭ ﺗﻮﺳﻂ ﻓﺮﺁﻳﻨﺪﻫﺎﻱ ﺻﻨﻌﺘﻲ ﺑﻪ ﻣﺤﻴﻂ ﺯﻳﺴﺖ‪ ،‬ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ‬ ‫ﺍﺳﺖ‪ .‬ﻓﺮﺁﻳﻨﺪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻜﻲ ﺍﺯ ﺭﻭﺵ ﻫﺎﻱ ﻧﻮ ﻇﻬﻮﺭ ﺩﺭ ﺗﺼﻔﻴﻪ ﻫﻮﺍ ﻣﻲ ﺗﻮﺍﻧﺪ‬ ‫ﺟﺎﻳﮕﺰﻳﻦ ﺭﻭﺵ ﻫﺎﻱ ﻣﻌﻤﻮﻝ ﻣﺎﻧﻨﺪ ﺟﺬﺏ ﺳﻄﺤﻲ ﺁﻻﻳﻨﺪﻩﻫﺎ ﺗﻮﺳﻂ ﺫﻏﺎﻝ ﻓﻌﺎﻝ ﮔﺮﺩﺩ‪ .‬ﺩﺭ ﻓﺮﺁﻳﻨﺪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‪ ،‬ﻣﻮﻟﻜﻮﻝ ﻫﺎﻱ ﺗﺮﻛﻴﺒﺎﺕ ﺁﻟﻲ ﺑﻪ ﻣﻮﻟﻜﻮﻝ ﻫﺎﻱ ﺁﺏ ﻭ ﺩﻱ ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﺗﺒﺪﻳﻞ ﻣﻲ ﮔﺮﺩﻧﺪ‪ .‬ﻫﺪﻑ‬ ‫ﭘﮋﻭﻫﺶ ﺣﺎﺿﺮ ﻣﻄﺎﻟﻌﻪ ﻋﻮﺍﻣﻞ ﺗﺎﺛﻴﺮ ﮔﺬﺍﺭ ﻣﺎﻧﻨﺪ ﻏﻠﻈﺖ‪ ،‬ﺭﻃﻮﺑﺖ ﻧﺴﺒﻰ ﻭ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻯ ﮔﺎﺯ ﺑﺮ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻰ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﻳﻚ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﺑﻮﺩ‪.‬‬

‫ﻓﺼﻠﻨﺎﻣﻪ ﺑﻬﺪﺍﺷﺖ ﻭ ﺍﻳﻤﻨﻰ ﻛﺎﺭ‬

‫ﻣﺤﻤﺪ ﺣﺎﺝ ﺁﻗﺎﺯﺍﺩﻩ ‪ - 1‬ﺣﺴﻴﻦ ﻛﺎﻛﻮﻳﻲ‪ -*2‬ﺭﺣﻤﺖ ﺳﺘﻮﺩﻩ ﻗﺮﻩ ﺑﺎﻍ‪ - 3‬ﺷﻬﺮﺁﺭﺍ ﺍﻓﺸﺎﺭ‪ - 4‬ﻓﺮﻳﺪﻩ ﮔﻞ ﺑﺎﺑﺎﻳﻲ‪ - 2‬ﺍﻣﻴﺮ ﻣﻌﺘﻤﺪﺩﺍﺷﻠﻲ ﺑﺮﻭﻥ ‪ - 5‬ﺣﺎﻣﺪ ﺣﺴﻨﻲ‬

‫‪6‬‬

‫ﻣﺤﻤﺪ ﺣﺎﺝ ﺁﻗﺎﺯﺍﺩﻩ ‪ -‬ﺣﺴﻴﻦ ﻛﺎﻛﻮﻳﻲ ‪ -‬ﺭﺣﻤﺖ ﺳﺘﻮﺩﻩ ﻗﺮﻩ ﺑﺎﻍ ‪ -‬ﺷﻬﺮﺁﺭﺍ ﺍﻓﺸﺎﺭ ‪ -‬ﻓﺮﻳﺪﻩ ﮔﻞ ﺑﺎﺑﺎﻳﻲ ‪ -‬ﺍﻣﻴﺮ ﻣﻌﺘﻤﺪﺩﺍﺷﻠﻲ ﺑﺮﻭﻥ ‪ -‬ﺣﺎﻣﺪ ﺣﺴﻨﻲ‬

‫‪48‬‬ ‫ﻓﺼﻠﻨﺎﻣﻪ ﺑﻬﺪﺍﺷﺖ ﻭ ﺍﻳﻤﻨﻰ ﻛﺎﺭ‬

‫ﻣﻘﺪﻣﻪ‬ ‫ﺍﺧﻴﺮﺍ ﺍﻧﺘﺸﺎﺭ ﺗﺮﻛﻴﺒﺎﺕ ﺁﻟﻲ ﻓﺮﺍﺭ ﺗﻮﺳﻂ ﻓﺮﺁﻳﻨﺪﻫﺎﻱ‬ ‫ﺻﻨﻌﺘﻲ ﺑﻪ ﻣﺤﻴﻂ ﺯﻳﺴﺖ ﺑﻪ ﺩﻻﻳﻞ ﺯﻳﺴﺖ ﻣﺤﻴﻄﻲ ﻭ‬ ‫ﺳﻼﻣﺘﻲ ﺍﻧﺴﺎﻥﻫﺎ ﺍﺯ ﻃﺮﻑ ﻗﺎﻧﻮﻥ ﮔﺬﺍﺭﺍﻥ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﻗﺮﺍﺭ‬ ‫ﮔﺮﻓﺘﻪ ﺍﺳﺖ‪ .‬ﺑﻨﺎﺑﺮﺍﻳﻦ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻓﺮﺁﻳﻨﺪﻫﺎﻱ ﻛﻨﺘﺮﻝ ﻛﻨﻨﺪﻩ‬ ‫ﺁﻻﻳﻨﺪﻩ ﻫﺎﻱ ﮔﺎﺯﻱ ﺷﻜﻞ ﺍﺯ ﺿﺮﻭﺭﺕ‪-‬ﻫﺎﻱ ﻋﺼﺮ ﺣﺎﺿﺮ ﺑﻪ‬ ‫ﺷﻤﺎﺭ ﻣﻲ ﺁﻳﺪ‪ .‬ﺩﺭ ﺍﻳﻦ ﺭﺍﺳﺘﺎ ﺭﻭﺵﻫﺎﻱ ﻓﻴﺰﻳﻜﻲ‪ ،‬ﺷﻴﻤﻴﺎﻳﻲ ﻭ‬ ‫ﺑﻴﻮﻟﻮژﻳﻜﻲ ﺑﺮﺍﻱ ﻛﻨﺘﺮﻝ ﺗﺮﻛﻴﺒﺎﺕ ﺁﻟﻲ ﻓﺮﺍﺭ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ‬

‫ﺍﻳﺠﺎﺩ ﻣﻲﮔﺮﺩﺩ‪ .‬ﺍﻟﻜﺘﺮﻭﻥﻫﺎ ﻭ ﺣﻔﺮﻩ ﻫﺎﻱ ﺑﺎ ﺑﺎﺭ ﻣﺜﺒﺖ ﺑﻪ‬ ‫ﺗﺮﺗﻴﺐ ﻭﺍﻛﻨﺶ ﻫﺎﻱ ﺍﺣﻴﺎء ﻭ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﺗﺮﻛﻴﺒﺎﺕ ﺟﺬﺏ‬ ‫ﺷﺪﻩ ﺑﻪ ﺳﻄﺢ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺖ ﺭﺍ ﺭﺍﻫﺒﺮﻱ ﻣﻲ ﻧﻤﺎﻳﻨﺪ‪ .‬ﺩﺭ ﻃﻲ‬ ‫ﻭﺍﻛﻨﺶ ‪ ،PCO‬ﺍﺯ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﺁﺏ ﺟﺬﺏ ﺷﺪﻩ ﺑﺮ ﺭﻭﻱ‬ ‫ﺳﻄﺢ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺖ ﺭﺍﺩﻳﻜﺎﻝ ﻫﻴﺪﺭﻭﻛﺴﻴﻞ )‪ (°OH‬ﺗﻮﻟﻴﺪ‬ ‫ﺷﺪﻩ ﻭ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻚ ﺍﻛﺴﻴﺪ ﻛﻨﻨﺪﻩ ﻗﻮﻱ ﺁﻻﻳﻨﺪﻩ ﻫﺎﻱ ﺁﻟﻲ‬ ‫ﺭﺍ ﺗﺨﺮﻳﺐ ﻣﻲ ﻧﻤﺎﻳﺪ )‪.(Zhao and Yang, 2003‬‬

