Enkephalin knockout male mice are resistant to chronic mild stress Irene Melo, Eva Drews, Andreas Zimmer, Andras Bilkei-Gorzo Institute of Molecular Psychiatry, University of Bonn. Sigmund-Freud-Str.25, 53125 Bonn, Germany    Keywords: paraventricular nucleus, enkephalin, anxiety, depression, gene expression

Corresponding author: Name: Andras Bilkei-Gorzo PhD Address: Sigmund-Freud-Str.25, 53125 Bonn, Germany  Telephone number: +49-228-6885-317 Fax number: +49-228-6885-301 Email adress: [email protected]

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/gbb.12139 This article is protected by copyright. All rights reserved 

Abstract Enhanced stress reactivity or sensitivity to chronic stress increases the susceptibility to mood pathologies such as major depression. The opioid peptide enkephalin is an important modulator of the stress response. Previous studies using preproenkephalin knockout (PENK KO) mice showed that these animals exhibit abnormal stress reactivity and show increased anxiety behavior in acute stress situations. However, the consequence of enkephalin deficiency in the reactivity to chronic stress conditions is not known. In the present study we therefore submitted wild type (WT) and PENK KO male mice to chronic stress conditions, using the chronic mild stress protocol (CMS). Subsequently, we studied the CMS effects on the behavioral and hormonal level and also performed gene expression analyses. In WT animals, CMS increased the expression of the enkephalin gene in the paraventricular nucleus of the hypothalamus (PVN) and elevated the corticosterone levels. Additionally, WT mice displayed enhanced anxiety in the O-maze test and depression-related behaviors in the sucrose preference and forced swim tests. Surprisingly, in PENK KO mice, we did not detect anxiety and depression-related behavioral changes after the CMS procedure, and even measured a decreased hormonal stress response. These results indicate that PENK KO mice are resistant to the CMS effects, suggesting that enkephalin enhances the reactivity to chronic stress. Introduction Stress occurs when internal or external stimuli are perceived as a threat to the organism´s homeostasis and survival. It elicits endocrine, autonomic and behavioral alterations that allow adaption to the new conditions (Strohle & Holsboer, 2003, Tafet & Bernardini, 2003). However, chronic and/or severe stress, together with a genetic predisposition, may lead to maladaptive physiological responses. Consequently, pathological conditions such as post-traumatic stress disorder or major depression can develop (Strohle & Holsboer, 2003, Tafet & Bernardini, 2003). The paraventricular nucleus of the hypothalamus (PVN) is a central structure in the integration of the stress response. The PVN receives inputs from several brain nuclei involved in metabolic and pain control. It also receives inputs from the amygdala, hippocampus and prefrontal cortex (PFC), which are involved in cognitive and

This article is protected by copyright. All rights reserved 

emotional processing of stress stimuli (Herman et al., 2003, Tafet & Bernardini, 2003). Several distinct functional subdivisions and neuronal populations are present in the PVN. Corticotrophin releasing hormone (CRH)-expressing neurons, localized in the medial parvocellular subdivision of the PVN, together with the anterior pituitary and the adrenal glands constitute the hypothalamus-pituitary-adrenal (HPA) axis. Stress-induced CRH released by the parvocellular neurons stimulates the production and release of the adrenocorticotropic hormone (ACTH) by the pituitary. This in turn leads to the production and secretion of glucocorticoids by the adrenal cortex (Benarroch, 2005, Herman et al., 2002). Several studies showed the importance of enkephalin in stress responses and in the susceptibility to stress-related pathologies. Different stressors induce alterations in enkephalin mRNA expression and peptide levels (Bertrand et al., 1997, Christiansen et al., 2011, Dziedzicka-Wasylewska & Papp, 1996, Lucas et al., 2007, Mansi et al., 2000, Yamada & Nabeshima, 1995) and also modulate the number and function of its receptors, the mu opioid receptor (MOR) and delta opioid receptor (DOR) (Stein et al., 1992). Furthermore, systemic administration of exogenous analogues of enkephalin, inhibitors of enkephalin degradation and DOR specific agonists, leads to anxiolytic (Randall-Thompson et al., 2010) and antidepressant effects (Baamonde et al., 1992, Broom et al., 2002, Tejedor-Real et al., 1995, Tejedor-Real et al., 1998). Additionally, mice deficient in enkephalin (PENK KO), DOR (DOR KO) or MOR (MOR KO) showed altered stress reactivity. DOR KO mice display exacerbated stress responses (Filliol et al., 2000) while MOR KO mice present a higher resilience to stress effects (Filliol et al., 2000, Ide et al., 2010, Komatsu et al., 2011). PENK KO mice presented increased anxiety levels under basal conditions (Bilkei-Gorzo et al., 2004b) (Bilkei-Gorzo et al., 2008a, Bilkei-Gorzo et al., 2008b, Konig et al., 1996) and exacerbated anxiety and depression-related phenotypes induced by acute stress (Kung et al., 2010, Ragnauth et al., 2001). In order to study the influence of enkephalin in chronic stress conditions, we submitted wild type (WT) and PENK KO mice to a chronic mild stress (CMS) protocol. We analyzed the effects of CMS on brain enkephalin gene expression and compared hormonal and behavioral responses between WT and PENK KO mice exposed to CMS.

This article is protected by copyright. All rights reserved 

Material and methods Animals Male WT and PENK KO homozygous mice on a C57BL/6J genetic background were used in this study. Mice with a deletion of the preproenkephalin (Penk) gene (Konig et al., 1996) were crossed with C57BL/6J (WT) mice for more than 10 generation in order to obtain PENK KO homozygous mice on a pure C57BL/6J background (BilkeiGorzo et al., 2004b). To avoid genetic drift we routinely renew our inbred KO colonies by crossing back them with WT C57BL/6J animals after three generations of homozygous breeding and restart the breeding of the knockouts from the F2 generation of the back-crossing. WT mice were originally obtained from a commercial breeder (Janvier, France) and bred at our animal facility. At postnatal day 21, pups were weaned and housed in groups of 4-5 animals. Starting at the age of 6 weeks, WT and PENK KO mice were individually housed until the end of the experimental procedure. Rooms were maintained at 23°C, under a 12:12 hours inverted light cycle with ad libitum access to water and food, except when animals were food or water restricted during CMS. All experiments were performed using individually housed animals (except during the brief period of social stress submission, when 4 animals were together housed) during the dark phase of the light cycle. To avoid possible maternal care effects, homozygous WT and PENK KO gestating females were housed together from the first week of gestation until the end of the lactation period. The females gave birth and reared the offspring from both genotypes together. Our breeding system fulfills the published requirements (Crusio et al., 2009) of the journal. All experiments followed the guidelines of the German Animal Protection Law. Genotyping DNA from tail biopsies was extracted by the hot shot lysis method (Truett et al., 2000). Amplification of the DNA for genotyping was performed by adding a master mix solution (Green Taq (Promega), RNA free water, 0.5 µl E31 Primer (Metabion)GCATCCAGGTAATTGGCAGGAA-,

