IJSEM Papers in Press. Published February 25, 2015 as doi:10.1099/ijs.0.000149

International Journal of Systematic and Evolutionary Microbiology Exiguobacterium enclense sp nov., isolated from sediment sample --Manuscript Draft-Manuscript Number:

IJSEM-D-14-00097R3

Full Title:

Exiguobacterium enclense sp nov., isolated from sediment sample

Short Title:

Exiguobacterium enclense sp nov.,

Article Type:

Note

Section/Category:

New taxa - Firmicutes and related organisms

Corresponding Author:

Syed G Dastager, Ph.D CSIR-National Chemical Laboratory Pune, Maharastra INDIA

First Author:

Syed G Dastager, Ph.D

Order of Authors:

Syed G Dastager, Ph.D Rahul M Mawlankar, M.Sc Vidya V. Sonalkar, M.Sc Meghana N. Thorat, M.Sc Poonam Mual, M.Sc Ashish Verma, M.Sc Srinivasan Krishnamurthi, Ph.D Shu-Kun Tang, Ph.D Wen-Jun Li, Ph.D

Manuscript Region of Origin:

INDIA

Abstract:

Abstract A Gram-stain positve marine bacterium, designated NIO-1109T, was isolated from a marine sediment sample from the Chorao Island Goa, India. Phenotypic and chemotaxonomic characteristics and data from a phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NIO-1109T was related to the genus Exiguobacterium. Strain NIO-1109T exhibited >98.0% gene sequence similarity with respect to Exiguobacterium acetylicum DSM 20416T (99.0%), and Exiguobacterium indicum IAM 15368T (98.6 %), other species were showing 98.0% gene sequence similarity with respect to

39

Exiguobacterium indicum IAM 15368T (99.5%), and Exiguobacterium acetylicum DSM

40

20416T (99.1%), other species were showing 5%) of strain NIO-1109T were iso-C17:0 (21.8 %), iso-C15:0 (13.0

154

%), iso-C13:0 (12.8 %), C16:0 (11.6 %), C18:0 (8.3 %), and anteiso-C13:0 (7.3%). The complete

155

cellular fatty acid composition is given in species description and in Table 2. The peptidoglycan

156

of the strain contain L-lysine as the diagnostic diamino acid. The major menaquinone was

157

identified as MK-7 (91.3 %) where as MK-8 (8.4 %) occurs in minor amounts. The polar lipids

158

detected in strain NIO-1109T were phosphatidylglycerol (PG), diphosphatidylglycerol (DPG),

159

and phosphatidylethanolamine (PE) (Online Supplementary Fig. S2).

160

The genomic DNA G+C content of the strain NIO-1109T was 46.9 mol%. The

161

determined DNA–DNA relatedness value between strain NIO-1109T with Exiguobacterium

162

indicum LMG 23471T and Exiguobacterium acetylicum DSM 20416T were 37.0 (±3.2%) and

163

33.0 (±2.0%) respectively (with standard deviations in triplicate; Table. 3). DNA hybridization

164

results indicated that, values of hybridizations were well below the 70% cutoff point for

165

recognition of novel genomic species (Wayne et al., 1987), thus suggesting the strain NIO-1109T

166

should be considered as a new species of the genus Exiguobacterium.

167

Therefore, based on phenotypic, chemotaxonomic and phylogenetic analysis strain NIO-

168

1109T distinguished from its closest phylogenetic relatives (Table.1). Therefore, strain NIO-

169

1109T represents a novel species of the genus Exiguobacterium, for which the name

170

Exiguobacterium enclensis sp. nov. is proposed.

171

Description of Exiguobacterium enclense sp nov

172

Exiguobacterium enclense (en.clen'se. N.L. neut. adj. enclense arbitrary name formed from NCL,

173

the acronym for the National Chemical laboratory, India, where taxonomic studies on this

174

species were performed).