‫ﮔﺮﻓﺘﻪ ﺍﻧﺪ )‪Alberici and Jardim, 1997, Beauchet et‬‬

‫ﺩﺭ ﻣﻄﺎﻟﻌﻪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺗﺮﻛﻴﺒﺎﺕ‬ ‫ﺁﻟﻲ‪ ،‬ﺍﺯ ﺭﺍﻛﺘﻮﺭﻫﺎﻱ ﻣﺨﺘﻠﻔﻲ ﻧﻈﻴﺮ ﺭﺍﻛﺘﻮﺭﻫﺎﻱ ﺻﻔﺤﻪ ﺗﺨﺖ‪،‬‬ ‫ﻣﻮﻧﻮﻟﻴﺖ ﻻﻧﻪ ﺯﻧﺒﻮﺭﻱ‪ ،‬ﺣﻠﻘﻮﻱ ﻭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ‬

‫ﺷﻤﺎﺭﻩ ﺳﻮﻡ‪ /‬ﭘﻴﺎﭘﻰ ‪ /3‬ﺑﻬﺎﺭ ‪1391‬‬

‫‪D‬‬ ‫‪I‬‬

‫‪ .(al., 2007, Jorio et al., 1998‬ﺍﺯ ﻣﻴﺎﻥ ﺍﻳﻦ ﺭﻭﺵﻫﺎ‬ ‫ﺟﺬﺏ ﺳﻄﺤﻲ ﺁﻻﻳﻨﺪﻩ ﻫﺎﻱ ﮔﺎﺯﻱ ﺩﺭ ﺳﺎﺧﺘﺎﺭ ﺫﻏﺎﻝ ﻓﻌﺎﻝ‬ ‫ﺍﺳﺘﻔﺎﺩﻩ ﮔﺴﺘﺮﺩﻩﺍﻱ ﺩﺍﺭﺩ‪ .‬ﺑﺎ ﻭﺟﻮﺩ ﺍﻳﻦ ﺭﻭﺵ ﻓﻮﻕ ﺑﺎ ﻛﺎﺳﺘﻲ‬ ‫ﻫﺎﻳﻲ ﺍﺯ ﻗﺒﻴﻞ ﺍﺷﺒﺎﻉ ﺷﺪﻥ ﺫﻏﺎﻝ ﻓﻌﺎﻝ ﻭ ﻣﺸﻜﻼﺕ ﻓﻌﺎﻝ‬ ‫ﺳﺎﺯﻱ ﻣﺠﺪﺩ ﺁﻥ ﻫﻤﺮﺍﻩ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺍﺯ ﺁﻧﺠﺎﻳﻲ ﻛﻪ ﺗﺮﻛﻴﺒﺎﺕ‬ ‫ﺁﻟﻲ ﻓﺮﺍﺭ ﻗﺎﺑﻞ ﺍﻛﺴﻴﺪ ﺷﺪﻥ ﻫﺴﺘﻨﺪ‪ ،‬ﻓﺮﺁﻳﻨﺪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ‬

‫‪S‬‬ ‫‪f‬‬

‫‪o‬‬ ‫‪e‬‬

‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ‪Oxidatoin catalytic Photo -PCO‬‬

‫ﻣﻲ ﺗﻮﺍﻧﺪ ﺑﻪ ﻋﻨﻮﺍﻥ ﺭﻭﺷﻲ ﺟﺎﻳﮕﺰﻳﻦ ﺑﻪﻛﺎﺭ ﮔﺮﻓﺘﻪ ﺷﻮﺩ‪ .‬ﺍﻣﺎ‬ ‫ﺑﻪﺩﻟﻴﻞ ﺁﻥﻛﻪ ﺍﻳﻦ ﺭﻭﺵ ﻫﻨﻮﺯ ﻗﺎﺑﻠﻴﺖ ﻛﺎﺭﺑﺮﺩ ﺩﺭ ﻋﺮﺻﻪ ﻫﺎﻱ‬ ‫ﺻﻨﻌﺘﻲ ﺭﺍ ﭘﻴﺪﺍ ﻧﻜﺮﺩﻩ ﺍﺳﺖ‪ ،‬ﻣﺤﻘﻘﻴﻦ ﺩﺭ ﺗﻼﺷﻨﺪ ﺑﺎ ﺍﻧﺠﺎﻡ‬ ‫ﻣﻄﺎﻟﻌﺎﺕ ﺁﺯﻣﺎﻳﺸﮕﺎﻫﻲ ﻭ ﺑﺮﺭﺳﻲ ﻋﻮﺍﻣﻞ ﺗﺎﺛﻴﺮ ﮔﺬﺍﺭ ﺑﺮ ﻛﺎﺭﺁﻳﻲ‬ ‫ﺍﻳﻦ ﻓﺮﺍﻳﻨﺪ‪ ،‬ﺭﺍﻩ ﺭﺍ ﺑﺮﺍﻱ ﻛﺎﺭﺑﺮﺩ ﺻﻨﻌﺘﻲ ﺍﻳﻦ ﺭﻭﺵ ﻫﻤﻮﺍﺭ‬ ‫ﺳﺎﺯﻧﺪ )‪.(Mo et al., 2009‬‬ ‫ﺩﺭ ﻓﺮﺁﻳﻨﺪ ‪ PCO‬ﺑﺮﺍﻱ ﺗﺒﺪﻳﻞ ﺗﺮﻛﻴﺒﺎﺕ ﺁﻟﻲ ﺑﻪ ﺩﻱ‬ ‫ﺍﻛﺴﻴﺪ ﻛﺮﺑﻦ ﻭ ﺁﺏ‪ ،‬ﻣﻌﻤﻮﻻ ﺍﺯ ﻛﺎﺗﺎﻟﻴﺴﺖ ﻫﺎﻳﻲ ﺑﺎ ﺳﺎﺧﺘﺎﺭ‬ ‫ﻧﺎﻧﻮ ﻣﺎﻧﻨﺪ ﺩﻱ ﺍﻛﺴﻴﺪ ﺗﻴﺘﺎﻧﻴﻮﻡ )‪ (TiO2‬ﻭ ﺍﻛﺴﻴﺪ ﺭﻭﻱ‬ ‫)‪ (ZnO‬ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲ ﺷﻮﺩ‪ .‬ﺩﺭ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‬ ‫ﺁﻻﻳﻨﺪﻩﻫﺎﻱ ﮔﺎﺯﻱ ﻧﻴﺰ ﺑﻴﺸﺘﺮ ﺍﺯ ‪ TiO2‬ﻓﻌﺎﻝ ﺷﻮﻧﺪﻩ ﺑﺎ ﻧﻮﺭ‬ ‫ﻓﺮﺍﺑﻨﻔﺶ ﺑﻪ ﻋﻨﻮﺍﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺖ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺩﺭ‬ ‫ﻓﺮﺁﻳﻨﺪ ‪ PCO‬ﺩﺭ ﺍﺛﺮ ﺑﺮﺧﻮﺭﺩ ﻓﻮﺗﻮﻥ ﺑﺎ ﻃﻮﻝ ﻣﻮﺝ ﻫﺎﻱ ﻛﻤﺘﺮ‬ ‫ﺍﺯ ‪ 388‬ﻧﺎﻧﻮﻣﺘﺮ ﺑﻪ ﻻﻳﻪ ﻇﺮﻓﻴﺖ ‪ TiO2‬ﻭ ﺗﺎﻣﻴﻦ ﮔﺎﻑ ﺍﻧﺮژﻱ‬ ‫ﺑﻴﻦ ﻻﻳﻪ ﻇﺮﻓﻴﺖ ﻭ ﺭﺳﺎﻧﺶ‪ ،‬ﻳﻚ ﺍﻟﻜﺘﺮﻭﻥ ﺑﻪ ﻻﻳﻪ ﺭﺳﺎﻧﺶ‬ ‫ﺍﻧﺘﻘﺎﻝ ﻣﻲﻳﺎﺑﺪ ﻭ ﺩﺭ ﻻﻳﻪ ﻇﺮﻓﻴﺖ ﻳﻚ ﺣﻔﺮﻩ ﺑﺎ ﺑﺎﺭ ﻣﺜﺒﺖ‬