0.5

µl

neoRL

Primer

(Metabion)-

CAGCAGCCTCT GTTCCACATACACTTCAT-, 0.5 µl E1R Primer (Metabion) TCCTTCACATTCCAGTGTGC-), to the DNA samples, followed by 40 cycles of

This article is protected by copyright. All rights reserved 

amplification. The products were separated by electrophoresis. A band of 700 bp was amplified for WT and of 550 bp for PENK KO mice. Experimental design and CMS procedure We submitted WT and PENK KO mice to the CMS protocol, which is a validated animal model to study stress-related pathologies, such as major depression (MD) (Hill et al., 2012, Willner, 2005). The experiment was divided into two consecutive series of CMS exposure and behavioral testing, due to the large number of animals in the two experimental groups. The first cohort consisted of 8 WT control, 8 WT CMS, 8 PENK KO control and 8 PENK KO CMS animals. The second cohort consisted of 15 WT control, 14 WT CMS, 11 PENK KO control and 10 PENK KO CMS animals. After two weeks of individual housing, each cohort was submitted to 5 weeks of CMS comprising the following stressors: 1 hour restraint stress, 1 hour social stress (4 animals /cage), 1-3 hours of stroboscopic lights, 4-8 hours tilted cages, 8-12 hours wet bedding, 8-12 hours cage without bedding, 24 hours light or dark periods, 18-24 hours food deprivation followed by 30 minutes of inaccessible food and 18-24 hours water deprivation followed by 30 minutes exposure to an empty bottle. The different stressors were applied randomly in order to avoid adaptation to expected stress conditions. WT and PENK KO mice from control groups were handled twice a week during the 5 weeks of the CMS protocol. Animals were left undisturbed for a period of 24 hours for one day per week, while the sucrose preference was assessed. At the end of the CMS procedure, animals were tested in a battery of behavioral tests to assess anxiety and depression-related phenotypes. At the first day after the end of the CMS protocol, sucrose preference was assessed for the last time (Figure 1). Corticosterone metabolites in feces Two days after the end of the CMS protocol, feces samples were collected for corticosterone measurements. For this purpose we housed the animals in new clean home cages and collected the feces after 24 hours. The samples were frozen at -80° C until further analysis. For corticosterone metabolite analysis, feces were unfrozen, placed on open petri dishes and dried in an oven at 37°C for 1 hour. Subsequently, samples were grinded into a powder with the help of a pestle, weighted and used for corticosterone metabolites extraction followed by quantification by an ELISA assay

This article is protected by copyright. All rights reserved 

for corticosterone. Corticosterone metabolites were extracted with 1 ml of ethanol per 100 mg of feces powder, followed by 30 minutes of vigorous shaking at room temperature and 30 minutes of centrifugation at 5000 rpm at room temperature. We collected 450 µl of the supernatant and dried it in a Speedvac (SpeedVac Savant, Thermo Scientific) for 1 hour at 35°C. Pellets were frozen at -20°C inside a desiccator to avoid hydration of the pellets. On the following day, corticosterone ELISA assays were performed following the manufacture’s instructions (Arbor assays: catalog number KO14-H5). Open field Animals were tested for exploratory and locomotor activity in an open field test. The test apparatus consist of an arena of 45x45x22 cm, dimly illuminated at 20 lux. Animals were placed in one of the corners and allowed to explore the arena for 10 minutes. The activity of the animals was recorded with infrared beam breaks placed on the outer sides of the arena. The total distance moved in the arena, as well as the distance moved and time spent in the central part of the arena were analyzed with the Actimot 2 software (TSE-Systems GmbH, Germany). O-maze Anxiety-related behavior was tested in the O-maze test. The test was conducted in a round arena, elevated 38 cm above the ground. The arena was divided into four equal quadrants, with non-transparent walls enclosing the two opposite quadrants. Each mouse was placed into the open area of the maze and the animals’ behavior was videotaped using a camera fixed above the maze and analyzed with a videotracking system. Animals were tested for 5 minutes with 400 lux of illumination. Time spent in the open areas of the maze was evaluated with the Ethovision software (Noldus, Netherland) as a parameter of anxiety. Sucrose preference test During individual housing, the animals were provided with two water bottles in their cages. For the sucrose preference test (SPT), one of the water bottles was replaced by a bottle containing a 1% sucrose solution for 24 hours. Before the beginning of the CMS protocol and the basal SPT measurements, two consecutive SPT tests were made for sucrose taste habituation. The sucrose preference test was This article is protected by copyright. All rights reserved 

performed once a week during the 5 weeks of CMS. Sucrose preference was calculated as follows: Sucrose preference = [sucrose intake/ (sucrose intake + water intake)]*100. The amount of sucrose solution and water intake was calculated subtracting the final weight (after 24 hours) from the initial weight of the bottles. Forced swim test Animals were tested for despair behavior in the forced swim test. During 6 minutes, animals were placed in a Plexiglas cylinder (10 cm internal diameter, 50 cm height) filled with water of 26-28°C. Immobility time in the last 4 minutes was measured using a stopwatch. Animals were judged to be immobile when they remained floating in the water, making only movements necessary to keep the head above the water. Tissue samples Twenty-four hours after the last behavioral test, animals were sacrificed by cervical dislocation. Adrenal glands were removed, cleaned and their weight was measured on an analytical scale. Brains were also removed, snap-frozen in ice-cold isopentane and stored at -80°C. To isolate the different brain areas, brains were warmed up to 20°C and cut into 1mm coronal sections using a metal matrix for mouse brains (Zivic). The PFC, PVN, amygdala, bed nucleus of stria terminalis (BNST) and hippocampus were isolated from the sections using a 12G punching needle. Eppendorf tubes containing the isolated brain areas were stored and kept at –80°C until further molecular analysis. RNA extraction To extract RNA, we added 1 ml Trizol reagent per hippocampus sample and 800 µl for PVN, PFC and amygdala. The samples were then transferred to magnalyser tubes and homogenized with a Precellys machine (Peqlab). After homogenization, samples were incubated for 5 minutes at room temperature (RT). Subsequently, 200 µl of chloroform was added and samples were mixed by vortexing, incubated for 3 minutes at RT and centrifuged for 15 minutes at 12000 rpm at 4°C. The upper aqueous phase was then transferred to a new tube and RNA was precipitated by adding 500 µl of isopropanol. Samples were incubated for 10 minutes at RT and centrifuged for 15 to 20 minutes at 12000 rpm at 4°C. The supernatant was disposed, the pellet washed twice in 1 ml 75% ethanol followed by 10 minutes of This article is protected by copyright. All rights reserved 