175

The cells are Gram-positive, motile, non-spore forming rods to cocobacilli. Colonies grown on

176

TSA medium are 1.2–1.8 mm in diameter, yellowish orange, convex with entire margin. Growth

177

is observed under aerobic condition between 25 and 42° C (optimum, 28±2°C) and between pH

178

6.0 and 12.0 (optimum, pH 7.0); can tolerate up to 15% NaCl (w/v). Positive for citrate

179

utilization, weakly positive for β-galactosidase, and urease. Negative for lysine and ornithine

180

decarboxylase, indole production, methyl red, Voges-Proskauer’s test, phenyl deamination,

181

hydrogen sulphide (H2S), and aesculin hydrolysis. Strain NIO-1009T negative for starch and urea

182

hydrolysis and positive for Tweens 20, 40, 60 or 80. Adonitol, D-arabinose, L-arabinose,

183

cellobiose, dextrose, fructose, galactose, glucose, glycerol, inulin, maltose, mannitol, melezitose,

184

raffinose, saccharose, salicin, sodium gluconate, sucrose, trehalose and xylitol are utilized as a

185

sole carbon sources, but arabitol, dulicitol, erythritol, lactose, malonate, mannose, melibiose, α-

186

methyl-D-glucoside, α-methyl-D-mannoside, rhamnose, sorbitol, sorbose, and xylose are not

187

utilized. Nitrate is not reduced to nitrite. Acid is produced from D-arabinose, cellobiose,

188

dextrose, fructose, glycerol, inulin, mannitol, maltose, salicin, sucrose and trehalose. API ZYM

189

enzyme assay showed positive for alkaline phosphatase, esterase (C4), esterase lipase (C8), acid

190

phosphatase, naphthol-AS-BI-phosphohydrolase, β-galactosidase, and α-glucosidase, weakly

191

positive for α-galactosidase, β-glucuronidase, and β-glucosidase. Negative for lipase (C14),

192

leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, N-acetyl-

193

β-glucosaminidase, α-mannosidase and α-fucosidase. The respiratory quinones are MK-7 and

194

MK-8. The cell-wall peptidoglycan is of the Lys–Gly type. The major polar lipids,

195

phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylethanolamine are present. The

196

fatty acids (≥1.0%) present are iso-C12:0, iso-C13:0, anteiso-C13:0, iso-C14:0, iso-C15:0, anteiso-C15:0,

197

iso-C16:0, C16:0, iso-C17:0, anteiso-C17:0, C18:0, iso-C19:0, C16:1 w7c/w6c, C18:1 w7c/w6c, and C16:0

198

10-methyl/iso-C17:1w9c. The DNA G+C content is 46.9 mol%. The type strain, NIO-1109T

199

(=NCIM 5457T=DSM 25128T), isolated from marine sediment sample in Chorao Island, Goa,

200

India.

201 202

Acknowledgement

203

Author SGD acknowledges the Director, CSIR-NCL and Council for Scientific and Industrial

204

Research (CSIR), New Delhi for financial support.

205 206 207 208 209 210 211 212 213 214 215 216 217

218

References

219

Carneiro, A.R., Ramos, R.T., Dall’Agnol, H., Pinto, A.C., de Castro Soares, S., Santos,

220

A.R., Guimarães, L.C., Almeida, S.S., Baraúna, R.A., das Graças, D.A., Franco, L.C., Ali,

221

A., Hassan, S.S., Nunes, C.I., Barbosa, M.S., Fiaux, K.K., Aburjaile, F.F., Barbosa, E.G.,

222

Bakhtiar, S.M., Vilela, D., Nóbrega, F., dos Santos, A.L., Carepo, M.S., Azevedo, V.,

223

Schneider, M.P., Pellizari, V.H. & Silva, A. (2012). Genome sequence of Exiguobacterium

224

antarcticum B7, isolated from a biofilm in Ginger Lake, King George Island, Antarctica. J

225

Bacteriol 23, 6689–6690.

226

Chaturvedi, P. & Shivaji, S. (2006). Exiguobacterium indicum sp. nov. a psychrophilic

227

bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol

228

Microbiol 56, 2765–2770.

229

Collins, M. D., Lund, B. M., Farrow, J. A. E. & Schleifer, K. H. (1983). Chemotaxonomic

230

study of an alkalophilic bacterium Exiguobacterium aurantiacum gen. nov., sp. nov. J Gen

231

Microbiol 129, 2037–2042.

232

Crapart, S., Fardeau, M.L., Cayol, J.L., Thomas, P., Sery, C., Ollivier, B. & Combet-Blanc,

233

Y. (2007). Exiguobacterium profundum sp., nov., a moderately thermophilic, lactic acid-

234

producing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57,

235

287–292.

236

De Ley, J., Cattoir, H., Reynaerts, A. (1970). The quantitative measurement of DNA

237

hybridization from renaturation rates. Eur J Biochem 12, 133-142.