‫‪www.SID.ir‬‬

‫ﺍﺳﺖ )‪ .(Birnie et al., 2006‬ﺭﺍﻛﺘﻮﺭﻫﺎﻱ ﺫﻛﺮ ﺷﺪﻩ‪،‬‬ ‫ﺑﻪ ﻏﻴﺮ ﺍﺯ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‪ ،‬ﺩﺭ ﮔﺮﻭﻩ ﺭﺍﻛﺘﻮﺭﻫﺎﻱ ﺑﺴﺘﺮ‬ ‫ﺛﺎﺑﺖ ﺗﻘﺴﻴﻢ ﺑﻨﺪﻱ ﻣﻲﺷﻮﻧﺪ‪ .‬ﻛﺎﺗﺎﻟﻴﺴﺖ ﺑﻪﻛﺎﺭ ﺭﻓﺘﻪ ﺩﺭ‬ ‫ﺭﺍﻛﺘﻮﺭﻫﺎﻱ ﺑﺴﺘﺮ ﺛﺎﺑﺖ‪ ،‬ﺩﺭ ﻣﺤﻞ ﺧﻮﺩ ﺛﺎﺑﺖ ﻭ ﺑﺪﻭﻥ ﺣﺮﻛﺖ‬ ‫ﺍﺳﺖ‪ ،‬ﺩﺭﺣﺎﻟﻲﻛﻪ ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‪ ،‬ﺫﺭﺍﺗﻲ ﻛﻪ ﺑﺮ‬ ‫ﺭﻭﻱ ﺁﻥﻫﺎ ﻛﺎﺗﺎﻟﻴﺴﺖ ﻧﺸﺎﻧﺪﻩ ﺷﺪﻩ ﺍﺳﺖ‪ ،‬ﺩﺭ ﺩﺍﺧﻞ ﺭﺍﻛﺘﻮﺭ‬ ‫ﺑﻪﺭﺍﺣﺘﻲ ﺳﻴﺎﻝ ﺷﺪﻩ ﻭ ﺣﺮﻛﺖ ﻣﻲ ﻛﻨﻨﺪ‪ .‬ﺍﺯ ﺁﻧﺠﺎﻳﻲ ﻛﻪ ﺩﺭ‬ ‫ﺭﺍﻛﺘﻮﺭﻫﺎﻱ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‪ ،‬ﺩﺑﻲ ﻫﺎﻱ ﻧﺴﺒﺘﺎً ﺑﺎﻻﻳﻲ ﺍﺯ ﮔﺎﺯﻫﺎ‬

‫‪v‬‬ ‫‪i‬‬ ‫‪h‬‬

‫ﻭﺍﺭﺩ ﺭﺍﻛﺘﻮﺭ ﻣﻲ ﺷﻮﺩ ﻭ ﺗﻤﺎﺱ ﻣﻮﺛﺮﻱ ﺑﻴﻦ ﻓﻮﺗﻮﻥﻫﺎﻱ‬ ‫ﻧﻮﺭ ﻓﺮﺍﺑﻨﻔﺶ‪ ،‬ﻛﺎﺗﺎﻟﻴﺴﺖ ﺟﺎﻣﺪ ﻭ ﮔﺎﺯﻫﺎﻱ ﻭﺍﻛﻨﺶ ﺩﻫﻨﺪﻩ‬

‫‪c‬‬ ‫‪r‬‬

‫ﻓﺮﺍﻫﻢ ﻣﻲ ﮔﺮﺩﺩ‪ ،‬ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﻣﺤﻘﻘﺎﻥ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﻧﺪ )‪Lim‬‬

‫‪ .(and Kim, 2004; Nelson et al., 2007‬ﺩﺭ ﻣﻄﺎﻟﻌﻪ‬ ‫ﺣﺎﺿﺮ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺑﻪ ﻋﻨﻮﺍﻥ ﺁﻻﻳﻨﺪﻩ ﻣﺪﻝ ﺍﻧﺘﺨﺎﺏ‬ ‫ﺷﺪ ﻭ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻧﺎﻧﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺑﺨﺎﺭ ﺁﻥ ﺩﺭ ﻳﻚ‬ ‫ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﺑﺎ ﺣﻀﻮﺭ ﻧﺎﻧﻮ ﺫﺭﺍﺕ ﺩﻱ ﺍﻛﺴﻴﺪ ﺗﻴﺘﺎﻧﻴﻮﻡ‬ ‫ﻣﻄﺎﻟﻌﻪ ﮔﺮﺩﻳﺪ‪.‬‬

‫‪A‬‬

‫ﺭﻭﺵ ﻛﺎﺭ‬ ‫ﺗﻬﻴﻪ ﻛﺎﺗﺎﻟﻴﺴﺖ‬ ‫ﺍﻳﻦ ﺗﺤﻘﻴﻖ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻳﻚ ﺳﺖ ﺁپ ﺳﺎﺧﺖ‬ ‫ﻏﻠﻈﺖ ﺑﻪ ﻣﻨﻈﻮﺭ ﺗﻬﻴﻪ ﻛﺎﺗﺎﻟﻴﺴﺖ ‪ ،TiO2/Al2O3‬ﻧﺎﻧﻮ ﭘﻮﺩﺭ‬ ‫‪) TiO2‬ﺩﮔﻮﺳﺎ ‪ (P25‬ﺩﺭ ﺁﺏ ﻣﻘﻄﺮ ﺣﻞ ﮔﺮﺩﻳﺪ‪ .‬ﺑﺮﺍﻱ‬

‫ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‬

‫‪49‬‬ ‫ﻓﺼﻠﻨﺎﻣﻪ ﺑﻬﺪﺍﺷﺖ ﻭ ﺍﻳﻤﻨﻰ ﻛﺎﺭ‬

‫‪S‬‬ ‫‪f‬‬

‫ﺷﻜﻞ ‪ :1‬ﺷﻤﺎﻱ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﻓﺘﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‬

‫‪o‬‬ ‫‪e‬‬

‫ﺍﻧﺤﻼﻝ ﺑﻬﺘﺮ ﺍﺯ ﺣﻤﺎﻡ ﺍﻭﻟﺘﺮﺍﺳﻮﻧﻴﻚ ﺑﻪﻣﺪﺕ ‪ 20‬ﺩﻗﻴﻘﻪ‬ ‫ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪ‪ .‬ﺳﭙﺲ ﺯﻳﺮﭘﺎﻳﻪ ﮔﺎﻣﺎ ﺁﻟﻮﻣﻴﻨﺎ ﺑﻪ ﻇﺮﻑ ﻣﺤﺘﻮﻱ‬

‫ﻣﺤﻠﻮﻝ ‪ TiO2‬ﺍﺿﺎﻓﻪ ﮔﺮﺩﻳﺪ ﻭ ‪ 45‬ﺩﻗﻴﻘﻪ ﺩﻳﮕﺮ ﺩﺭ ﺣﻤﺎﻡ‬ ‫ﺍﻭﻟﺘﺮﺍﺳﻮﻧﻴﻚ ﻗﺮﺍﺭ ﮔﺮﻓﺖ‪ .‬ﻛﺎﺗﺎﻟﻴﺴﺖ ﺗﻬﻴﻪ ﺷﺪﻩ ﺩﺭ ﻳﻚ ﺁﻭﻥ‬ ‫ﺑﻪﻣﺪﺕ ‪ 24‬ﺳﺎﻋﺖ ﺑﺎ ﺩﻣﺎﻱ ‪ 100‬ﺩﺭﺟﻪ ﺳﻠﺴﻴﻮﺱ ﺧﺸﻚ‬ ‫ﮔﺮﺩﻳﺪ‪ .‬ﺑﻪ ﻣﻨﻈﻮﺭ ﻛﻠﺴﻴﻨﻪ ﻛﺮﺩﻥ ﺁﻥ ﺍﺯ ﻳﻚ ﻛﻮﺭﻩ ﺍﻟﻜﺘﺮﻳﻜﻲ‬ ‫ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪ‪ .‬ﺩﻣﺎﻱ ﻛﻮﺭﻩ ﺍﻟﻜﺘﺮﻳﻜﻲ ﺑﺎ ﺷﻴﺐ ﺩﻣﺎﻳﻲ‪10‬‬ ‫ﺩﺭﺟﻪ ﺳﻠﺴﻴﻮﺱ ﺩﺭ ﻫﺮ ﺩﻗﻴﻘﻪ ﺍﺯ ﺩﻣﺎﻱ ﻣﺤﻴﻂ ﺑﻪ ﺩﻣﺎﻱ‬ ‫‪ 400‬ﺩﺭﺟﻪ ﺳﻠﺴﻴﻮﺱ ﺭﺳﻴﺪ ﻭ ﺑﻪﻣﺪﺕ ‪ 2‬ﺳﺎﻋﺖ ﺩﺭ ﺍﻳﻦ‬ ‫ﺩﻣﺎ ﻧﮕﻪﺩﺍﺷﺘﻪ ﺷﺪ‪ .‬ﺩﺭ ﺗﻬﻴﻪ ﻛﺎﺗﺎﻟﻴﺴﺖ ﺑﻪ ﺍﺯﺍﻯ ﻫﺮ ﮔﺮﻡ‬ ‫‪ ،Al2O3‬ﺍﺯ ‪ 0/2‬ﮔﺮﻡ ‪ TiO2‬ﺍﺳﺘﻔﺎﺩﻩ ﮔﺮﺩﻳﺪ‪ .‬ﺩﺭ ﻫﺮ ﺁﺯﻣﺎﻳﺶ‬ ‫ﻣﻘﺪﺍﺭ ‪ 30‬ﮔﺮﻡ ﺍﺯ ﻛﺎﺗﺎﻟﻴﺴﺖ ﺗﻬﻴﻪ ﺷﺪﻩ ﺩﺭ ﺩﺍﺧﻞ ﺭﺍﻛﺘﻮﺭ‬ ‫ﺭﻳﺨﺘﻪ ﺷﺪ ﻭ ﺑﺎ ﻋﺒﻮﺭ ﻫﻮﺍﻱ ﺣﺎﻭﻱ ﺑﺨﺎﺭ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ‬ ‫ﺩﺭ ﻓﺎﺻﻠﻪ ﺑﻴﻦ ﻻﻣﭗ ﺩﺍﺧﻠﻲ ﻭ ﭘﻮﺳﺘﻪ ﺭﺍﻛﺘﻮﺭ ﺳﻴﺎﻝ ﮔﺮﺩﻳﺪ‪.‬‬

