Hindawi Publishing Corporation ξ€ e Scientific World Journal Volume 2014, Article ID 512039, 6 pages http://dx.doi.org/10.1155/2014/512039

Research Article Estimation of the Parameters of Burr Type III Distribution Based on Dual Generalized Order Statistics Chansoo Kim1 and Woosuk Kim2 1 2

Department of Applied Mathematics, Kongju National University, Gongju 314-701, Republic of Korea Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242-1409, USA

Correspondence should be addressed to Woosuk Kim; [email protected] Received 12 June 2014; Accepted 16 September 2014; Published 19 October 2014 Academic Editor: Krzysztof Malarz Copyright Β© 2014 C. Kim and W. Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The estimation of the parameters of Burr type III distribution based on dual generalized order statistics is considered by using the maximum likelihood (ML) approach as well as the Bayesian approach. The exact expression of the expected Fisher information matrix of the parameters in the distribution is obtained. Also, an approximation based on Lindley is used to obtain the Bayes estimator. To compare the maximum likelihood estimator and the Bayes estimator of the parameters, Monte Carlo simulation study is performed.

1. Introduction Burr type III distribution with two parameters was first introduced in the literature of Burr [1] for modelling lifetime data or survival data. It is more flexible and includes a variety of distributions with varying degrees of skewness and kurtosis. Burr type III distribution with two parameters 𝑐 and π‘˜, which is denoted by BurrIII (𝑐, π‘˜), has also been applied in areas of statistical modelling such as forestry (Gove et al. [2]), meteorology (Mielke [3]), and reliability (Mokhlis [4]). The probability density function and the cumulative distribution function of BurrIII (𝑐, π‘˜) are given by, respectively, βˆ’(π‘˜+1)

𝑓 (π‘₯) = π‘π‘˜π‘₯βˆ’(𝑐+1) (1 + π‘₯βˆ’π‘ )

,

π‘₯ > 0, 𝑐 > 0, π‘˜ > 0, βˆ’π‘˜

𝐹 (π‘₯) = (1 + π‘₯βˆ’π‘ ) .

(1)

Note that Burr type XII distribution can be derived from Burr type III distribution by replacing 𝑋 with 1/𝑋. The usefulness and properties of Burr distribution are discussed by Burr and Cislak [5] and Johnson et al. [6]. Abd-Elfattah and Alharbey [7] considered a Bayesian estimation for Burr type III distribution based on double censoring. Order statistics are widely used in statistical modelling and inference. As a unified approach to a variety of models of ordered random variables such as ordinary order statistics,

upper record values, and sequential order statistics, the concept of generalized order statistics (GOS) was introduced by Kamps [8]. Based on GOS, Burkschat et al. [9] introduced the concept of dual generalized order statistics as a dual model of GOS and a unification of several models of decreasingly ordered random variables such as reversed order statistics, lower record values, and lower Pfeifer records. Let 𝐹(π‘₯) denote an absolutely continuous distribution function with the corresponding density function 𝑓(π‘₯) and Μƒ π‘ž), π‘Ÿ = 1, 2, . . . , 𝑛, be the corresponding dual let 𝑋(π‘Ÿ, 𝑛, π‘š, GOS. Then, the joint probability density function of the first 𝑛 dual GOS is the following: 𝑓𝑋(1,𝑛,π‘š,π‘ž),...,𝑋(𝑛,𝑛, Μƒ Μƒ (π‘₯1 , . . . , π‘₯𝑛 ) π‘š,π‘ž) π‘›βˆ’1

π‘›βˆ’1

𝑗=1

𝑖=1

= π‘ž (βˆπ›Ύπ‘— ) [βˆπΉπ‘šπ‘– (π‘₯𝑖 ) 𝑓 (π‘₯𝑖 )] Γ— πΉπ‘žβˆ’1 (π‘₯𝑛 ) 𝑓 (π‘₯𝑛 ) , (2) Μƒ = (π‘š1 , for πΉβˆ’1 (0) < π‘₯𝑛 ≀ β‹… β‹… β‹… ≀ π‘₯1 < πΉβˆ’1 (1), π‘š π‘š2 , . . . , π‘šπ‘›βˆ’1 ) ∈ π‘…π‘›βˆ’1 , with parameters 𝑛 ∈ 𝑁, 𝑛 β‰₯ 2, π‘ž > 0, and π‘€π‘Ÿ = βˆ‘π‘›βˆ’1 𝑗=π‘Ÿ π‘šπ‘— such that π›Ύπ‘Ÿ = π‘ž + 𝑛 βˆ’ π‘Ÿ + π‘€π‘Ÿ > 0 for all π‘Ÿ ∈ {1, 2, . . . , 𝑛}. For simplicity, we shall assume π‘š1 = π‘š2 = β‹… β‹… β‹… = π‘šπ‘›βˆ’1 = π‘š. If π‘š = 0 and π‘ž = 1, then it gives the joint probability density function of 𝑛 reversed order statistics