8000 rpm centrifugation at 4°C. Afterwards, the supernatant was disposed and the RNA pellet was dried on a thermal plate for 5 minutes at 55°C. Dried pellets were dissolved in RNA free water (hippocampus: 15 µl, amygdala and PFC: 6 µl, PVN: 5 µl). Purity and RNA concentration was evaluated by optical density measurements at 260 and 280 nm in a spectrophotometer (NanoDrop instruments). Gene expression analysis Initially, cDNA was synthesized using the SuperScript First-Strand Synthesis System for RT-PCR Kit (Invitrogen Corp., Carlsbad, CA, USA) with oligo-deoxynucleotide-T (dT) primers, according to the manufacturer’s instructions. Total RNA (30 ng for BNST, 20 ng for hippocampus and 15 ng for PFC, PVN and amygdala) was used as primary material. mRNA expression of the target genes was determined in triplicates by custom TaqMan® Gene Expression Assays (Applied Biosystems, Darmstadt, Germany) using the following primers: PENK: Mm01212875_m1; GAPDH: Mm99999915_g1 (Applied Biosystems, Darmstadt, Germany). Each TaqMan® assay reaction consisted of 4 µl cDNA, 5 µl TaqMan® universal PCR Master Mix (Applied Biosystems, Darmstadt, Germany), 0.5 µl Custom TaqMan® Gene Expression Assay and 0.5 µl of RNA free water. Samples were processed in a 7500 Real-Time PCR Detection System (Applied Biosystems, Darmstadt, Germany) with the following cycling parameters: 95°C for 10 minutes (hot start), 40 cycles at 95°C for 15 seconds (melting) and 60°C for 1 minute (annealing and extension). Analysis was performed using the 7500 Sequence Detection Software version 2.2.2 (Applied Biosystems, Darmstadt, Germany) and data was obtained as function of threshold cycle (CT). For relative quantification (RQ) of the gene expression, the mean CT values of the triplicates of the PENK gene and of the housekeeping gene GAPDH were calculated, followed by subtraction of the mean CT values of the GAPDH gene to the mean CT values of the PENK gene (ΔCT values). Next, the power of all ΔCT values was calculated based in the formula power = 2^-ΔCT (Livak & Schmittgen, 2001). Finally, RQ values, presented as fold change of the WT control group, were obtained by the division of the power value of each sample by the mean power value of the WT control group. Statistical analysis

This article is protected by copyright. All rights reserved 

We did not detect interaction effects between cohort number and CMS or genotype therefore data from the two cohorts were pooled except for the forced swim test. Here we only present data from the first cohort of animals, due to data recording problems with the second cohort. Statistical analyses for the corticosterone measurements, adrenal weight and the behavioral data, were analyzed by two-way ANOVA, with CMS and genotype as between-subjects factors. Sucrose preference test data were analyzed with threeway ANOVA with repeated measures, with CMS, genotype as between-subjects factors and week as within factor. The sucrose preference values at week 5 were additionally analyzed using with two-way ANOVA (CMS and genotype as main factors). Post-hoc analyses were performed using the Bonferroni test. The mRNA expression levels were analyzed with the Mann-Whitney U test. Statistical significance was set at p < 0.05. Results CMS increased expression of the PENK gene in the PVN PENK expression levels were measured in WT control and CMS animals. In the PFC, we found no significant differences in PENK gene expression (Figure 2a; U = 18.00, n.s). In the PVN, we observed an increase in the PENK mRNA levels after CMS (Figure 2b; U = 3.000; p< 0.05). In the amygdala (U = 12.00; n.s.), in the bed nucleus of stria terminalis (U = 10.00; n.s.) or in the hippocampus (U = 13.00; n.s.) no significant changes were observed (Figure 2c-e). CMS increases corticosterone levels and elevates adrenal gland weights in WT, but not PENK KO mice We measured corticosterone levels in feces produced within 24 hours at the end of the CMS protocol in WT and PENK KO mice (Figure 3a). We found no significant effects for the factor CMS (F

(1, 66)

= 2.15, n.s.) nor for genotype (F

(1, 66)

= 0.98, n.s.).

However, our analysis revealed a significant CMS*genotype interaction (F

(1, 66)

=

20.47, p < 0.0001). Exposure to CMS increased the corticosterone levels in WT animals (WT control vs. WT CMS: p < 0.001), but did not significantly change the levels in PENK KO animals. Moreover, post-hoc analyses also revealed differences

This article is protected by copyright. All rights reserved 

between WT and PENK KO animals within the control and CMS groups (WT control vs. PENK KO control: p < 0.05; WT CMS vs. PENK KO CMS: p < 0.001). Corticosterone levels were higher in PENK KO mice under baseline conditions, but lower after CMS compared to WT mice. The weight of the adrenal glands was significantly increased after CMS (F (1,43) = 4.690; p < 0.05), whereas we did not detect effect of genotype (F

(1,43)

= 0.0256; n.s.) nor CMS*genotype interaction (F

(1,43)

=

0.1086; n.s.). However, post hoc analysis of the data revealed that the CMS-induced increase in adrenal weights was significant in the WT but not in PENK KO animals (WT control vs. WT CMS: p < 0.05) (Figure 3b). CMS increases anxiety levels in the O-maze test in WT but not in PENK KO mice Anxiety-related behaviors were assessed in the O-maze test (Figure 4a), where time in the open areas is inversely correlated to the level of anxiety. We found a significant CMS effect (F

(1, 77)