‫ﺭﺍﻛﺘﻮﺭﺑﺴﺘﺮﺳﻴﺎﻝ‬ ‫ﺷﻜﻞ ﺷﻤﺎﺗﻴﻚ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ‪،‬‬ ‫ﺩﺭ ﺷﻜﻞ ‪ 1‬ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﭘﻮﺳﺘﻪ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ‬

‫‪www.SID.ir‬‬

‫ﺳﻴﺎﻝ ﺍﺯ ﻳﻚ ﺍﺳﺘﻮﺍﻧﻪ ﺷﻴﺸﻪ ﺍﻱ ﺑﺎ ﻗﻄﺮ ﺩﺍﺧﻠﻲ ‪ 4‬ﺳﺎﻧﺘﻲ‬ ‫ﻣﺘﺮ ﻭ ﺍﺭﺗﻔﺎﻉ ‪ 100‬ﺳﺎﻧﺘﻲ ﻣﺘﺮ ﺳﺎﺧﺘﻪ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺑﻪ ﻣﻨﻈﻮﺭ‬ ‫ﻧﻮﺭﺩﻫﻲ ﺑﻬﺘﺮ‪ ،‬ﻳﻚ ﻻﻣﭗ ﻓﺮﺍﺑﻨﻔﺶ ‪ 15‬ﻭﺍﺗﻲ ﺩﺭ ﻣﺮﻛﺰ‬ ‫ﺭﺍﻛﺘﻮﺭ ﻗﺮﺍﺭ ﺩﺍﺩﻩ ﺷﺪ‪ .‬ﺩﺭ ﺑﻴﺮﻭﻥ ﻭ ﻣﺠﺎﻭﺭﺕ ﭘﻮﺳﺘﻪ ﺭﺍﻛﺘﻮﺭﻑ‬ ‫‪ 4‬ﻻﻣﭗ ﻓﺮﺍﺑﻨﻔﺶ ‪ 15‬ﻭﺍﺗﻲ ﺑﻪﻃﻮﺭ ﻗﺮﻳﻨﻪ ﭼﻴﺪﻩ ﺷﺪﻧﺪ‪.‬‬ ‫ﻏﻠﻈﺖ ﻫﺎﻱ ﻣﻮﺭﺩ ﻧﻈﺮ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﻭ ﺑﺨﺎﺭ ﺁﺏ‬ ‫ﺑﻪ ﺗﺮﺗﻴﺐ ﺍﺯ ﻃﺮﻳﻖ ﻋﺒﻮﺭ ﻫﻮﺍ ﺍﺯ ﺩﺍﺧﻞ ﺍﻳﻤﭙﻴﻨﺠﺮﻫﺎﻱ ﺣﺎﻭﻱ‬ ‫ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﻭ ﺁﺏ ﺣﺎﺻﻞ ﮔﺮﺩﻳﺪ‪ .‬ﻓﻠﻮﻱ ﻋﺒﻮﺭﻱ ﺍﺯ‬ ‫ﺭﺍﻛﺘﻮﺭ ﺗﻮﺳﻂ ﺭﻭﺗﺎﻣﺘﺮ ﺩﺭ ﮔﺴﺘﺮﻩ ‪ 0/5‬ﺗﺎ ‪ 2‬ﺩﺳﻲ ﻣﺘﺮﻣﻜﻌﺐ‬

‫‪v‬‬ ‫‪i‬‬ ‫‪h‬‬

‫‪c‬‬ ‫‪r‬‬

‫‪A‬‬

‫ﺩﺭﺩﻗﻴﻘﻪ ﻛﻪ ﻣﻌﺎﺩﻝ ﺑﺎ ﺳﺮﻋﺖﻫﺎﻱ ‪ Umf2‬ﺗﺎ ‪ Umf4‬ﺑﻮﺩ‪،‬‬ ‫ﺗﻨﻈﻴﻢ ﮔﺮﺩﻳﺪ‪ .‬ﻻﻣﭗ ﻫﺎﻱ ﻓﺮﺍﺑﻨﻔﺶ ﺯﻣﺎﻧﻲ ﺭﻭﺷﻦ ﺷﺪﻧﺪ‬ ‫ﻛﻪ ﻏﻠﻈﺖ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟﻲ ﺭﺍﻛﺘﻮﺭ‬ ‫ﺑﻪ ﻳﻚ ﺍﻧﺪﺍﺯﻩ ﺭﺳﻴﺪﻩ ﺑﻮﺩ‪ .‬ﻛﺎﺭﺁﻳﻲ ﻓﺮﺍﻳﻨﺪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺩﺭ ﺣﺎﻟﺖ ﭘﺎﻳﺪﺍﺭ ﻋﻤﻠﻜﺮﺩ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ‬ ‫ﺳﻴﺎﻝ ﻣﺤﺎﺳﺒﻪ ﮔﺮﺩﻳﺪ‪ .‬ﻏﻠﻈﺖ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﻭﺭﻭﺩﻱ‬ ‫ﻭ ﺧﺮﻭﺟﻲ ﺭﺍﻛﺘﻮﺭ‪ ،‬ﺍﺯ ﻃﺮﻳﻖ ﺗﺰﺭﻳﻖ ﻧﻤﻮﻧﻪ ﻫﺎﻱ ﮔﺎﺯﻱ ﺑﻪ‬ ‫ﺩﺳﺘﮕﺎﻩ ﮔﺎﺯﻛﺮﻭﻣﺎﺗﻮﮔﺮﺍﻓﻲ ‪ Varian CP-3800‬ﻣﺠﻬﺰ ﺑﻪ‬ ‫ﺩﺗﻜﺘﻮﺭ ﻳﻮﻧﺶ ﺷﻌﻠﻪ ﺍﻱ )‪ (FID‬ﺗﻌﻴﻴﻦ ﮔﺮﺩﻳﺪ‪ .‬ﺑﻪﻣﻨﻈﻮﺭ‬

‫ﺷﻤﺎﺭﻩ ﺳﻮﻡ‪ /‬ﭘﻴﺎﭘﻰ ‪ /3‬ﺑﻬﺎﺭ ‪1391‬‬

‫‪D‬‬ ‫‪I‬‬

‫ﻣﺤﻤﺪ ﺣﺎﺝ ﺁﻗﺎﺯﺍﺩﻩ ‪ -‬ﺣﺴﻴﻦ ﻛﺎﻛﻮﻳﻲ ‪ -‬ﺭﺣﻤﺖ ﺳﺘﻮﺩﻩ ﻗﺮﻩ ﺑﺎﻍ ‪ -‬ﺷﻬﺮﺁﺭﺍ ﺍﻓﺸﺎﺭ ‪ -‬ﻓﺮﻳﺪﻩ ﮔﻞ ﺑﺎﺑﺎﻳﻲ ‪ -‬ﺍﻣﻴﺮ ﻣﻌﺘﻤﺪﺩﺍﺷﻠﻲ ﺑﺮﻭﻥ ‪ -‬ﺣﺎﻣﺪ ﺣﺴﻨﻲ‬

‫ﻛﺎﻟﻴﺒﺮﺍﺳﻴﻮﻥ ﺩﺳﺘﮕﺎﻩ ﮔﺎﺯ ﻛﺮﻭﻣﺎﺗﻮﮔﺮﺍﻓﻰ‪ ،‬ﻏﻠﻈﺖ ﻫﺎﻯ ﻣﻌﻴﻦ‬ ‫ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺑﺎ ﺭﻭﺵ ﺍﺳﺘﺎﺗﻴﻚ ﺩﺭ ﺩﺍﺧﻞ ﻛﻴﺴﻪ ﻫﺎﻯ‬ ‫ﺗﺪﻻﺭ ﺗﻬﻴﻪ ﮔﺮﺩﻳﺪ ﻭ ﺑﺎ ﺗﺰﺭﻳﻖ ﻧﻤﻮﻧﻪ ﻫﺎﻯ ﮔﺎﺯﻯ ﺑﻪ ﺩﺳﺘﮕﺎﻩ‬ ‫ﮔﺎﺯ ﻛﺮﻭﻣﺎﺗﻮﮔﺮﺍﻓﻰ ﻣﻨﺤﻨﻰ ﻛﺎﻟﻴﺒﺮﺍﺳﻴﻮﻥ ﺗﺮﺳﻴﻢ ﺷﺪ‪.‬‬