2

The Scientific World Journal

from the independent and identically distributed (iid) random sample coming from 𝐹(π‘₯). If π‘š = βˆ’1, then 𝑋(π‘Ÿ, 𝑛, π‘š, π‘ž) reduces to the π‘Ÿth lower π‘ž-record value of the iid random variables. Various distributional properties and some applications of the related topics are studied by Burkschat et al. [9], Ahsanullah [10], Jaheen [11], Mbah and Ahsanullah [12], Barakat and El-Adll [13], and W. Kim and C. Kim [14]. In this paper, our main objective is to describe MLE, the exact expression of the expected Fisher information matrix, and Bayes estimation procedures for the parameters of Burr type III distribution based on dual GOS, assuming the conjugate priors. In Section 2, we consider MLE and obtain an exact expression of the expected Fisher information matrix of the parameters. In Section 3, Lindley’s approximation is used to obtain Bayes estimates for the parameters. Finally, in order to compare MLE with Bayes estimators, Monte Carlo simulation is studied in Section 4.

where πœ”π‘– = π‘₯𝑖𝑐 /(1+π‘₯𝑖𝑐 ) and πœπ‘– = ln π‘₯𝑖 /(1+π‘₯𝑖𝑐 ) for 𝑖 = 1, 2, . . . , 𝑛. From (5), MLE of π‘˜ is expressed by Μ‚π‘˜ = βˆ’ 𝑀

βˆ’(π‘˜+1)

𝑗=1

Γ— [∏(1 + 𝑖=1 𝑛 𝑛

π‘›βˆ’1

π‘›βˆ’1

𝑗=1

𝑖=1

= π‘žπ‘ π‘˜ (βˆπ›Ύπ‘— ) [∏

+

π‘˜+π‘šπ‘˜+1

(1 + π‘₯𝑖𝑐 )

]

βˆ’πΈ ( βˆ’πΈ (

π‘˜π‘ž+1

(1 + π‘₯𝑛𝑐 )

πœ•2 𝑙 πœ•2 𝑙 ) βˆ’πΈ ( ) πœ•π‘˜2 πœ•π‘πœ•π‘˜

πœ•2 𝑙 πœ•2 𝑙 ) βˆ’πΈ ( 2 ) πœ•π‘πœ•π‘˜ πœ•π‘

.

βˆ’1

)

(10) ,

𝑐) (π‘˜,𝑐)=(Μ‚π‘˜,Μ‚

πœ•2 𝑙 𝑛 = βˆ’ 2, πœ•π‘˜2 π‘˜

(3)

π‘›βˆ’1 πœ•2 𝑙 = (1 + π‘š) βˆ‘ πœπ‘– + π‘žπœπ‘› , πœ•π‘πœ•π‘˜ 𝑖=1

From (3), the log-likelihood function is proportional to 𝑙 = ln 𝐿 (𝑐, π‘˜ | π‘₯)

πœ•2 𝑙 𝑛 = βˆ’ 2 βˆ’ (π‘˜ + π‘šπ‘˜ + 1) 2 πœ•π‘ 𝑐

∝ 𝑛 ln 𝑐 + 𝑛 ln π‘˜ π‘›βˆ’1

+ βˆ‘ [(π‘π‘˜ + π‘π‘šπ‘˜ βˆ’ 1) ln π‘₯𝑖 βˆ’ (π‘˜ + π‘šπ‘˜ + 1) ln (1 + π‘₯𝑖𝑐 )] 𝑖=1

(11)

π‘›βˆ’1

Γ— βˆ‘ πœπ‘– πœ”π‘– ln π‘₯𝑖 βˆ’ (π‘˜π‘ž + 1) πœπ‘› πœ”π‘› ln π‘₯𝑛 , 𝑖=1

(4)

To derive the maximum likelihood estimators (MLE’s) Μ‚π‘˜π‘€ and 𝑐̂𝑀 of π‘˜ and 𝑐,

π‘›βˆ’1 πœ•π‘™ 𝑛 𝑛 = βˆ’ βˆ‘π‘₯𝑖𝑐 πœπ‘– + π‘˜ [(1 + π‘š) βˆ‘ πœπ‘– + π‘žπœπ‘› ] , πœ•π‘ 𝑐 𝑖=1 𝑖=1

(9)

with

π‘₯π‘›π‘π‘˜π‘žβˆ’1

π‘›βˆ’1 πœ•π‘™ 𝑛 = + (1 + π‘š) βˆ‘ ln πœ”π‘– + π‘ž ln πœ”π‘› , πœ•π‘˜ π‘˜ 𝑖=1

𝑖, 𝑗 = 1, 2.

βˆ’1

]

+ (π‘π‘˜π‘ž βˆ’ 1) ln π‘₯𝑛 βˆ’ (π‘˜π‘ž + 1) ln (1 + π‘₯𝑛𝑐 ) .

πœ•2 𝑙 (π‘˜, 𝑐 | x) ), πœ•π‘˜πœ•π‘

βˆ— βˆ— 𝑄12 𝑄11 ) 𝑄 =( βˆ— βˆ— 𝑄12 𝑄22 (π‘˜,𝑐)=(Μ‚π‘˜,Μ‚ 𝑐)

βˆ’π‘˜(π‘žβˆ’1) π‘₯π‘›βˆ’π‘ )

π‘₯π‘–π‘π‘˜+π‘π‘šπ‘˜βˆ’1

(8)

βˆ—

=(

βˆ’π‘šπ‘˜ π‘₯π‘–βˆ’π‘ ) ] (1

(7)

From (4), the asymptotic variance-covariance matrix for MLE is obtained by the following:

𝑖=1

π‘›βˆ’1

.