238

Dong, X. Z., Cai, M. Y. (2001). Manual of Systematics and Identification of General Bacteria.

239

Beijing: Science Press.

240

241

Farrow, J. A. E., Wallbanks, S. & Collins, M. D. (1994). Phylogenetic interrelationships of

242

round-spore-forming bacilli containing cell walls based on lysine and the non-spore-forming

243

genera Caryophanon, Exiguobacterium, Kurthia and Planococcus. Int J Syst Bacteriol 44, 74–

244

82.

245

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood

246

approach. J Mol Evol 17, 368-376.

247

Fitch, W.M. (1971). Toward defining the course of evolution: minimum change for a specified

248

tree topology. Syst Zool 20(4), 406-416.

249

Hasegawa, T., Takizawa, M., Tanida, S. (1983). A rapid analysis for chemical grouping of

250

aerobic Actinomycetes. J Gen Appl Microbiol 29, 319–322.

251

Huß, V. A. R., Festl, H. & Schleifer, K. H. (1983). Studies on the spectrophotometric

252

determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.

253

Jahnke, K. D. (1992). Basic computer program for evaluation of spectroscopic DNA

254

renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal

255

computer. J Microbiol Methods 15, 61–73.

256

Kim, I.J., Lee, M.H., Jung, S.Y., Song, J.J., Oh, T.K. & Yoon, J.H. (2005). Exiguobacterium

257

aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from tidal flat of the yellow

258

sea in Korea. Int J Syst Evol Microbiol 55, 885–889.

259

Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee,

260

J.H., Yi, H., Won, S., Chun, J. (2012). Introducing EzTaxon: a prokaryotic 16S rRNA Gene

261

sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol

262

62, 716–721.

263

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions

264

through comparative studies of nucleotide sequences. J Mol Evol 16 (2), 111–120.

265

Kroppenstedt, R. M. (1982). Separation of bacterial menaquinones by HPLC using reverse

266

phase (RP-18) and a silver-loaded ion exchanger. J Liq Chromatogr 5, 2359-2367.

267

Li, W. J., Xu, P., Schumann. P., Zhang, Y. Q., Pukall. R., Xu, L. H., Stackebrandt, E.,

268

Jiang, C. L. (2007). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil

269

in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol

270

57, 1424-1428.

271

Lopez-Cortes, A., Schumann, P., Pukall, R. & Stackebrandt, E. (2006). Exiguobacterium

272

mexicanum sp. nov. and E. artemiae sp. nov. isolated from the brine shrimp artemia franciscana.

273

Syst Appl Microbiol 29,183-190.

274

Marmur, J., Doty, P. (1962). Determination of the base composition of deoxyribonucleic acid

275

from its thermal denaturation temperature. J Mol Biol 5, 109-118.

276

Mesbah, M., Premachandran, U., Whitman, W. B. (1989). Precise measurement of the G+C

277

content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst

278

Bacteriol 39, 159-167.

279

Minnikin, D. E., Alshamaony, L. & Goodfellow, M. (1975). Differentiation of

280

Mycobacterium, Nocardia and related taxa by thin-layer chromatographic analysis of whole-

281

organism methanolysates. J Gen Microbiol 88, 200–204.

282

Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, K.,

283

Parlett, J. H. (1984). An integrated procedure for the extraction of bacterial isoprenoid quinones

284

and polar lipids. J Microbiol Methods 2, 233-241.

285

Mohan, K. N., Kumar, R., Begum, Z., Shivaji, S. & Kumar, A. (2013). Exiguobacterium

286

alkaliphilum sp. nov. isolated from alkaline wastewater drained sludge of a beverage factory. Int

287

J Syst Evol Microbiol 63(12),4374-4379.

288

Ordoñeza, O.F., Lanzarottid, E., Kurtha, D., Gorritia, M.F., Revalec, S., Cortez, N.,

289

Vazquez, M.P., Farías, M.E. & Turjanskie, A.G. (July–August 2013). Draft Genome

290

Sequence of the Polyextremophilic Exiguobacterium sp. Strain S17, Isolated from Hyperarsenic

291

Lakes in the Argentinian Puna. Genome Announcements 1 (4), 2037–2042.

292

Raichand, R., Pareek, S., Singh, N.K.& Mayilraj, S. (2012). Exiguobacterium aquaticum sp.

293

nov. a new member of the genus Exiguobacterium. Int J Syst Evol Microbiol 62, 2150–2155.