= 8.008, p < 0.01) and post hoc analyses showed a

decrease in the time spent in the open areas in WT CMS compared to WT control mice (WT control vs. WT CMS: p < 0.01). No genotype (F CMS*genotype (F

(1, 77)

(1, 77)

= 0.1147, n.s.) or

= 1.817, n.s.) effect was observed. We also performed an

open field test to control for potential differences in the general activity or exploratory behavior (Figure 4b). We found a significant main effect for CMS (F (1, 78) = 5.110, p < 0.05), due to an increase in the distance travelled by the CMS animals. Nevertheless, post-hoc analyses were not significant. We did not detect significant differences for genotype (F (1, 78)

(1, 78)

= 0.03712, n.s.) or for CMS*genotype interaction (F

= 0.6320, n.s.). Time or activity in the central part of the arena, often used as

anxiety markers, did not differ between the genotypes (genotype effect on time: F 75)

= 0.1700, n.s; genotype effect on activity: F

(1, 77)

= 0.1451, n.s.). In addition, we

found neither CMS effects (effect of CMS on time: F CMS on activity: F

(1, 77)

(1,

(1, 75)

= 0.5893, n.s; effect of

= 1.453, n.s.) nor interaction between genotype and CMS

(time: F (1, 75) = 1.351, n.s; activity: F (1, 77) = 0.0134, n.s.)(data not shown). CMS induces anhedonia in WT but not in PENK KO mice A state of anhedonia (reduced responsiveness to pleasurable stimuli) is indicated by a decreased sucrose preference over water. We assessed the sucrose preference at weekly intervals during the CMS protocol. Repeated measures three-way ANOVA was significant for the CMS effect (F (1, 72) = 6.704, p < 0.05) and week*CMS (F (5, This article is protected by copyright. All rights reserved 

360) = 2.660, p < 0.05) interaction. The chronic mild stress test procedure significantly influenced the sucrose preference, showen by a significant CMS effect at week 5 according to two-way ANOVA (CMS effect: F (1,72) = 21.60; p < 0.01). Moreover, CMS*genotype interaction effect was significant (F (1,72) = 7.374; p < 0.01), which shows that CMS effects differed between the genotypes. Post hoc analysis of the data using Bonferroni test revealed that CMS significantly decreased sucrose preference in WT but not in PENK KO mice (WT control vs. WT CMS: p< 0.05) (Figure 5a). CMS increases immobility in the forced swim test in WT, but not in PENK KO mice Effect of CMS on despair-like behavior was measured in the forced swim test (Figure 5b) as an increase in the immobility time. We found no significant effect for genotype (F (1, 28) = 0.01431, n.s.) or CMS*genotype interaction (F (1, 28) = 3.709, n.s.), but a significant CMS effect (F (1, 28) = 5.497, p < 0.05). The post-hoc test showed that the immobility time significantly increased in WT, but not in PENK KO mice after CMS (WT control VS. WT CMS: p < 0.05). Discussion In this study we demonstrate that male WT mice exposed to 5 weeks of CMS have elevated corticosterone levels and show increased anxiety in the O-maze but not in the open-field test and depression-related behaviors in the SPT and FST. In contrast, PENK KO mice showed none of these effects, indicating that mice lacking enkephalins are resilient to CMS. Under basal conditions (unstressed), anxiety and depression-related behaviors were similar between PENK KO and WT mice. Although these findings seem to be in contrast to previous data indicating enhanced basal anxiety levels in PENK KO mice using the same paradigms (Bilkei-Gorzo et al., 2008a, Bilkei-Gorzo et al., 2008b, Bilkei-Gorzo et al., 2004a, Konig et al., 1996) they can be readily explained by the different experimental conditions. Mice from the present study were single–housed for 8 weeks and tested for anxiety-related behavior (O-maze test) after they had been analyzed for sucrose preference and in the open field test. In the aforementioned studies, PENK KO animals were group-housed and naive to each

This article is protected by copyright. All rights reserved 

behavioral test. It is well known that group- versus (vs.) single-housing (Voikar et al., 2005) as well as test-test interaction (Mcilwain et al., 2001, Voikar et al., 2004), strongly influence anxiety-related phenotypes. We have shown that the basal phenotype of Penk KO mice is particularly sensitive to environmental effects (BilkeiGorzo et al., 2008a). We now re-analyzed our previous result of O-maze experiments, which were carried out in the same time period and where single and group housed WT and PENK KO mice were tested. We found a significant effect of interaction between genotype and housing on the time spent in the open areas. Post hoc analysis revealed that PENK KO mice presented enhanced anxiety levels compared with WT mice when the animals were group-housed but not when they were single housed for two weeks. Moreover, the different housing conditions did not alter the behavior reactivity of WT mice (Suppl. Figure 1). In humans, chronic stress has been shown to be a risk factor for the development of anxiety states and depressive-like symptoms (Kendler et al., 1999, Tafet & Bernardini, 2003). Likewise, the CMS induces anhedonia (Willner, 1997), anxiety and despair behaviors (Mineur et al., 2006) as well as increased corticosterone levels (Song et al., 2006) in mice. These behavioral and hormonal changes can be reversed by antidepressant treatment (Willner, 2005), suggesting that CMS exposure represents an animal model of depression. In accordance with the literature, our results in WT animals also showed that CMS induced a decrease in the sucrose preference, increase in the immobility time in the forced swim test and reduced time spent in the open parts of the O-maze, indicative of anhedonia, despair behavior and increased anxiety, respectively. In addition, we also observed increased baseline corticosterone levels and higher adrenal weights (hypertrophy) in CMSexposed WT animals. It is well known that corticosterone levels show fluctuations over a period of 24h, i.e. a circadian pattern and also fast, pulsatile fluctuations, i.e. an ultradian cycle. The frequency and amplitude of corticosterone ultradian fluctuations delineate its circadian pattern (Lightman & Conway-Campbell, 2010, Walker et al., 2010). Therefore, in order to avoid misleading results due to mismatching circadian/ ultradian time points between individuals and between genotypes, we measured faecal corticosterone levels. These values reflect the mean corticosterone concentration and thus are probably a more reliable marker of long-lasting changes This article is protected by copyright. All rights reserved 