MLE of the parameter 𝑐 is obtained by solving the nonlinear equation (8). Substituting MLE of the parameter 𝑐 in (7), we can obtain MLE of the parameter π‘˜. The asymptotic variance-covariance matrix of MLE for the parameters π‘˜ and 𝑐 is given by the elements of the Fisher information matrix:

𝐿 (𝑐, π‘˜ | π‘₯) 𝑛

ln πœ”π‘– + π‘ž ln πœ”π‘›

𝑛 [(1 + π‘š) βˆ‘π‘›βˆ’1 𝑛 𝑛 𝑐 𝑖=1 πœπ‘– + π‘žπœπ‘› ] = 0. βˆ’ βˆ‘π‘₯𝑖 πœπ‘– βˆ’ π‘›βˆ’1 𝑐 𝑖=1 (1 + π‘š) βˆ‘π‘–=1 ln πœ”π‘– + π‘ž ln πœ”π‘›

𝐼𝑖𝑗 = βˆ’πΈ (

For π‘š1 = π‘š2 = β‹… β‹… β‹… = π‘šπ‘›βˆ’1 = π‘š, suppose that 𝑋(1, 𝑛, π‘š, π‘ž), 𝑋(2, 𝑛, π‘š, π‘ž), . . ., and 𝑋(𝑛, 𝑛, π‘š, π‘ž) (π‘ž β‰₯ 1, π‘š is a real number) are 𝑛 dual generalized order statistics drawn from BurrIII (𝑐, π‘˜). Using (1) and (2), we can get the following likelihood function:

π‘›βˆ’1

(1 +

Substituting (7) in (6), MLE 𝑐̂𝑀 of 𝑐 can be written as

2. Maximum Likelihood Estimation

= π‘ž (βˆπ›Ύπ‘— ) [βˆπ‘π‘˜π‘₯π‘–βˆ’(𝑐+1) (1 + π‘₯π‘–βˆ’π‘ )

𝑛 π‘š) βˆ‘π‘›βˆ’1 𝑖=1

(5)

(6)

π‘₯𝑖𝑐 /(1

+ π‘₯𝑖𝑐 ) and πœπ‘– = ln π‘₯𝑖 /(1 + π‘₯𝑖𝑐 ). where πœ”π‘– = Note that the Fisher information involves only a function of 𝑋𝑖 and so we need the marginal probability density function of 𝑖th dual GOS based on the distribution function 𝐹(π‘₯) and the density function 𝑓(π‘₯). From Burkschat et al. [9], the marginal probability density function of 𝑖th dual GOS is the following: 𝑓𝑋(𝑖,𝑛,π‘š,π‘ž) (π‘₯𝑖 ) =

πΆπ‘–βˆ’1 𝛾 βˆ’1 π‘–βˆ’1 [𝐹 (π‘₯𝑖 )] 𝑖 [π‘”π‘š (𝐹 (π‘₯𝑖 ))] 𝑓 (π‘₯𝑖 ) , Ξ“ (𝑖) (12)

The Scientific World Journal

3 By the same transformation method 𝑧 = 𝐹1/π‘˜ (π‘₯𝑖 ), the expectation of πœπ‘– πœ”π‘– ln 𝑋𝑖 , for π‘š =ΜΈ βˆ’1, is given by

where 𝑖

πΆπ‘–βˆ’1 = βˆπ›Ύπ‘— ,

𝐸 (πœπ‘– πœ”π‘– ln 𝑋𝑖 )

𝑖 = 1, 2, . . . , 𝑛,

𝑗=1

{βˆ’ 1 π‘₯π‘š+1 , β„Žπ‘š (π‘₯) = { π‘š + 1 {βˆ’ ln π‘₯,

(13)

π‘š =ΜΈ βˆ’1

=

π‘–βˆ’1

2π‘˜πΆπ‘–βˆ’1

π‘–βˆ’1 ) (βˆ’1)π‘Ž βˆ‘( 𝑐2 (𝑖 βˆ’ 1)!(π‘š + 1)π‘–βˆ’1 π‘Ž=0 π‘Ž

π‘š = βˆ’1,

π‘”π‘š (π‘₯) = β„Žπ‘š (π‘₯) βˆ’ β„Žπ‘š (1) ,

Γ—{

π‘₯ ∈ [0, 1) .