‫ﺷﻜﻞ ﮔﻴﺮﻱ ﺭﺍﺩﻳﻜﺎﻝ ﻫﺎﻱ ﻫﻴﺪﺭﻭﻛﺴﻴﻞ ﻧﻘﺶ ﺑﺴﺰﺍﻳﻲ ﺩﺍﺭﻧﺪ‪،‬‬ ‫ﺑﻪﻣﻨﻈﻮﺭﺑﺮﺭﺳﻲﺗﺎﺛﻴﺮﻣﻘﺪﺍﺭﺑﺨﺎﺭﺁﺏﺑﺮﻭﺍﻛﻨﺶﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ‪ ،‬ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻏﻠﻈﺖﻫﺎﻱ‬ ‫‪ 400‬ﻭ ‪ 800‬ﭘﻲ ﭘﻲ ﺍﻡ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﻃﻮﺑﺖ ﻫﺎﻱ‬ ‫ﻧﺴﺒﻲ ‪ %25‬ﻭ ‪ %45‬ﺍﻧﺠﺎﻡ ﮔﺮﻓﺖ )ﺷﻜﻞ ‪ .(2‬ﻫﻤﺎﻥﻃﻮﺭ ﻛﻪ‬

‫‪50‬‬ ‫ﻓﺼﻠﻨﺎﻣﻪ ﺑﻬﺪﺍﺷﺖ ﻭ ﺍﻳﻤﻨﻰ ﻛﺎﺭ‬

‫ﺩﺭ ﺷﻜﻞ ‪ 2‬ﻣﺸﺎﻫﺪﻩ ﻣﻲ ﺷﻮﺩ‪ ،‬ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ‬

‫ﻳﺎﻓﺘﻪ ﻫﺎ‬

‫ﺷﻤﺎﺭﻩ ﺳﻮﻡ‪ /‬ﭘﻴﺎﭘﻰ ‪ /3‬ﺑﻬﺎﺭ ‪1391‬‬

‫ﺗﻌﻴﻴﻦ ﺣﺪﺍﻗﻞ ﺳﺮﻋﺖ ﺳﻴﺎﻝ ﺳﺎﺯﻯ ﻛﺎﺗﺎﻟﻴﺴﺖ‬ ‫ﺑﻪﻣﻨﻈﻮﺭ ﺗﻌﻴﻴﻦ ﺣﺪﺍﻗﻞ ﺳﺮﻋﺖ ﺳﻴﺎﻝ ﺳﺎﺯﻱ ‪Umf‬‬ ‫‪ Minimum fluidization velocity‬ﻛﺎﺗﺎﻟﻴﺴﺖ‪ ،‬ﺗﻐﻴﻴﺮﺍﺕ‬ ‫ﺍﻓﺖ ﻓﺸﺎﺭ ﺑﺴﺘﺮ )ﺑﺮ ﺣﺴﺐ ﻣﻴﻠﻲ ﻣﺘﺮ ﺁﺏ( ﺩﺭ ﻣﻘﺎﺑﻞ ﺳﺮﻋﺖ‬ ‫ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺗﺮﺳﻴﻢ ﮔﺮﺩﻳﺪ ﻭ ﺳﺮﻋﺖ ‪ 1/17 cm/s‬ﺑﻪ ﻋﻨﻮﺍﻥ‬ ‫‪ Umf‬ﺗﻌﻴﻴﻦ ﺷﺪ‪ .‬ﺩﺭ ﺷﻜﻞ ﻫﺎﻯ ‪ 2‬ﻭ ‪ ،3‬ﺳﺮﻋﺖ ﮔﺎﺯ ﺩﺭ ﺭﺍﻛﺘﻮﺭ‬ ‫)ﻣﺤﻮﺭ ﺍﻓﻘﻰ ﻧﻤﻮﺩﺍﺭ( ﺑﺮ ﺣﺴﺐ ﻧﺴﺒﺖ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻯ ﮔﺎﺯ ﺑﻪ‬ ‫ﺣﺪﺍﻗﻞ ﺳﺮﻋﺖ ﺳﻴﺎﻝ ﺳﺎﺯﻯ )‪ (Ug/Umf‬ﺑﻴﺎﻥ ﮔﺮﺩﻳﺪﻩ ﺍﺳﺖ‪.‬‬

‫ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﻃﻮﺑﺖ ﻧﺴﺒﻲ ‪ %45‬ﻧﺴﺒﺘﺎ ﻛﻢﺗﺮ ﺍﺯ ﺭﻃﻮﺑﺖ‬

‫‪D‬‬ ‫‪I‬‬

‫ﻧﺴﺒﻲ ‪ %25‬ﻣﻲ ﺑﺎﺷﺪ‪.‬‬

‫‪S‬‬ ‫‪f‬‬

‫‪o‬‬ ‫‪e‬‬

‫ﺗﺎﺛﻴﺮﺑﺨﺎﺭﺁﺏﺑﺮﻭﺍﻛﻨﺶﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‬ ‫ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ‬ ‫ﺍﺯ ﺁﻧﺠﺎﻳﻲ ﻛﻪ ﺩﺭ ﻓﺮﺍﻳﻨﺪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‪،‬‬ ‫ﻣﻮﻟﻜﻮﻝﻫﺎﻱ ﺁﺏ ﺟﺬﺏ ﺷﺪﻩ ﺑﺮ ﺭﻭﻱ ﺳﻄﺢ ﻛﺎﺗﺎﻟﻴﺴﺖ ﺩﺭ‬

‫ﺗﺎﺛﻴﺮ ﻏﻠﻈﺖ ﺍﻭﻟﻴﻪ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺑﺮ ﻭﺍﻛﻨﺶ‬ ‫ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺁﻥ‬ ‫ﻏﻠﻈﺖ ﺍﻭﻟﻴﻪ ﺁﻻﻳﻨﺪﻩ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻜﻲ ﺍﺯ ﻋﻮﺍﻣﻞ ﺗﺎﺛﻴﺮ‬ ‫ﮔﺬﺍﺭ ﺩﺭ ﻭﺍﻛﻨﺶ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺁﻻﻳﻨﺪﻩﻫﺎ‬ ‫ﺗﻠﻘﻲ ﻣﻲ ﮔﺮﺩﺩ‪ .‬ﺑﻨﺎﺑﺮﺍﻳﻦ ﺗﺎﺛﻴﺮ ﻏﻠﻈﺖ ﺍﻭﻟﻴﻪ ﻣﺘﻴﻞ ﺍﺗﻴﻞ‬ ‫ﻛﺘﻮﻥ ﺩﺭ ﮔﺴﺘﺮﻩ ﻏﻠﻈﺖ ‪ 200‬ﺗﺎ ‪ 800‬ﭘﻲ ﭘﻲ ﺍﻡ ﺩﺭ ﺗﺨﺮﻳﺐ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺁﻥ ﻣﻄﺎﻟﻌﻪ ﮔﺮﺩﻳﺪ )ﺷﻜﻞ‪ .(3‬ﻫﻤﺎﻥﻃﻮﺭ ﻛﻪ‬ ‫ﻣﻼﺣﻈﻪ ﻣﻲﮔﺮﺩﺩ‪ ،‬ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﻏﻠﻈﺖ ﺍﻭﻟﻴﻪ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ‬ ‫ﺍﺯ ‪ 200‬ﺗﺎ ‪ 800‬ﭘﻲ ﭘﻲ ﺍﻡ‪ ،‬ﻛﺎﺭﺁﻳﻲ ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‬ ‫ﻛﺎﻫﺶ ﻣﻲ ﻳﺎﺑﺪ‪ .‬ﻫﻤﭽﻨﻴﻦ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ‬ ‫ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‪ ،‬ﻛﺎﻫﺶ ﻛﺎﺭﺁﻳﻲ ﻓﺰﻭﻧﻲ ﻣﻲ ﻳﺎﺑﺪ‪.‬‬

‫‪v‬‬ ‫‪i‬‬ ‫‪h‬‬

‫‪c‬‬ ‫‪r‬‬

‫‪A‬‬

‫ﺷﻜﻞ ‪ :2‬ﺗﺎﺛﻴﺮ ﺭﻃﻮﺑﺖ ﻧﺴﺒﻲ ﺩﺭ ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ‬

‫‪www.SID.ir‬‬

‫ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‬

‫‪51‬‬ ‫ﻓﺼﻠﻨﺎﻣﻪ ﺑﻬﺪﺍﺷﺖ ﻭ ﺍﻳﻤﻨﻰ ﻛﺎﺭ‬

‫‪D‬‬ ‫‪I‬‬

‫ﺷﻜﻞ ‪ :3‬ﺗﺎﺛﻴﺮ ﻏﻠﻈﺖ ﺍﻭﻟﻴﻪ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺁﻥ‬ ‫ﺷﻤﺎﺭﻩ ﺳﻮﻡ‪ /‬ﭘﻴﺎﭘﻰ ‪ /3‬ﺑﻬﺎﺭ ‪1391‬‬