under chronic stress conditions, because it is less susceptible to fast fluctuations (Millspaugh & Washburn, 2004). Furthermore, this non-invasive sampling method is probably a more reliable marker to detect differences in the general hormonal status of the animals due to CMS exposure (Touma et al., 2004). In strong contrast to our results in WT animals, we observed none of these changes in PENK KO mice, suggesting that knockout mice are resilient to CMS. This result thus identifies enkephalin as a key component for the development of CMS-induced physiological and behavioral changes. The resilience of PENK KO mice to the CMS effects was surprising and the opposite of what we had expected. Several previous studies showed an anti-depressant effect of enkephalin signaling in the forced swim, conditioned suppression of motility and in the learned helplessness models. Thus, WT animals treated with exogenous analogues of enkephalin (Tejedor-Real et al., 1995) or with inhibitors of enkephalin catabolism (Baamonde et al., 1992, Tejedor-Real et al., 1995, Tejedor-Real et al., 1998) showed attenuated depression-related behaviors, observed by a reduction in the immobility time (Baamonde et al., 1992) and number of escape failures (TejedorReal et al., 1995, Tejedor-Real et al., 1998). Nevertheless our previous studies did not show a depression-related phenotype in PENK KO mice (Bilkei-Gorzo et al., 2007). We therefore hypothesized that such phenotype may become apparent after exposing the animals to CMS. Clearly this was not the case. Stress response involves distinct brain areas and several neurotransmitters (Carrasco & Van De Kar, 2003, Dedovic et al., 2009, Herman et al., 2003, Locatelli et al., 2010, Tafet & Bernardini, 2003).

Activation of the distinct stress-related

neuronal pathways is highly dependent on the modality of the stress stimuli. Thus, stress response circuits can differ upon reactive vs. anticipatory stressors, physical vs. psychological stressors, acute vs. chronic stressors or repeated vs. novel stressors (Dedovic et al., 2009, Gaillet et al., 1991, Herman et al., 2003, Pacak et al., 1998, Ulrich-Lai & Herman, 2009). Furthermore, enkephalin and its receptors are widely express within brain areas involved in stress response, such as hippocampus, hypothalamus and amygdala (Beaulieu et al., 1996, Le Merrer et al., 2009, Poulin et al., 2006), and co-localized with several of the main neurotransmitters, such as CRH, GABA and glutamate (Ceccatelli et al., 1989, Kalyuzhny & Wessendorf, 1998, Poulin

This article is protected by copyright. All rights reserved 

et al., 2008, Pretel & Piekut, 1990, Zhu & Pan, 2005). Consequently, the neuronal pathways, on which enkephalin can be involved are multiple, and may lead to differential modulatory effects in stress response. When we analyzed PENK gene expression in WT mice in order to scrutinize molecular mechanisms we observed an increase in the PENK gene expression in the PVN (Figure 2b). Similar results were shown after exposure to other stressors, such as immobilization (Palkovits, 2000) and chronic variable stress (Christiansen et al., 2011). Therefore, not excluding the contribution of enkephalin signaling in other brain areas in CMS-reactivity, we focused our discussion on the enkephalin signaling in the PVN. The PVN contains several neuronal populations involved in the control of endocrine stress response. Among them, are the CRH neurons, part of the HPA axis, the main branch of the endocrine stress response (Herman et al., 2003). Although only 20% of the CRH expressing neurons co-express enkephalin, enkephalin expressing neurons within the PVN and in the inhibitory peri-PVN region may have a strong control on the activity of CRH expressing parvonuclear neurons. Indeed, we observed that deletion of Penk influenced corticosterone levels both in unstressed and stressed animals (Figure 3a) suggesting that enkephalin is an important modulator of basal and stress-induced hormone release and, that the lack of enkephalin may contribute to an attenuation of the HPA axis activity under chronic stress conditions. Based on our present data and previous findings, we propose a mechanism for the surprising resilience phenotype of PENK KO mice under CMS conditions. Parvocellular CRH neurons within the PVN are controlled by inhibitory GABAergic neurons (Cullinan et al., 2008, Herman et al., 2003, Herman et al., 2004, Miklos & Kovacs, 2002). These GABAergic neurons are known to express and be inhibited by the activation of presynaptic MOR (Wamsteeker Cusulin et al., 2013). Under basal, stress-free situation the low amount of enkephalin, which the the peri-PVN neurons produce, contributes to the inhibitory control of CRH expressing PVN neurons. Thus, deletion of enkephalin leads to an enhanced basal activity in the PVN. When stress upregulates PENK expression it leads to a release of enkephalin also in the periPVN region. The locally released enkephalin may activate to MOR autoreceptors of the inhibitory GABAergic neurons leading to a decreased GABAergic tone on the CRH expressing neurons in the PVN. Disinhibition of this neuronal population can lead to hyperactivity of the HPA axis and to an increase in the corticosterone levels This article is protected by copyright. All rights reserved 

under stress conditions in wild-type animals. In contrast, due to the lack of enkephalin in PENK KO mice, the GABAergic tone on the parvocellular CHR neurons is maintained under stress. As a consequence, the activity of the HPA axis and the secretion of corticosterone remain low in these mice (Figure 3a.) contributing to the resilience of PENK KO mice to chronic mild stress. Nevertheless, this model does not exclude the possibility that other brain regions are also involved in the chronic stress-resistant phenotype of PENK KO mice. Acknowledgement The authors declare that they have no conflict of interest.

This article is protected by copyright. All rights reserved 

Figure legends Figure 1. Timeline of the experimental procedure. WT and PENK KO animals were submitted to 5 weeks of CMS (see methods) or to handling (twice a week). Within CMS exposure, the sucrose preference test was performed once a week. Subsequently, all animals were analyzed in a battery of behavioral test as indicated in the scheme. Twenty-four hours after the last behavioral test, mice were killed and the brains removed for gene expression analyses. CMS = chronic mild stress, d = day.

This article is protected by copyright. All rights reserved 

Figure 2. Analyses of PENK gene expression in the (a) PFC, (b) PVN, (c) amygdala, (d) hippocampus and (e) BNST in WT control and WT CMS mice. CMS led to a significant increase of mRNA expression in the PVN. No significant changes were observed in the other brain regions analyzed. Data are expressed as fold change compared to WT controls. * p < 0.05 by Mann-Whitney U-test.

This article is protected by copyright. All rights reserved 

Figure 3. (a) Measurement of corticosterone levels in feces, produced within 24 hours, after 5 weeks of CMS (n= 17-18/group). CMS led to significantly increased corticosterone levels in WT, but not in PENK KO mice. Corticosterone levels in the control group were higher in PENK KO compared to WT animals. After CMS, corticosterone levels were higher in WT than in PENK KO mice. (b) Adrenal weights are higher in the WT but not in the PENK KO group after CMS. Data are expressed as mean ± S.E.M. # p < 0.05; ### p < 0.001 difference between WT and PENK KO mice. * p < 0.05; *** p < 0.001 difference between control and CMS WT mice. Twoway ANOVA followed by Bonferroni test.