1 [π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1)) + 1] ∞

+βˆ‘[

Assume that π‘š =ΜΈ βˆ’1. For each 𝑖 = 1, 2, . . . , 𝑛, we can have the expectation of πœπ‘– , which is

𝑛=1

=

πΆπ‘–βˆ’1 ln π‘₯𝑖 𝛾 βˆ’1 π‘–βˆ’1 𝐹(π‘₯𝑖 ) 𝑖 𝑓 (π‘₯𝑖 ) π‘”π‘š (𝐹 (π‘₯𝑖 )) 𝑑π‘₯𝑖 . ∫ (𝑖 βˆ’ 1)! 0 1 + π‘₯𝑖𝑐 (14)

If we use the transformation 𝑧 = 𝐹1/π‘˜ (π‘₯𝑖 ), then the expectation of πœπ‘– is given by 𝐸 (πœπ‘– )

𝑛[π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1)) + 𝑛 + 2] 1

𝑛[π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1)) + 𝑛 + 1]

2

]

(17) For π‘š = βˆ’1, we can compute the expectation of πœπ‘– , which is

=

ln 𝑋𝑖 ) 1 + 𝑋𝑖𝑐

∞ πΆπ‘–βˆ’1 ln π‘₯𝑖 𝛾𝑖 βˆ’1 π‘–βˆ’1 𝑓 (π‘₯𝑖 ) π‘”βˆ’1 (𝐹 (π‘₯𝑖 )) 𝑑π‘₯𝑖 . ∫ 𝑐 𝐹(π‘₯𝑖 ) (𝑖 βˆ’ 1)! 0 1 + π‘₯𝑖 (18)

Using the same transformation method 𝑧 = 𝐹1/π‘˜ (π‘₯𝑖 ), the expectation of πœπ‘– is the following:

∞

(βˆ’1)𝑏+1 π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1)) βˆ’ 1 ( ) 2 𝑏 𝑏=0 (1 + 𝑏)

Γ—βˆ‘

1 [π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1)) + 1]

2

βˆ’

𝑖

𝐸 (πœπ‘– ) =

1 [π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1))]

2

}.

𝐸 (πœπ‘– πœ”π‘– ln 𝑋𝑖 )

𝑖(π‘˜π‘ž)

𝑐(π‘˜π‘ž + 1)

𝑖+1

βˆ’

𝑖 π‘π‘˜π‘ž

𝑖

(π‘˜π‘ž) ∞ 1 1 βˆ’ }. + βˆ‘{ 𝑐 𝑛=1 𝑛(𝑛 + π‘˜π‘ž)𝑖 𝑛(𝑛 + π‘˜π‘ž + 1)𝑖

(15)

To get the expectation of πœπ‘– πœ”π‘– ln 𝑋𝑖 , we need to compute

(19)

To get the expectation of πœπ‘– πœ”π‘– ln 𝑋𝑖 , we should compute 𝐸 (πœπ‘– πœ”π‘– ln 𝑋𝑖 )

2

𝑋𝑖𝑐 (ln 𝑋𝑖 )

2

2

= 𝐸(

) 2

=

2

(βˆ’1)𝑏 π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1)) ( )} . 3 𝑏 𝑏=0 (1 + 𝑏)

π‘–βˆ’1

Γ— { [π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1)) βˆ’ 1]

(1 + 𝑋𝑖𝑐 )

3

∞

π‘–βˆ’1 = ) (βˆ’1)π‘Ž βˆ‘( 𝑐 (𝑖 βˆ’ 1)!(π‘š + 1)π‘–βˆ’1 π‘Ž=0 π‘Ž

= 𝐸(

[π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1)) + 2]

Γ—βˆ‘

𝐸 (πœπ‘– ) = 𝐸 (

+

1

βˆ’ π‘˜ (𝛾𝑖 + π‘Ž (π‘š + 1))

∞

π‘˜πΆπ‘–βˆ’1

βˆ’

1

βˆ’

ln 𝑋𝑖 ) 𝐸 (πœπ‘– ) = 𝐸 ( 1 + 𝑋𝑖𝑐

3

∞ π‘₯𝑐 (ln π‘₯ ) πΆπ‘–βˆ’1 𝛾 βˆ’1 𝑖 π‘–βˆ’1 𝑖 𝐹(π‘₯𝑖 ) 𝑖 𝑓 (π‘₯𝑖 ) π‘”π‘š (𝐹 (π‘₯𝑖 )) 𝑑π‘₯𝑖 . ∫ (𝑖 βˆ’ 1)! 0 (1 + π‘₯𝑐 )2 𝑖 (16)

𝑋𝑖𝑐 (ln 𝑋𝑖 )

2

(1 + 𝑋𝑖𝑐 )

) 2

=

∞ π‘₯𝑐 (ln π‘₯ ) πΆπ‘–βˆ’1 𝛾 βˆ’1 𝑖 π‘–βˆ’1 𝑖 𝐹(π‘₯𝑖 ) 𝑖 𝑓 (π‘₯𝑖 ) π‘”βˆ’1 (𝐹 (π‘₯𝑖 )) 𝑑π‘₯𝑖 . ∫ (𝑖 βˆ’ 1)! 0 (1 + π‘₯𝑐 )2 𝑖 (20)

4

The Scientific World Journal

2 𝑛 With the transformation 𝑧 = 𝐹1/π‘˜ (π‘₯𝑖 ) and (βˆ‘βˆž 𝑛=1 (𝑧 /𝑛)) = ∞ π‘›βˆ’1 𝑛 βˆ‘π‘›=2 βˆ‘π‘—=1 (𝑧 /(𝑛 βˆ’ 𝑗)𝑗), the expectation of πœπ‘– πœ”π‘– ln 𝑋𝑖 , when π‘š = βˆ’1, is given by

where πœ‹1 (π‘˜) =

𝑖

(π‘˜π‘ž) 𝑖 (𝑖 + 1) 𝑖 (𝑖 + 1) βˆ’ = 2 { 𝑖+2 𝑖+2 𝑐 (π‘˜π‘ž + 1) (π‘˜π‘ž + 2) ∞ π‘›βˆ’1