294

Saitou, N., Nei, M. (1987). The neighbor-joining method: a new method for reconstructing

295

phylogenetic trees. Mol Biol Evol 4, 406–425.

296

Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids.

297

USFCC News Lett 20, 1-6.

298

Singh, N.K., Raichand, R., Kaur, I., Kaur, C., Pareek, S. & Mayilraj, S. (2013).

299

Exiguobacterium himgiriensis sp. nov. a novel member of the genus Exiguobacterium, isolated

300

from the Indian Himalayas. Antonie van Leeuwenhoek 103, 789–796.

301

Smibert, R. M. & Krieg, N. R. (1981). General characterization. In Manual of Methods for

302

General Bacteriology, pp. 411–414. Edited by Gerhardt, P., Murray, R. G. E., Costilow, R. N.,

303

Nester, E. W., Wood, W. A., Krieg, N. R. & Phillips, G. B. Washington, DC: American Society

304

for Microbiology.

305

Smibert, R. M., Krieg, N. R. (1994). Phenotypic characterization. In: P. Gerhardt, R.G.E.

306

Murray, W.A. Wood and N.R. Krieg, Editors, Methods for general and molecular bacteriology,

307

American Society for Microbiology, Washington, D.C. pp. 607-654.

308

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA 6: Molecular

309

Evolutionary Genetics Analysis 6.0. Mol Biol Evolution 30, 2725-2729.

310

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G. (1997). The

311

CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by

312

quality analysis tools. Nucleic Acids Res 25, 4876–4882.

313

Vishnivetskaya, T.A., Kathariou, S.,& Tiedje, J.M. (2009). The Exiguobacterium genus:

314

biodiversity and biogeography. Extremophiles 13, 541–555

315

Vishnivetskaya, T.A., Siletzky, R., Jefferies, N., Tiedje, J.M. & Kathariou, S. (2007). Effect

316

of low temperature and culture media on the growth and freeze-thawing tolerance of

317

Exiguobacterium strains. Cryobiology 54, 234–240.

318

White III, R.A., Grassa, C.J. & Suttle, C.A. (July–August 2013). Draft Genome Sequence of

319

an Exiguobacterium pavilionensis Strain RW-2 with Wide Thermal, Salinity, and pH Tolerance,

320

Isolated from Modern Freshwater Microbialites. Genome Announcements 1 (4), e00597–13.

321

Xu, P., Li, W.J., Tang, S.K., Zhang, Y.Q., Chen, G.Z., Chen, H.H., Xu, L.H., Jiang, C.L.

322

(2005). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family

323

‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55, 1149-1153.

324 325 326 327 328 329 330

331 332 333 334 335

Table 1. Phenotypic characteristics that differentiate strain NIO-1109T from its phylogenetic neighbours in the genus Exiguobacterium. All data were generated from present study except otherwise indicated. All of the strains shown are motile, Gram-positive, rod-shaped, do not form endospores and yellowish orange in colour. All are positve for lipase, citrate utilization and cellobiose, negative for urease, H2S production, and the indole test. Characteristic

336 337 338

E. enclense NIO-1109T

E. acetylicum DSM 20416T

E. indicum LMG 23471T

Colony morphology Size (mm) 2-4 2-5 2-4 Shape Round Irregular Round Growth temperature (°C) 5 – – + 37 + W – Optimum growth temp(°C) 28±2.0 37 30 Gelatinase – + – Ornithine decarboxylase – + + Voges–Proskauer test – + + Aesculin hydrolysis – + – Starch hydrolysis – + – Lysine decarboxylase – – + Nitrate reduction – – + Acid produced from D-Glucose, sucrose, + + – D-fructose, D-trehalose, maltose, Inulin + – – D-Mannose – + – D-Cellobiose + + – D-Adonitol – + – Carbon-source utilization D-Galactose + – + L-Rhamnose, L-melibiose, + – + D-xylose L-Xylose – – + D-Mannitol + + – D-Raffinose + – + D-sorbitol, dulcitol – – + DNA G+C content (mol %) 46.9 47.0* 48.0* Quinone(s) MK-7, MK-8 MK-7* MK-7, MK-8* Polar lipids PG, DPG, PE DPG, PS* PG, DPG, PE* Source of Isolation Marine sediment Creamery waste Glacial water DPG, Diphosphatidylglycerol; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PS, phosphatidylserine. * Data from Preeti and Shivaji (2006).