This article is protected by copyright. All rights reserved 

Figure 4. Assessment of anxiety-related behavior in the O-maze test and of locomotor activity in the open field test. In the O-maze test (a), CMS exposure significantly increased anxiety levels in WT mice, as indicated by a decrease in the time spent in the open areas of the maze. CMS had no effect in PENK KO animals (n = 18-22 /group). In the open field test (b), a main effect of CMS was observed. CMS led to an increased activity in WT and PENK KO mice (n=18-23/ group). Data are expressed as mean ± S.E.M. ** p < 0.01 difference between control and CMS WT mice using two-way ANOVA followed by Bonferroni test.

This article is protected by copyright. All rights reserved 

Figure 5. Anhedonia was measured in the sucrose preference test (a). Sucrose preference, measured after five weeks of CMS revealed that CMS led to a decreased preference for the sucrose solution (anhedonia) in WT but not in PENK KO mice (n = 17-22 /group). (b) Despair-like behavior was measured in the forced swim test. CMS led to an increase in the immobility time in WT but not in PENK KO mice (n = 8 /group). Data are expressed as mean ± S.E.M. * p < 0.05; *** p < 0.001 using two-way ANOVA followed by Bonferroni test.

This article is protected by copyright. All rights reserved 

References Baamonde, A., Dauge, V., Ruiz‐Gayo, M., Fulga, I.G., Turcaud, S., Fournie‐Zaluski, M.C. & Roques, B.P.  (1992)  Antidepressant‐type  effects  of  endogenous  enkephalins  protected  by  systemic  RB  101 are mediated by opioid delta and dopamine D1 receptor stimulation. Eur J Pharmacol,  216, 157‐166.  Beaulieu,  J.,  Champagne,  D.  &  Drolet,  G.  (1996)  Enkephalin  innervation  of  the  paraventricular  nucleus of the hypothalamus: distribution of fibers and origins of input. J Chem Neuroanat,  10, 79‐92.  Benarroch,  E.E.  (2005)  Paraventricular  nucleus,  stress  response,  and  cardiovascular  disease.  Clin  Auton Res, 15, 254‐263.  Bertrand, E., Smadja, C., Mauborgne, A., Roques, B.P. & Dauge, V. (1997) Social interaction increases  the extracellular  levels  of  [Met]enkephalin  in the  nucleus  accumbens of control but  not of  chronic mild stressed rats. Neuroscience, 80, 17‐20.  Bilkei‐Gorzo, A., Michel, K., Noble, F., Roques, B.P. & Zimmer, A. (2007) Preproenkephalin knockout  mice show no depression‐related phenotype. Neuropsychopharmacology, 32, 2330‐2337.  Bilkei‐Gorzo,  A.,  Otto,  M.  &  Zimmer,  A.  (2008a)  Environmental  modulation  of  anxiety‐related  neuronal activity and behaviors. Behavioural brain research, 186, 289‐292.  Bilkei‐Gorzo,  A.,  Racz,  I.,  Michel,  K.,  Mauer,  D.,  Zimmer,  A.  &  Klingmuller,  D.  (2008b)  Control  of  hormonal stress reactivity by the endogenous opioid system. Psychoneuroendocrinology, 33,  425‐436.  Bilkei‐Gorzo, A., Racz,  I.,  Michel, K., Zimmer,  A.  &  Klingmuller,  D. (2004a)  Behavioral  phenotype of  pre‐proenkephalin‐deficient  mice  on  diverse  congenic  backgrounds.  Psychopharmacology,  176, 343‐352.  Bilkei‐Gorzo,  A.,  Racz,  I.,  Michel,  K.,  Zimmer,  A.,  Klingmuller,  D.  &  Zimmer,  A.  (2004b)  Behavioral  phenotype  of  pre‐proenkephalin‐deficient  mice  on  diverse  congenic  backgrounds.  Psychopharmacology, 176, 343‐352.  Broom,  D.C.,  Jutkiewicz,  E.M.,  Folk,  J.E.,  Traynor,  J.R.,  Rice,  K.C.  &  Woods,  J.H.  (2002)  Nonpeptidic  delta‐opioid  receptor  agonists  reduce  immobility  in  the  forced  swim  assay  in  rats.  Neuropsychopharmacology, 26, 744‐755.  Carrasco, G.A. & Van de Kar, L.D. (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol,  463, 235‐272.  Ceccatelli,  S.,  Eriksson,  M.  &  Hokfelt,  T.  (1989)  Distribution  and  coexistence  of  corticotropin‐ releasing  factor‐,  neurotensin‐,  enkephalin‐,  cholecystokinin‐,  galanin‐  and  vasoactive  intestinal polypeptide/peptide histidine isoleucine‐like peptides in the parvocellular part of  the paraventricular nucleus. Neuroendocrinology, 49, 309‐323.  Christiansen,  A.M.,  Herman,  J.P.  &  Ulrich‐Lai,  Y.M.  (2011)  Regulatory  interactions  of  stress  and  reward on rat forebrain opioidergic and GABAergic circuitry. Stress, 14, 205‐215.  Crusio, W.E., Goldowitz, D., Holmes, A. & Wolfer, D. (2009) Standards for the publication of mouse  mutant studies. Genes, brain, and behavior, 8, 1‐4.  Cullinan, W.E., Ziegler, D.R. & Herman, J.P. (2008) Functional role of local GABAergic influences on  the HPA axis. Brain Struct Funct, 213, 63‐72.  Dedovic,  K.,  D'Aguiar,  C.  &  Pruessner,  J.C.  (2009)  What  stress  does  to  your  brain:  a  review  of  neuroimaging studies. Can J Psychiatry, 54, 6‐15. 