𝑛=2 𝑗=1

𝑗 (𝑛 βˆ’ 𝑗) (𝑛 + π‘˜π‘ž + 1)

𝑛=1

𝑖

πœ‹ (𝑐, π‘˜ | π‘₯) ∝ 𝑐𝑛+π›Ύβˆ’1 π‘˜π‘›+π›Όβˆ’1 π‘’βˆ’π‘˜/π›½βˆ’π‘/𝛿

1 𝑖

𝑗 (𝑛 βˆ’ 𝑗) (𝑛 + π‘˜π‘ž + 2)

∞

+ 2𝑖 βˆ‘ (

where 𝛼, 𝛽, 𝛾, and 𝛿 are chosen to reflect prior knowledge about π‘˜ and 𝑐. By combining (3) and (24), the joint posterior density function of 𝑐 and π‘˜ can be put as follows:

1

βˆ’

1 𝑛(𝑛 + π‘˜π‘ž + 2)

𝑖+1

βˆ’

Γ— (∏ 𝑖=1

1 𝑖+1

𝑛(𝑛 + π‘˜π‘ž + 1)

)} .

πœ•2 𝑙 𝑛 ) = 2, πœ•π‘˜2 π‘˜

π‘›βˆ’1

= βˆ’ (1 + π‘š) βˆ‘ 𝐸 (πœπ‘– ) βˆ’ π‘žπΈ (πœπ‘› ) , βˆ— = βˆ’πΈ ( 𝑄22

=

(22)

πœ•2 𝑙 ) πœ•π‘2

. π‘˜π‘ž+1 (1 + π‘₯𝑛𝑐 )

(25)

̂𝐡 = 𝐸 [π‘ˆ (π‘˜, 𝑐) | π‘₯] π‘ˆ ∞

=

∬0 π‘ˆ (π‘˜, 𝑐) 𝐿 (𝑐, π‘˜ | π‘₯) πœ‹ (𝑐, π‘˜) 𝑑𝑐 π‘‘π‘˜ ∞

∬0 𝐿 (𝑐, π‘˜ | π‘₯) πœ‹ (𝑐, π‘˜) 𝑑𝑐 π‘‘π‘˜

.

(26)

̂𝐡 = π‘ˆ (πœ† 1 , πœ† 2 ) + 1 (𝐴 + π‘™βˆ— 𝐡12 + π‘™βˆ— 𝐡21 + π‘™βˆ— 𝐢12 + π‘™βˆ— 𝐢21 ) π‘ˆ 30 03 21 12 2 + 𝑝1 𝐴 12 + 𝑝2 𝐴 21 , (27)

𝑛 + (π‘˜ + π‘šπ‘˜ + 1) 𝑐2

where

π‘›βˆ’1

2 2

Γ— βˆ‘ 𝐸 (πœπ‘– πœ”π‘– ln 𝑋𝑖 ) + (π‘˜π‘ž + 1) 𝐸 (πœπ‘› πœ”π‘› ln 𝑋𝑛 ) .

𝐴 = βˆ‘βˆ‘ π‘ˆπ‘–π‘— πœπ‘–π‘— ,

𝑖=1

𝑖=1 𝑗=1

βˆ— βˆ— βˆ— Using (15), (17), (19), and (21), all entries 𝑄11 , 𝑄12 , 𝑄22 can be explicitly expressed, depending on π‘š.

3. Bayes Estimation In this section, we want to estimate the parameters 𝑐 and π‘˜ under squared error loss (SEL) function, which is defined as Μ‚ = (πœƒ βˆ’ πœƒ) Μ‚ 2 for a parameter πœƒ. Assuming that the 𝐿 0 (πœƒ, πœƒ) parameters 𝑐 and π‘˜ are unknown, a natural choice for the prior distributions of π‘˜ and 𝑐 would be to assume that the two quantities are independent gamma distributions as in the following: πœ‹ (𝑐, π‘˜) = πœ‹1 (π‘˜) πœ‹2 (𝑐) ,

π‘₯π‘›π‘π‘˜π‘žβˆ’1

In general, the integral ratio in (26) cannot be expressed in a simple closed form. Hence, we use Lindley’s approximation [15] to obtain a numerical approximation. In a two-parameter case, say (πœ† 1 , πœ† 2 ) = (π‘˜, 𝑐), based on Lindley’s approximation, the approximate Bayes estimator of a function π‘ˆ = π‘ˆ(πœ† 1 , πœ† 2 ), under the SEL function, leads to

πœ•2 𝑙 ) πœ•π‘πœ•π‘˜

𝑖=1

(1 + π‘₯𝑖𝑐 )

) π‘˜+π‘šπ‘˜+1

Under the SEL function, it is well known that the Bayes estimator of a function π‘ˆ = π‘ˆ(π‘˜, 𝑐) is the posterior mean of the function, which is