‫‪S‬‬ ‫‪f‬‬

‫‪o‬‬ ‫‪e‬‬

‫‪v‬‬ ‫‪i‬‬ ‫‪h‬‬

‫‪c‬‬ ‫‪r‬‬

‫‪A‬‬

‫ﺷﻜﻞ ‪ :4‬ﺗﺎﺛﻴﺮ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺩﺭ ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﻃﻮﺑﺖ ‪٪25‬‬

‫ﺗﺎﺛﻴﺮ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺑﺮ ﻭﺍﻛﻨﺶ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ‬ ‫ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻜﻲ ﺍﺯ‬ ‫ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﻫﻴﺪﺭﻭﺩﻳﻨﺎﻣﻴﻜﻲ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‬ ‫ﻣﻄﺮﺡ ﻣﻲ ﺑﺎﺷﺪ ﻭ ﺩﺭ ﻛﺎﺭﺁﻳﻲ ﺭﺍﻛﺘﻮﺭ ﻧﻘﺶ ﺑﺴﺰﺍﻳﻲ‬ ‫ﺩﺍﺭﺩ‪ .‬ﻟﺬﺍ ﺗﺎﺛﻴﺮ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺩﺭ ﺗﺨﺮﻳﺐ‬ ‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﻣﻮﺭﺩ ﻣﻄﺎﻟﻌﻪ‬

‫‪www.SID.ir‬‬

‫ﻗﺮﺍﺭ ﮔﺮﻓﺖ )ﺷﻜﻞ‪ .(4‬ﻫﻤﺎﻥ ﻃﻮﺭ ﻛﻪ ﻣﻼﺣﻈﻪ‬ ‫ﻣﻲ ﮔﺮﺩﺩ‪ ،‬ﺩﺭ ﻏﻠﻈﺖ ﻫﺎﻱ ﺍﻭﻟﻴﻪ ‪ 100‬ﻭ ‪ 200‬ﭘﻲ ﭘﻲ‬ ‫ﺍﻡ‪ ،‬ﺍﻓﺰﺍﻳﺶ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺗﻐﻴﻴﺮﻱ ﺩﺭ ﻛﺎﺭﺍﻳﻲ‬ ‫ﺗﺨﺮﻳﺐ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺍﻳﺠﺎﺩ ﻧﻤﻲ ﻧﻤﺎﻳﺪ ﻭﻟﻲ ﺑﺎ‬ ‫ﺍﻓﺰﺍﻳﺶ ﻏﻠﻈﺖ ﺍﺯ ‪ 200‬ﺑﻪ ‪ 800‬ﭘﻲ ﭘﻲ ﺍﻡ‪ ،‬ﺍﻓﺰﺍﻳﺶ‬ ‫ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﻣﻨﺠﺮ ﺑﻪ ﻛﺎﻫﺶ ﺗﺨﺮﻳﺐ ﻣﺘﻴﻞ‬ ‫ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﻣﻲ ﮔﺮﺩﺩ‪.‬‬

‫ﻣﺤﻤﺪ ﺣﺎﺝ ﺁﻗﺎﺯﺍﺩﻩ ‪ -‬ﺣﺴﻴﻦ ﻛﺎﻛﻮﻳﻲ ‪ -‬ﺭﺣﻤﺖ ﺳﺘﻮﺩﻩ ﻗﺮﻩ ﺑﺎﻍ ‪ -‬ﺷﻬﺮﺁﺭﺍ ﺍﻓﺸﺎﺭ ‪ -‬ﻓﺮﻳﺪﻩ ﮔﻞ ﺑﺎﺑﺎﻳﻲ ‪ -‬ﺍﻣﻴﺮ ﻣﻌﺘﻤﺪﺩﺍﺷﻠﻲ ﺑﺮﻭﻥ ‪ -‬ﺣﺎﻣﺪ ﺣﺴﻨﻲ‬

‫‪52‬‬ ‫ﻓﺼﻠﻨﺎﻣﻪ ﺑﻬﺪﺍﺷﺖ ﻭ ﺍﻳﻤﻨﻰ ﻛﺎﺭ‬

‫ﺑﺤﺚ‬

‫ﺗﻌﺪﺍﺩ ﻣﺤﻞ ﻫﺎﻱ ﻓﻌﺎﻝ ﻛﺎﺗﺎﻟﻴﺴﺖ ﻣﺤﺪﻭﺩ ﻣﻲﺑﺎﺷﺪ‬

‫ﺩﺭ ﺍﻳﻦ ﻣﻄﺎﻟﻌﻪ ﺗﺎﺛﻴﺮ ﻋﻮﺍﻣﻠﻲ ﺍﺯ ﻗﺒﻴﻞ ﺑﺨﺎﺭ ﺁﺏ‪،‬‬

‫)‪ (Mo et al., 2009‬ﻭ ﺩﺭ ﻏﻠﻈﺖ ﻫﺎﻱ ﺑﺎﻻﺗﺮ ﺑﺨﺸﻲ ﺍﺯ‬

‫ﻏﻠﻈﺖ ﺁﻻﻳﻨﺪﻩ ﻭ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺑﺮ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ‬

‫ﻣﻮﻟﻜﻮﻝ ﻫﺎﻱ ﺁﻻﻳﻨﺪﻩ ﺑﺪﻭﻥ ﺷﺮﻛﺖ ﺩﺭ ﻭﺍﻛﻨﺶ‪ ،‬ﺭﺍﻛﺘﻮﺭ‬

‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﻳﻚ ﺭﺍﻛﺘﻮﺭ‬

‫ﺭﺍ ﺗﺮﻙ ﻣﻲﻧﻤﺎﻳﻨﺪ‪ .‬ﻧﺘﺎﻳﺞ ﻣﺸﺎﺑﻪ ﺩﺭ ﺭﺍﻛﺘﻮﺭﻫﺎﻱ ﺑﺴﺘﺮ‬

‫ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﻣﻄﺎﻟﻌﻪ ﮔﺮﺩﻳﺪ‪ .‬ﺩﺭ ﻓﺮﺍﻳﻨﺪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ‬

‫ﺳﻴﺎﻝ ﻭ ﺑﺴﺘﺮ ﺛﺎﺑﺖ ﺩﺭ ﻣﻮﺭﺩ ﺁﻻﻳﻨﺪﻩﻫﺎﻱ ﺗﻮﻟﻮﺋﻦ ﻭ‬

‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‪ ،‬ﻣﻮﻟﻜﻮﻝﻫﺎﻱ ﺁﺏ ﺟﺬﺏ ﺷﺪﻩ ﺑﺮ ﺭﻭﻱ‬

‫ﻓﺮﻣﺎﻟﺪﺋﻴﺪ ﮔﺰﺍﺭﺵ ﺷﺪﻩ ﺍﺳﺖ );‪Tomašić et al., 2008‬‬

‫ﺳﻄﺢ ﻛﺎﺗﺎﻟﻴﺴﺖ ﺑﻪ ﺭﺍﺩﻳﻜﺎﻝﻫﺎﻱ ﻫﻴﺪﺭﻭﻛﺴﻴﻞ ﺗﺒﺪﻳﻞ‬

‫‪.(Kuo et al., 2009‬‬

‫ﺷﻤﺎﺭﻩ ﺳﻮﻡ‪ /‬ﭘﻴﺎﭘﻰ ‪ /3‬ﺑﻬﺎﺭ ‪1391‬‬

‫ﻣﻲﺷﻮﻧﺪ ﻭ ﺑﻪﻋﻨﻮﺍﻥ ﻋﺎﻣﻞ ﭘﻴﺸﺒﺮﻧﺪﻩ ﻭﺍﻛﻨﺶ ﻋﻤﻞ‬

‫ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‪ ،‬ﺩﺭ ﺍﺛﺮ ﻋﺒﻮﺭ ﺳﻴﺎﻝ ﺍﺯ ﺩﺍﺧﻞ‬

‫ﻣﻰﻛﻨﻨﺪ‪ .‬ﻭﻟﻲ ﺍﺯ ﺁﻧﺠﺎﻳﻲ ﻛﻪ ﺩﻱﺍﻛﺴﻴﺪ ﺗﻴﺘﺎﻧﻴﻮﻡ‬

‫ﺑﺴﺘﺮ‪ ،‬ﺣﺒﺎﺏ ﺗﺸﻜﻴﻞ ﻣﻲﮔﺮﺩﺩ ﻭ ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ‬

‫ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻚ ﻣﺎﺩﻩ ﺁﺏ ﺩﻭﺳﺖ ﻣﻄﺮﺡ ﻣﻲ ﺑﺎﺷﺪ‬