This article is protected by copyright. All rights reserved 

Dziedzicka‐Wasylewska, M. & Papp, M. (1996) Effect of chronic mild stress and prolonged treatment  with  imipramine  on  the  levels  of  endogenous  Met‐enkephalin  in  the  rat  dopaminergic  mesolimbic system. Pol J Pharmacol, 48, 53‐56.  Filliol, D., Ghozland, S., Chluba, J., Martin, M., Matthes, H.W., Simonin, F., Befort, K., Gaveriaux‐Ruff,  C., Dierich, A., LeMeur, M., Valverde, O., Maldonado, R. & Kieffer, B.L. (2000) Mice deficient  for delta‐ and mu‐opioid receptors exhibit opposing alterations of emotional responses. Nat  Genet, 25, 195‐200.  Gaillet,  S.,  Lachuer,  J.,  Malaval,  F.,  Assenmacher,  I.  &  Szafarczyk,  A.  (1991)  The  involvement  of  noradrenergic  ascending  pathways  in  the  stress‐induced  activation  of  ACTH  and  corticosterone  secretions  is  dependent  on  the  nature  of  stressors.  Exp  Brain  Res,  87,  173‐ 180.  Herman, J.P., Cullinan,  W.E., Ziegler, D.R.  &  Tasker, J.G. (2002) Role  of the paraventricular  nucleus  microenvironment in stress integration. Eur J Neurosci, 16, 381‐385.  Herman, J.P., Figueiredo, H., Mueller, N.K., Ulrich‐Lai, Y., Ostrander, M.M., Choi, D.C. & Cullinan, W.E.  (2003)  Central  mechanisms  of  stress  integration:  hierarchical  circuitry  controlling  hypothalamo‐pituitary‐adrenocortical responsiveness. Front Neuroendocrinol, 24, 151‐180.  Herman,  J.P.,  Mueller,  N.K.  &  Figueiredo,  H.  (2004)  Role  of  GABA  and  glutamate  circuitry  in  hypothalamo‐pituitary‐adrenocortical stress integration. Ann N Y Acad Sci, 1018, 35‐45.  Hill, M.N., Hellemans, K.G., Verma, P., Gorzalka, B.B. & Weinberg, J. (2012) Neurobiology of chronic  mild stress: parallels to major depression. Neuroscience and biobehavioral reviews, 36, 2085‐ 2117.  Ide,  S.,  Sora,  I.,  Ikeda,  K.,  Minami,  M.,  Uhl,  G.R.  &  Ishihara,  K.  (2010)  Reduced  emotional  and  corticosterone  responses  to  stress  in  mu‐opioid  receptor  knockout  mice.  Neuropharmacology, 58, 241‐247.  Kalyuzhny,  A.E.  &  Wessendorf,  M.W.  (1998)  Relationship  of  mu‐  and  delta‐opioid  receptors  to  GABAergic  neurons  in  the  central  nervous  system,  including  antinociceptive  brainstem  circuits. J Comp Neurol, 392, 528‐547.  Kendler,  K.S.,  Karkowski,  L.M.  &  Prescott,  C.A.  (1999)  Causal  relationship  between  stressful  life  events and the onset of major depression. Am J Psychiatry, 156, 837‐841.  Komatsu, H., Ohara, A., Sasaki, K., Abe, H., Hattori, H., Hall, F.S., Uhl, G.R. & Sora, I. (2011) Decreased  response  to  social  defeat  stress  in  mu‐opioid‐receptor  knockout  mice.  Pharmacology,  biochemistry, and behavior, 99, 676‐682.  Konig,  M.,  Zimmer,  A.M.,  Steiner,  H.,  Holmes,  P.V.,  Crawley,  J.N.,  Brownstein,  M.J.  &  Zimmer,  A.  (1996)  Pain  responses,  anxiety  and  aggression  in  mice  deficient  in  pre‐proenkephalin.  Nature, 383, 535‐538.  Kung,  J.C.,  Chen,  T.C.,  Shyu,  B.C.,  Hsiao,  S.  &  Huang,  A.C.  (2010)  Anxiety‐  and  depressive‐like  responses  and c‐fos  activity in  preproenkephalin knockout  mice: oversensitivity  hypothesis  of enkephalin deficit‐induced posttraumatic stress disorder. J Biomed Sci, 17, 29.  Le Merrer, J., Becker, J.A., Befort, K. & Kieffer, B.L. (2009) Reward processing by the opioid system in  the brain. Physiol Rev, 89, 1379‐1412.  Lightman, S.L. & Conway‐Campbell, B.L. (2010) The crucial role of pulsatile  activity of the HPA axis  for continuous dynamic equilibration. Nature reviews. Neuroscience, 11, 710‐718.  Livak,  K.J.  &  Schmittgen,  T.D.  (2001)  Analysis  of  relative  gene  expression  data  using  real‐time  quantitative PCR and the 2(‐Delta Delta C(T)) Method. Methods, 25, 402‐408.  Locatelli,  V.,  Bresciani,  E.,  Tamiazzo,  L.  &  Torsello,  A.  (2010)  Central  nervous  system‐acting  drugs  influencing hypothalamic‐pituitary‐adrenal axis function. Endocr Dev, 17, 108‐120.  Lucas,  L.R.,  Wang,  C.J.,  McCall,  T.J.  &  McEwen,  B.S.  (2007)  Effects  of  immobilization  stress  on  neurochemical markers in the motivational system of the male rat. Brain Res, 1155, 108‐115.  Mansi,  J.A.,  Laforest,  S.  &  Drolet,  G.  (2000)  Effect  of  stress  exposure  on  the  activation  pattern  of  enkephalin‐containing perikarya in the rat ventral medulla. J Neurochem, 74, 2568‐2575. 