Now, we can get each entry of the Fisher information matrix π‘„βˆ— as follows:

βˆ— 𝑄12 = Qβˆ—21 = βˆ’πΈ (

π‘₯π‘–π‘π‘˜+π‘π‘šπ‘˜βˆ’1

π‘›βˆ’1

)

(21)

βˆ— 𝑄11 = βˆ’πΈ (

(24)

π›Ώβˆ’π›Ύ π›Ύβˆ’1 βˆ’π‘/𝛿 πœ‹2 (𝑐) = 𝑐 𝑒 , Ξ“ (𝛾)

𝐸 (πœπ‘– πœ”π‘– ln 𝑋𝑖 )

+ βˆ‘βˆ‘ (

π›½βˆ’π›Ό π›Όβˆ’1 βˆ’π‘˜/𝛽 π‘˜ 𝑒 , Ξ“ (𝛼)

(23)

π‘™π‘–π‘—βˆ— =

πœ•π‘–+𝑗 𝑙 𝑗

πœ•πœ†π‘–1 πœ•πœ† 2

;

𝑖, 𝑗 = 0, 1, 2, 3, with 𝑖 + 𝑗 = 3, πœ•π‘ 𝑝𝑖 = , πœ•πœ† 𝑖

πœ•π‘ˆ π‘ˆπ‘– = , πœ•πœ† 𝑖

𝑝 = ln πœ‹ (πœ† 1 , πœ† 2 ) ,

πœ•2 π‘ˆ π‘ˆπ‘–π‘— = , πœ•πœ† 𝑖 πœ•πœ† 𝑗

(28)

for 𝑖, 𝑗 = 1, 2,

and for 𝑖 =ΜΈ 𝑗, 𝐴 𝑖𝑗 = π‘ˆπ‘– πœπ‘–π‘– + π‘ˆπ‘— πœπ‘—π‘– ,

𝐡𝑖𝑗 = (π‘ˆπ‘– πœπ‘–π‘– + π‘ˆπ‘— πœπ‘–π‘— ) πœπ‘–π‘– ,

𝐢𝑖𝑗 = 3π‘ˆπ‘– πœπ‘–π‘– πœπ‘–π‘— + π‘ˆπ‘— (πœπ‘–π‘– πœπ‘—π‘— + 2πœπ‘–π‘—2 ) .

(29)

Note that πœπ‘–π‘— is the (𝑖, 𝑗)th element of the inverse of the matrix (𝑙𝑖𝑗 ), 𝑖, 𝑗 = 1, 2, where 𝑙𝑖𝑗 = πœ•2 𝑙/πœ•πœ† 1 πœ•πœ† 2 . Moreover, (27) is to be evaluated at the MLE’s of πœ† 1 and πœ† 2 .

The Scientific World Journal

5

Now, we apply Lindley’s approximation (27) to our case, where (πœ† 1 , πœ† 2 ) = (π‘˜, 𝑐) and π‘ˆ(πœ† 1 , πœ† 2 ) = π‘ˆ(π‘˜, 𝑐). The elements πœπ‘–π‘— can be obtained as βˆ’1

βˆ’π‘™ βˆ’π‘™ ( 11 12 ) βˆ’π‘™21 βˆ’π‘™22

=

1

𝑙 βˆ’π‘™ ( 22 12 ) 𝑙 βˆ’π‘™ 21 11 𝑙11 𝑙22 βˆ’ (𝑙12 ) 2

(30)

𝜏 𝜏 = ( 11 12 ) . 𝜏21 𝜏22

Γ— βˆ‘ πœπ‘– πœ”π‘– ln π‘₯𝑖 + (π‘˜π‘ž + 1) πœπ‘› πœ”π‘› ln π‘₯𝑛 ,

(32)

𝑖=1

𝐼 = (1 + π‘š) βˆ‘ πœπ‘– + π‘žπœπ‘› . 𝑖=1

Also, the values of π‘™π‘–π‘—βˆ— can be obtained as follows for 𝑖, 𝑗 = 0, 1, 2, 3; πœ•3 𝑙 2𝑛 = 3, 3 πœ•π‘˜ π‘˜

βˆ— 𝑙03 =

πœ•3 𝑙 πœ•π‘3

=

2𝑛 𝑛 βˆ’ βˆ‘πœ” 𝜐2 (1 βˆ’ π‘₯𝑖𝑐 ) ln π‘₯𝑖 𝑐3 𝑖=1 𝑖 𝑖 π‘›βˆ’1

βˆ’ π‘˜ (1 + π‘š) βˆ‘ πœ”π‘– πœπ‘–2 (1 βˆ’ π‘₯𝑖𝑐 ) ln π‘₯𝑖

(33)

𝑖=1

βˆ’

π‘˜π‘žπœ”π‘› πœπ‘›2

(1 βˆ’ π‘₯𝑛𝑐 ) ln π‘₯𝑛 ,

βˆ— 𝑙21 =

πœ•3 𝑙 = 0, πœ•π‘˜2 πœ•π‘

βˆ— 𝑙12 =

π‘›βˆ’1 πœ•3 𝑙 = βˆ’ + 1) βˆ‘ πœ”π‘– πœπ‘– ln π‘₯𝑖 βˆ’ π‘žπœ”π‘› πœπ‘› ln π‘₯𝑛 . (π‘š πœ•π‘˜πœ•π‘2 𝑖=1