339 340

Table.2. Fatty acid composition of Exiguobacterium NIO-1109T. Fatty acids C11:0 iso C12:0 iso C12:0 C13:0 iso C13:0 anteiso C14:0 iso C14:0 C15:0 iso C15:0 anteiso C15:0 C16:1 w7c alcohol C16:1 iso H C16:0 iso C16:1 w11c C16:0 C17:1 anteiso w9c C17:0 iso C17:0 anteiso C17:0 C18:0 iso C18:1 w9c C18:0 C19:0 iso C19:0 anteiso C20:0 *Summed Feature 1 *Summed Feature 3 *Summed Feature 4 *Summed Feature 8 *Summed Feature 9

341 342 343 344 345 346 347

Percent profile (%) 0.42 1.49 0.36 12.81 7.38 1.74 0.93 13.09 3.28 ---0.20 0.17 2.21 0.97 11.60 0.18 21.87 2.67 0.70 0.76 0.92 8.38 1.06 0.23 0.26 0.26 2.28 0.34 1.65 1.79

*Summed features represent groups of two or three fatty acids that could not be separated by GLC with the MIDI system. Summed feature 1 contained C15:1 iso H/C13:0 3OH, summed feature 3 contained C16:1 w7c/ w6c, summed feature 4 contained C17:1 iso I/anteiso B, summed future 8 contained C18:1 w6c/w7c and summed feature 9 contained C16:0 10-methyl/C17:1 iso w9c.

348 349

Table 3. DNA-DNA relatedness between strain NIO-1109T and Exiguobacterium acetylicum DSM 20416T, and Exiguobacterium indicum LMG 23471T.

350 351 352 353

A: NIO-1109T LMG 23471T.

The two DNAs for DNA-DNA hybridization A and B A and C

B: Exiguobacterium acetylicum DSM 20416T C: Exiguobacterium indicum

The result of DNA-DNA hybridization (%)

The values of three replicates (%)

The DNA as probe

The DNA immobilized

B

A

33.27

33.50

33.26

33.34±2.8

A

B

33.19

33.16

33.08

33.14±3.0

A

C

36.49

37.77

36.82

37.02±2.2

C

A

36.37

37.35

37.27

36.99±2.0

1

2

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

17

3

Mean 33.24±3.0 37.00±2.0

369

Figure Legends

370 371 372 373 374 375

Fig. 1. Phylogenetic position based on neighbour-joining tree with nearly complete 16S rRNA (1415nt) gene sequences showing NIO-1109T and of the genus Exiguobacterium. Astrikes indicate that the corresponding nodes (groupings) are also recovered in Fitch–Margoliash, maximum-parsimony and maximum-likelihood trees. Bootstrap values (>70 %; 1000 resamplings) are given at branch points. Bacillus idriensis SMC 4352-2T (AY904033) used as outgroup. Bar, 0.01 nucleotide substitutions per position.

376 377 378

18

Figure Click here to download Figure: Figure 1.doc

Fig. 1.

T

100* Exiguobacterium antarcticum DSM 14480 (DQ019164) T

Exiguobacterium soli DVS3Y (AY864633) T

Exiguobacterium undae DSM 14481 (DQ019165)

90*

T

Exiguobacterium sibiricum 255-15 (CP001022)

93* 99*

T

Exiguobacterium artemiae 9AN (AM072763) T

100*

Exiguobacterium oxidotolerans T-2-2 (AB105164) T

Exiguobacterium acetylicum NCIMB 9889 (X70313) 99*

T

Exiguobacterium enclense NIO-1109 (JF893462) T

98* Exiguobacterium indicum HHS31 (AJ846291) T

100*

Exiguobacterium mexicanum 8N (AM072764) T

Exiguobacterium aurantiacum DSM 6208 (DQ019166) T

Exiguobacterium marinum TF-80 (AY594266)

100*

T

97* 75*

Exiguobacterium aestuarii TF-16 (AY594264) T

Exiguobacterium profundum 10C (AY818050) T

Bacillus idriensis SMC 4352-2 (AY904033)

0.01

Supplementary Material Files Click here to download Supplementary Material Files: Supplimentory Figure, Table .pdf

Exiguobacterium enclense sp. nov., isolated from sediment.

A Gram-stain-positive bacterium, designated strain NIO-1109(T), was isolated from a marine sediment sample from Chorao Island, Goa, India. Phenotypic ...
1001KB Sizes 4 Downloads 17 Views