This article is protected by copyright. All rights reserved 

McIlwain, K.L., Merriweather, M.Y., Yuva‐Paylor, L.A. & Paylor, R. (2001) The use of behavioral test  batteries: effects of training history. Physiol Behav, 73, 705‐717.  Miklos, I.H. & Kovacs, K.J. (2002) GABAergic innervation of corticotropin‐releasing hormone (CRH)‐ secreting  parvocellular  neurons  and  its  plasticity  as  demonstrated  by  quantitative  immunoelectron microscopy. Neuroscience, 113, 581‐592.  Millspaugh,  J.J.  &  Washburn,  B.E.  (2004)  Use  of  fecal  glucocorticoid  metabolite  measures  in  conservation  biology  research:  considerations  for  application  and  interpretation.  General  and comparative endocrinology, 138, 189‐199.  Mineur, Y.S., Belzung, C. & Crusio, W.E. (2006) Effects of unpredictable chronic mild stress on anxiety  and depression‐like behavior in mice. Behavioural brain research, 175, 43‐50.  Pacak, K., Palkovits, M., Yadid, G., Kvetnansky, R., Kopin, I.J. & Goldstein, D.S. (1998) Heterogeneous  neurochemical  responses  to  different  stressors:  a test  of Selye's  doctrine of  nonspecificity.  Am J Physiol, 275, R1247‐1255.  Palkovits,  M.  (2000)  Stress‐induced  expression  of  co‐localized  neuropeptides  in  hypothalamic  and  amygdaloid neurons. Eur J Pharmacol, 405, 161‐166.  Poulin,  J.F.,  Castonguay‐Lebel,  Z.,  Laforest,  S.  &  Drolet,  G.  (2008)  Enkephalin  co‐expression  with  classic  neurotransmitters  in  the  amygdaloid  complex  of  the  rat.  J  Comp  Neurol,  506,  943‐ 959.  Poulin,  J.F.,  Chevalier,  B.,  Laforest,  S.  &  Drolet,  G.  (2006)  Enkephalinergic  afferents  of  the  centromedial amygdala in the rat. J Comp Neurol, 496, 859‐876.  Pretel,  S.  &  Piekut,  D.  (1990)  Coexistence  of  corticotropin‐releasing  factor  and  enkephalin  in  the  paraventricular nucleus of the rat. J Comp Neurol, 294, 192‐201.  Ragnauth,  A.,  Schuller,  A.,  Morgan,  M.,  Chan,  J.,  Ogawa,  S.,  Pintar,  J.,  Bodnar,  R.J.  &  Pfaff,  D.W.  (2001)  Female  preproenkephalin‐knockout  mice  display  altered  emotional  responses.  Proc  Natl Acad Sci U S A, 98, 1958‐1963.  Randall‐Thompson, J.F., Pescatore, K.A. & Unterwald, E.M. (2010) A role for delta opioid receptors in  the  central  nucleus  of  the  amygdala  in  anxiety‐like  behaviors.  Psychopharmacology,  212,  585‐595.  Song,  L.,  Che,  W.,  Min‐Wei,  W.,  Murakami,  Y.  &  Matsumoto,  K.  (2006)  Impairment  of  the  spatial  learning  and  memory  induced  by  learned  helplessness  and  chronic  mild  stress.  Pharmacology, biochemistry, and behavior, 83, 186‐193.  Stein,  E.A.,  Hiller,  J.M.  &  Simon,  E.J.  (1992)  Effects  of  stress  on  opioid  receptor  binding  in  the  rat  central nervous system. Neuroscience, 51, 683‐690.  Strohle,  A.  &  Holsboer,  F.  (2003)  Stress  responsive  neurohormones  in  depression  and  anxiety.  Pharmacopsychiatry, 36 Suppl 3, S207‐214.  Tafet,  G.E.  &  Bernardini,  R.  (2003)  Psychoneuroendocrinological  links  between  chronic  stress  and  depression. Prog Neuropsychopharmacol Biol Psychiatry, 27, 893‐903.  Tejedor‐Real,  P.,  Mico,  J.A.,  Maldonado,  R.,  Roques,  B.P.  &  Gibert‐Rahola,  J.  (1995)  Implication  of  endogenous opioid system in the learned helplessness model of depression. Pharmacology,  biochemistry, and behavior, 52, 145‐152.  Tejedor‐Real,  P.,  Mico,  J.A.,  Smadja,  C.,  Maldonado,  R.,  Roques,  B.P.  &  Gilbert‐Rahola,  J.  (1998)  Involvement of delta‐opioid receptors in the effects induced by endogenous enkephalins on  learned helplessness model. Eur J Pharmacol, 354, 1‐7.  Touma, C., Palme, R. & Sachser, N. (2004) Analyzing corticosterone metabolites in fecal samples of  mice: a noninvasive technique to monitor stress hormones. Hormones and behavior, 45, 10‐ 22.  Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A. & Warman, M.L. (2000) Preparation of  PCR‐quality  mouse  genomic  DNA  with  hot  sodium  hydroxide  and  tris  (HotSHOT).  Biotechniques, 29, 52, 54.  Ulrich‐Lai,  Y.M.  &  Herman,  J.P.  (2009)  Neural  regulation  of  endocrine  and  autonomic  stress  responses. Nature reviews. Neuroscience, 10, 397‐409. 

This article is protected by copyright. All rights reserved 

Voikar,  V.,  Polus,  A.,  Vasar,  E.  &  Rauvala,  H.  (2005)  Long‐term  individual  housing  in  C57BL/6J  and  DBA/2  mice:  assessment  of  behavioral  consequences.  Genes,  brain,  and  behavior,  4,  240‐ 252.  Voikar,  V.,  Vasar,  E.  &  Rauvala,  H.  (2004)  Behavioral  alterations  induced  by  repeated  testing  in  C57BL/6J  and  129S2/Sv  mice:  implications  for  phenotyping  screens.  Genes,  brain,  and  behavior, 3, 27‐38.  Walker,  J.J.,  Terry,  J.R.  &  Lightman,  S.L.  (2010)  Origin  of  ultradian  pulsatility  in  the  hypothalamic‐ pituitary‐adrenal axis. Proceedings. Biological sciences / The Royal Society, 277, 1627‐1633.  Wamsteeker Cusulin, J.I., Fuzesi, T., Inoue, W. & Bains, J.S. (2013) Glucocorticoid feedback uncovers  retrograde opioid signaling at hypothalamic synapses. Nat Neurosci, 16, 596‐604.  Willner, P. (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10‐ year review and evaluation. Psychopharmacology, 134, 319‐329.  Willner,  P.  (2005)  Chronic mild  stress  (CMS) revisited:  consistency and behavioural‐neurobiological  concordance in the effects of CMS. Neuropsychobiology, 52, 90‐110.  Yamada, K. & Nabeshima, T. (1995) Stress‐induced behavioral responses and multiple opioid systems  in the brain. Behavioural brain research, 67, 133‐145.  Zhu, W. & Pan, Z.Z. (2005) Mu‐opioid‐mediated inhibition of glutamate synaptic transmission in rat  central amygdala neurons. Neuroscience, 133, 97‐103.   

This article is protected by copyright. All rights reserved 

Enkephalin knockout male mice are resistant to chronic mild stress.

Enhanced stress reactivity or sensitivity to chronic stress increases the susceptibility to mood pathologies such as major depression. The opioid pept...
456KB Sizes 2 Downloads 4 Views