Note 𝑝 = ln πœ‹(π‘˜, 𝑐) ∝ (𝛼 βˆ’ 1) ln π‘˜ + (𝛾 βˆ’ 1) ln 𝑐 βˆ’ π‘˜/𝛽 βˆ’ 𝑐/𝛿. Then, we get 𝑝1 =

πœ•π‘ 𝛼 βˆ’ 1 1 = βˆ’ , πœ•π‘˜ π‘˜ 𝛽

𝑝2 =

1 (π‘ˆ 𝐻 + π‘ˆ12 𝐼 + π‘ˆ21 𝐼 + π‘ˆ22 𝐺) , 2𝑁 11

βˆ— 2 βˆ— βˆ— 𝐻2 𝑙03 𝐺𝐼 𝑙12 (𝐻𝐺 + 2𝐼 ) 𝑙30 𝐻 𝐼 + + + 𝑝1 + 𝑝2 , πœ“1 = 2𝑁2 2𝑁2 2𝑁2 𝑁 𝑁 βˆ— βˆ— 2 βˆ— 𝐻𝐼 𝑙03 𝐺 𝑙30 𝐺𝐼 3𝑙12 𝐼 𝐺 + + + 𝑝1 + 𝑝2 . 2𝑁2 2𝑁2 2𝑁2 𝑁 𝑁

(36)

From (35), we can deduce the values of the Bayes estimates of the parameters 𝑐 and π‘˜ as follows. If π‘ˆ(π‘˜, 𝑐) = π‘˜, then πœ“0 = 0, π‘ˆ1 = 1, and π‘ˆ2 = 0. Hence, Μ‚π‘˜ = π‘˜ + πœ“ . 𝐡 1

(37)

If π‘ˆ(π‘˜, 𝑐) = 𝑐, then πœ“0 = 0, π‘ˆ1 = 0, and π‘ˆ2 = 1. Hence, 𝑐̂𝐡 = 𝑐 + πœ“2 .

(38)

Note that (35), (37), and (38) are to be evaluated at MLE’s (Μ‚π‘˜π‘€, 𝑐̂𝑀).

4. Simulation Study and Comparisons

π‘›βˆ’1

βˆ— 𝑙30 =

πœ“0 =

πœ“2 =

Let 𝐻 = βˆ’π‘™22 , 𝐺 = βˆ’π‘™11 , and 𝐼 = 𝑙12 = 𝑙21 . Then, 𝑁 = 𝐺𝐻 βˆ’ 𝐼2 . Then, we can rewrite this as 𝐻 𝐼 𝐺 (31) 𝜏11 = , 𝜏12 = 𝜏21 = , 𝜏22 = , 𝑁 𝑁 𝑁 where 𝑛 𝐺 = 2, π‘˜ 𝑛 𝐻 = 2 + (π‘˜ + π‘šπ‘˜ + 1) 𝑐 π‘›βˆ’1

where

πœ•π‘ 𝛾 βˆ’ 1 1 = βˆ’ . πœ•π‘˜ 𝑐 𝛿

(34)

Substituting all the above components to (27), the Bayes estimate of the function π‘ˆ(π‘˜, 𝑐) given in (27), under the SEL function, becomes ̂𝐡 = 𝐸 [π‘ˆ (π‘˜, 𝑐) | π‘₯] = π‘ˆ + πœ“0 + πœ“1 π‘ˆ1 + πœ“2 π‘ˆ2 , π‘ˆ

(35)

In this section, we consider MLE and the approximate Bayes estimates for two parameters 𝑐 and π‘˜ of Burr type III distribution. To assess the performance of these estimates, we conducted a simulation study. Let 𝑋𝐿(1) = π‘₯1 , 𝑋𝐿(2) = π‘₯2 , . . ., and 𝑋𝐿(𝑛) = π‘₯𝑛 be the lower record values of size 𝑛 which can be obtained from the dual GOS scheme as a special case by taking π‘š = βˆ’1 and π‘ž = 1. MLE and Bayes estimates for the parameters of BurrIII (𝑐, π‘˜) based on lower records are computed and compared through the Monte Carlo simulation study according to the following steps. (1) For π‘˜ = 2 and 𝑐 = 3, samples of lower record values of size 𝑛 (𝑛 = 4, 6, 8, 10) were generated from Burr type III distribution. Burr type III lower record values are generated using the inverse cdf, 𝑋𝑖 = (π‘’π‘–βˆ’1/π‘˜ βˆ’ 1)βˆ’1/𝑐 , where 𝑒𝑖 is the uniformly distributed random variate. (2) MLE’s, Μ‚π‘˜π‘€ and 𝑐̂𝑀 of the parameters π‘˜ and 𝑐, are calculated by iteratively solving (7) and (8) with π‘š = βˆ’1 and π‘ž = 1. (3) For given vlaues of prior parameters (𝛼, 𝛽, 𝛾, 𝛿), the Bayes estimates of π‘˜ and 𝑐 are computed from (37) and (38) with π‘š = βˆ’1 and π‘ž = 1. (4) The above steps are repeated 1,000 times to evaluate the root mean squared error (RMSE) of MLE and Bayes estimates for the different sample sizes 𝑛. Note that RMSE = √

2 1 1000 βˆ‘ (𝑔 (πœƒ0 ) βˆ’ 𝑔 (πœƒΜ‚π‘– )) , 1000 𝑖=1

(39)

where 𝑔(πœƒ0 ) is the true value and 𝑔(πœƒΜ‚π‘– ) is the 𝑖th Μ‚ estimate of 𝑔(πœƒ) evaluated at πœƒ.