‫ﮔﺎﺯ ﺍﻧﺪﺍﺯﻩ ﺣﺒﺎﺏ ﻫﺎ ﺑﺰﺭگﺗﺮ ﻣﻲﮔﺮﺩﺩ‪ .‬ﺑﻨﺎﺑﺮﺍﻳﻦ ﺍﻧﺘﻈﺎﺭ‬

‫)‪ ،(Cao et al., 2000‬ﺟﺬﺏ ﻣﻮﻟﻜﻮﻝﻫﺎﻱ ﺁﺏ ﺑﺮ ﺭﻭﻱ‬

‫ﻣﻲﺭﻭﺩ ﺩﺭﺻﺪ ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺁﻻﻳﻨﺪﻩ ﺩﺭ ﺭﺍﻛﺘﻮﺭ‬

‫ﺁﻥ ﻣﻲﺗﻮﺍﻧﺪ ﻣﻘﺪﺍﺭﻯ ﺍﺯ ﺳﻄﺢ ﻓﻌﺎﻝ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺖ ﺭﺍ‬

‫ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﺩﺭ ﺳﺮﻋﺖﻫﺎﻱ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺑﺎﻻﺗﺮ ﻛﺎﻫﺶ ﻳﺎﺑﺪ‪.‬‬

‫ﭘﻮﺷﺶ ﺩﺍﺩﻩ ﻭ ﺍﺯ ﻓﻌﺎﻟﻴﺖ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺁﻥ ﺗﺎ ﺣﺪﻱ‬

‫‪ .Lim T.H‬ﻭ ﻫﻤﻜﺎﺭﺍﻥ ﺩﻟﻴﻞ ﻛﺎﻫﺶ ﺩﺭﺻﺪ ﺗﺒﺪﻳﻞ ﺍﻛﺴﻴﺪ‬

‫‪D‬‬ ‫‪I‬‬

‫‪S‬‬ ‫‪f‬‬

‫‪o‬‬ ‫‪e‬‬

‫ﺑﻜﺎﻫﺪ‪ .‬ﺩﺭ ﺍﻳﻦ ﻣﻄﺎﻟﻌﻪ ﺍﻓﺰﺍﻳﺶ ﺭﻃﻮﺑﺖ ﻧﺴﺒﻲ ﺍﺯ ‪%25‬‬

‫ﺑﻪ ‪ ،%45‬ﺑﺎﻋﺚ ﺍﻳﺠﺎﺩ ﺟﺬﺏ ﺭﻗﺎﺑﺘﻲ ﻣﻮﻟﻜﻮﻝﻫﺎﻱ ﺁﺏ‬ ‫ﻭ ﻣﺘﻴﻞﺍﺗﻴﻞﻛﺘﻮﻥ ﮔﺮﺩﻳﺪ ﻭ ﻛﺎﻫﺶ ﻛﺎﺭﺁﻳﻲ ﺩﺭ ﺭﻃﻮﺑﺖ‬ ‫ﻧﺴﺒﻲ ﺑﺎﻻﺗﺮ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺍﻳﻦ ﭘﺪﻳﺪﻩ ﻧﺴﺒﺖ ﺩﺍﺩ‪Lim.‬‬

‫‪ .T. H‬ﻭ ‪ ،.Kim S. D‬ﺍﺛﺮ ﺑﺎﺯﺩﺍﺭﻧﺪﮔﻲ ﺭﻃﻮﺑﺖ ﺑﺎﻻ ﺭﺍ‬

‫ﻧﻴﺘﺮﻳﻚ ﺭﺍ ﺩﺭ ﺳﺮﻋﺖ ﻫﺎﻱ ﻇﺎﻫﺮﻱ ﮔﺎﺯ ﺑﺎﻻ‪ ،‬ﺷﻜﻞ ﮔﻴﺮﻱ‬ ‫ﺣﺒﺎﺏ ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﻭ ﻋﺒﻮﺭ ﺑﺨﺸﻲ ﺍﺯ ﻣﻮﻟﻜﻮﻟﻬﺎﻱ‬ ‫ﻭﺍﻛﻨﺶ ﻧﺪﺍﺩﻩ ﺍﺯ ﻣﻴﺎﻥ ﺍﻳﻦ ﺣﺒﺎﺏ ﻫﺎ ﻣﺮﺗﺒﻂ ﺩﺍﻧﺴﺘﻪ ﺍﻧﺪ‬

‫‪iv‬‬

‫)‪ .(Lim et al., 2000‬ﻫﻢﭼﻨﻴﻦ ﺩﺭ ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‬ ‫ﺗﻮﻟﻮﺋﻦ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻛﺎﺗﺎﻟﻴﺴﺖ ﺩﻱﺍﻛﺴﻴﺪ ﺗﻴﺘﺎﻧﻴﻮﻡ‪-‬ﻛﺮﺑﻦ‬

‫‪h‬‬ ‫‪c‬‬

‫ﺩﺭ ﺗﺨﺮﻳﺐ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺗﺮﻱﻛﻠﺮﻭﺍﺗﻴﻠﻦ ﺩﺭ ﺭﺍﻛﺘﻮﺭ‬

‫ﻓﻌﺎﻝ‪ ،‬ﻛﺎﻫﺶ ﻛﺎﺭﺁﻳﻲ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﺩﺭ ﺍﺛﺮ ﺍﻓﺰﺍﻳﺶ‬

‫ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﻧﺸﺎﻥ ﺩﺍﺩﻧﺪ )‪ .(Lim and Kim, 2005‬ﺩﺭ‬

‫ﺩﺑﻲ ﺣﺠﻤﻲ ﺍﺯ ‪ 5‬ﺑﻪ ‪ 15‬ﻟﻴﺘﺮ ﺑﺮ ﺩﻗﻴﻘﻪ ﮔﺰﺍﺭﺵ ﮔﺮﺩﻳﺪﻩ‬

‫ﻣﻄﺎﻟﻌﻪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺳﻴﻜﻠﻮﻫﮕﺰﺍﻥ ﺩﺭ‬

‫‪r‬‬ ‫‪A‬‬

‫ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‪ ،‬ﺩﺭ ﮔﺴﺘﺮﻩ ﻏﻠﻈﺖ ‪ 7/5‬ﺗﺎ ‪112/5‬‬

‫ﺍﺳﺖ )‪.(Kuo et al., 2009‬‬

‫ﻣﻴﻜﺮﻭﮔﺮﻡ ﺩﺭ ﻟﻴﺘﺮ ﺳﻴﻜﻠﻮﻫﮕﺰﺍﻥ‪ ،‬ﺭﻃﻮﺑﺖ ﺑﻬﻴﻨﻪ ‪22/13‬‬

‫ﻧﺘﻴﺠﻪ ﮔﻴﺮﻯ‬

‫ﺗﺎ ‪ 26/8‬ﺩﺭﺻﺪ ﺑﻪﺩﺳﺖ ﺁﻣﺪﻩ )‪.(Geng et al., 2010‬‬

‫ﺩﺭ ﺍﻳﻦ ﻣﻄﺎﻟﻌﻪ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ‬

‫ﻣﻲﺗﻮﺍﻥ ﻧﺘﻴﺠﻪ ﮔﺮﻓﺖ ﻛﻪ ﺑﺨﺎﺭ ﺁﺏ ﺗﺎﺛﻴﺮ ﻣﺸﺎﺑﻬﻲ ﺑﺮ‬

‫ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ ﺑﺮﺭﺳﻲ‬

‫ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺳﻴﻜﻠﻮﻫﮕﺰﺍﻥ ﻭ ﻣﺘﻴﻞ‬

‫ﮔﺮﺩﻳﺪ‪ .‬ﺍﺯ ﻧﺎﻧﻮ ﺫﺭﺍﺕ ﺩﻱ ﺍﻛﺴﻴﺪ ﺗﻴﺘﺎﻧﻴﻮﻡ ﺑﻪ ﻋﻨﻮﺍﻥ‬

‫ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺍﺭﺩ‪.‬‬

‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺖ ﺩﺭ ﺗﺨﺮﻳﺐ ﺁﻻﻳﻨﺪﻩ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪ‪ .‬ﺟﺬﺏ‬

‫ﺩﺭ ﺑﺮﺭﺳﻲ ﺍﺛﺮ ﻏﻠﻈﺖ ﺍﻭﻟﻴﻪ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ‬

‫ﺭﻗﺎﺑﺘﻲ ﺑﻴﻦ ﻣﻮﻟﻜﻮﻝ ﻫﺎﻱ ﺁﺏ ﻭ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ‬

‫ﺑﺮ ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﺍﻟﻴﺴﺘﻲ ﺁﻥ‪ ،‬ﻛﺎﻫﺶ ﻛﺎﺭﺁﻳﻲ‬

‫ﺩﺭ ﺭﻃﻮﺑﺖ ﺑﺎﻻﺗﺮ‪ ،‬ﺑﺎﻋﺶ ﻛﺎﻫﺶ ﺗﺨﺮﻳﺐ ﺁﻻﻳﻨﺪﻩ‬

‫ﺗﺨﺮﻳﺐ ﺩﺭ ﺍﺛﺮ ﺍﻓﺰﺍﻳﺶ ﻏﻠﻈﺖ ﺁﻻﻳﻨﺪﻩ ﺍﺯ ‪ 200‬ﺑﻪ‬

‫ﮔﺮﺩﻳﺪ‪ .‬ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺳﺮﻋﺖ ﻇﺎﻫﺮﻱ ﮔﺎﺯ‪ ،‬ﺩﺭﺻﺪ ﺗﺨﺮﻳﺐ‬

‫‪ 800‬ﭘﻲ ﭘﻲ ﺍﻡ ﻣﻲ ﺗﻮﺍﻧﺪ ﻧﺸﺎﻧﮕﺮ ﺍﻳﻦ ﺑﺎﺷﺪ ﻛﻪ‬

‫ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﺁﻻﻳﻨﺪﻩ ﺁﻟﻲ ﻛﺎﻫﺶ ﻳﺎﻓﺖ‪.‬‬

‫‪www.SID.ir‬‬

‫ﺍﻛﺴﻴﺪﺍﺳﻴﻮﻥ ﻓﻮﺗﻮﻛﺎﺗﺎﻟﻴﺴﺘﻲ ﻣﺘﻴﻞ ﺍﺗﻴﻞ ﻛﺘﻮﻥ ﺩﺭ ﺭﺍﻛﺘﻮﺭ ﺑﺴﺘﺮ ﺳﻴﺎﻝ‬

6.

Jorio, H., Kiared, K., Brzezinski, R., Leroux,

‫ﺗﺸﻜﺮ ﻭ ﻗﺪﺭﺩﺍﻧﻰ‬

A., Viel, G. and Heitz, M. 1998. Treatment

‫ﻧﻮﻳﺴﻨﺪﮔﺎﻥ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﻣﺮﺍﺗﺐ ﺗﺸﻜﺮ ﻭ ﻗﺪﺭﺩﺍﻧﻲ‬

of air polluted with high concentrations of

‫ﺧﻮﺩ ﺭﺍ ﺍﺯ ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻮﻡ ﭘﺰﺷﻜﻲ ﺗﻬﺮﺍﻥ ﺑﻪ ﻋﻨﻮﺍﻥ‬

toluene and xylene in a pilotscale biofilter.

1391 ‫ ﺑﻬﺎﺭ‬/3 ‫ ﭘﻴﺎﭘﻰ‬/‫ﺷﻤﺎﺭﻩ ﺳﻮﻡ‬

‫ﻓﺼﻠﻨﺎﻣﻪ ﺑﻬﺪﺍﺷﺖ ﻭ ﺍﻳﻤﻨﻰ ﻛﺎﺭ‬

53 7.

Journal of Chemical Technology and Bio-

‫ ﺍﻋﻼﻡ‬11804 ‫ﺣﺎﻣﻲ ﻣﺎﻟﻲ ﺍﻳﻦ ﭘﮋﻭﻫﺶ ﺑﺎ ﺷﻤﺎﺭﻩ ﺛﺒﺖ‬

technology, 73, 183-196.

‫ ﻫﻢﭼﻨﻴﻦ ﺍﺯ ﻛﺎﺭﺷﻨﺎﺳﺎﻥ ﻣﺤﺘﺮﻡ ﺁﺯﻣﺎﻳﺸﮕﺎﻩ‬.‫ﻣﻲﺩﺍﺭﺩ‬

Kuo, H., Wu, C. & Hsu, R. 2009. Continu-

‫ﻣﺮﻛﺰﻱ ﮔﺮﻭﻩ ﻣﻬﻨﺪﺳﻲ ﺑﻬﺪﺍﺷﺖ ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻮﻡ ﭘﺰﺷﻜﻲ‬

ous reduction of toluene vapours from the

.‫ﺗﻬﺮﺍﻥ ﻗﺪﺭﺩﺍﻧﻲ ﺑﻪﻋﻤﻞ ﻣﻲ ﺁﻳﺪ‬

contaminated gas stream in a fluidised bed photoreactor. Powder Technology, 195, 50-

8.

1.

Lim, T. H., Jeong, S. M., Kim, S. D. and Gy-

Alberici, R. M. and Jardim, W. F. 1997. Photocatalytic destruction of VOCs in the

enis, J. 2000. Photocatalytic decomposition

S f

gas-phase using titanium dioxide. Applied

of NO by TiO2 particles. Journal of Photo-

Catalysis B: Environmental, 14, 55-68.

chemistry and Photobiology A: Chemistry,

2.

Beauchet, R., Magnoux, P. and Mijoin, J.

o e

134, 209-217. 9.

D I

‫ﻣﻨﺎﺑﻊ‬

56.

2007. Catalytic oxidation of volatile organic

Lim, T. H. and Kim, S. D. 2004. Trichloroethylene degradation by photocatalysis in

iv

annular flow and annulus fluidized bed photoreactors. Chemosphere, 54, 305-312.

h c

compounds (VOCs) mixture (isopropanol/oxylene) on zeolite catalysts. Catalysis Today, 124, 118-123.

3.

Birnie, M., Riffat, S. and Gillott, M. 2006.

10. Lim, T. H. and Kim, S. D. 2005. Photo-

Photocatalytic reactors: design for effec-

catalytic degradation of trichloroethylene

tive air purification. International Journal of

(TCE) over TiO2/silica gel in a circulating

Low-Carbon Technologies, 1, 47-58.

r A

fluidized bed (CFB) photoreactor. Chemical

4.

Cao, L., Gao, Z., Suib, S. L., Obee, T. N.,

Engineering and Processing: Process Inten-

Hay, S. O. and Freihaut, J. D. 2000. Photo-

sification, 44, 327-334.

catalytic oxidation of toluene on nanoscale

11. Mo, J., Zhang, Y., Xu, Q., Lamson, J. J. and

TiO2 catalysts: Studies of deactivation and

Zhao, R. 2009. Photocatalytic purification

regeneration. Journal of Catalysis, 196,

of volatile organic compounds in indoor air:

253-261.

A literature review. Atmospheric Environment, 43, 2229-2246.

5.

Geng, Q., Guo, Q. and Yue, X. 2010. Adsorption and Photocatalytic Degradation

12. Nelson, R. J., Flakker, C. L. and Muggli, D.

Kinetics of Gaseous Cyclohexane in an An-

S. 2007. Photocatalytic oxidation of methanol

nular Fluidized Bed Photocatalytic Reactor.

using titania-based fluidized beds. Applied

Industrial & Engineering Chemistry Re-

Catalysis B: Environmental, 69, 195-189.

search, 49, 4644-4652.

www.SID.ir

‫ ﺣﺎﻣﺪ ﺣﺴﻨﻲ‬- ‫ ﺍﻣﻴﺮ ﻣﻌﺘﻤﺪﺩﺍﺷﻠﻲ ﺑﺮﻭﻥ‬- ‫ ﻓﺮﻳﺪﻩ ﮔﻞ ﺑﺎﺑﺎﻳﻲ‬- ‫ ﺷﻬﺮﺁﺭﺍ ﺍﻓﺸﺎﺭ‬- ‫ ﺭﺣﻤﺖ ﺳﺘﻮﺩﻩ ﻗﺮﻩ ﺑﺎﻍ‬- ‫ ﺣﺴﻴﻦ ﻛﺎﻛﻮﻳﻲ‬- ‫ﻣﺤﻤﺪ ﺣﺎﺝ ﺁﻗﺎﺯﺍﺩﻩ‬

14. Zhao, J. and Yang, X. 2003. Photocatalytic

13. Tomašić, V., Jović, F. and Gomzi, Z. 2008.

oxidation for indoor air purification: a lit-

Photocatalytic oxidation of toluene in the

erature review. Building and Environment,

gas phase: Modelling an annular photocata-

38, 645-654.

lytic reactor. Catalysis Today, 137, 350-356.

S f

o e

1391 ‫ ﺑﻬﺎﺭ‬/3 ‫ ﭘﻴﺎﭘﻰ‬/‫ﺷﻤﺎﺭﻩ ﺳﻮﻡ‬

D I

‫ﻓﺼﻠﻨﺎﻣﻪ ﺑﻬﺪﺍﺷﺖ ﻭ ﺍﻳﻤﻨﻰ ﻛﺎﺭ‬

54

v i h

c r

A

www.SID.ir

Improving the Manchester Triage System for pediatric emergency care: an international multicenter study.

This multicenter study examines the performance of the Manchester Triage System (MTS) after changing discriminators, and with the addition use of abno...
259KB Sizes 0 Downloads 0 Views