6

The Scientific World Journal Table 1: The averaged RMSE for MLE and Bayes Estimates of the parameters π‘˜ and 𝑐 for different 𝑛. RMSE

𝑛 4 6 8 10

𝑐̂𝑀

Μ‚π‘˜ 𝑀

2.0268 1.6421 1.4473 1.3556

2.6734 2.1182 1.8153 1.5863

𝑐̂𝐡 (𝛼 = 3, 𝛽 = 2 1.7365 1.3672 1.1980 1.1267

Table 1 provides the averaged RMSE of MLE and Bayes estimates based on lower record values for two sets of prior parameters (𝛼, 𝛽, 𝛾, 𝛿). To show the consistency of the result across varying data sets with large variability and differing sample sizes, we simulate data under two sets of parameters, each prior distribution with large variability. We see that the Bayes estimates are better than MLE in the sense of comparing RMSE of the estimates. As the sample size 𝑛 increases, RMSE of the estimates should decrease, which is the case in our computer simulation.

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment This work was funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3081.

References [1] I. W. Burr, β€œCumulative frequency functions,” Annals of Mathematical Statistics, vol. 13, pp. 215–232, 1942. [2] J. H. Gove, M. J. Ducey, W. B. Leak, and L. Zhang, β€œRotated sigmoid structures in managed uneven-aged northern hardwood stands: a look at the Burr Type III distribution,” Forestry, vol. 81, no. 2, pp. 161–176, 2008. [3] P. W. Mielke, β€œAnother family of distributions for describing and analyzing precipitation data,” Journal of Applied Meteorology, vol. 12, pp. 275–280, 1973. [4] N. A. Mokhlis, β€œReliability of a stress-strength model with Burr type III distributions,” Communications in Statistics. Theory and Methods, vol. 34, no. 7, pp. 1643–1657, 2005. [5] I. W. Burr and P. J. Cislak, β€œOn a general system of distributions, I: its curve-shape characteristics, II: the sample median,” Journal of the American Statistical Association, vol. 63, pp. 627–635, 1968. [6] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, John Wiley & Sons, New York, NY, USA, 2nd edition, 1995. [7] A. M. Abd-Elfattah and A. H. Alharbey, β€œBayesian estimation for Burr distribution type III based on trimmed samples,” ISRN Applied Mathematics, vol. 2012, Article ID 250393, 18 pages, 2012. [8] U. Kamps, β€œA concept of generalized order statistics,” Journal of Statistical Planning and Inference, vol. 48, no. 1, pp. 1–23, 1995.

Μ‚π‘˜ 𝐡 𝛾 = 2, 𝛿 = 3) 2.3706 1.9863 1.7572 1.5180

𝑐̂𝐡 (𝛼 = 5, 𝛽 = 1 1.9826 1.5851 1.3504 1.3264

Μ‚π‘˜ 𝐡 𝛾 = 2, 𝛿 = 5) 1.7875 1.4074 1.3357 1.2318

[9] M. Burkschat, E. Cramer, and U. Kamps, β€œDual generalized order statistics,” Metron. International Journal of Statistics, vol. 61, no. 1, pp. 13–26, 2003. [10] M. Ahsanullah, β€œA characterization of the uniform distribution by dual generalized order statistics,” Communications in Statistics. Theory and Methods, vol. 33, no. 11-12, pp. 2921–2928, 2004. [11] Z. F. Jaheen, β€œEstimation based on generalized order statistics from the Burr model,” Communications in Statistics: Theory and Methods, vol. 34, no. 4, pp. 785–794, 2005. [12] A. K. Mbah and M. Ahsanullah, β€œSome characterizations of the power function distribution based on lower generalized order statistics,” Pakistan Journal of Statistics, vol. 23, no. 2, pp. 139– 146, 2007. [13] H. M. Barakat and M. E. El-Adll, β€œAsymptotic theory of extreme dual generalized order statistics,” Statistics & Probability Letters, vol. 79, no. 9, pp. 1252–1259, 2009. [14] W. Kim and C. Kim, β€œOn dual generalized order statistics from Burr Type III distribution and its characterization,” Far East Journal of Mathematical Sciences, vol. 81, no. 1, pp. 21–39, 2013. [15] D. V. Lindley, β€œApproximat e bayesian methods,” Trabajos de Estadistica, vol. 21, pp. 223–237, 1980.

Estimation of the parameters of Burr type III distribution based on dual generalized order statistics.

The estimation of the parameters of Burr type III distribution based on dual generalized order statistics is considered by using the maximum likelihoo...
521KB Sizes 0 Downloads 9 Views