Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 DOI: 10.1159/000438516 © 2015 The Author(s) online:October October 2015 www.karger.com/cpb Published online: 29,29, 2015 Published by S. Karger AG, Basel and Biochemistry Published 1421-9778/15/0374-1474$39.50/0

1474

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective Accepted: September 09, 2015

www.karger.com/cpb

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution IRUFRPPHUFLDOSXUSRVHVDVZHOODVDQ\GLVWULEXWLRQRIPRGLÀHGPDWHULDOUHTXLUHVZULWWHQSHUPLVVLRQ

Original Paper

Endothelin-1 Overexpression Improves Renal Function in eNOS Knockout Mice Oleg Tsuprykova,b Lyubov Chaykovskac Axel Kretschmerd Johannes-Peter Staschd,e Thiemo Pfabb,j Katharina Krause-Rellea,b Christoph Reichetzedera,b Philipp Kalkf Jerzy Adamskig,h,i Berthold Hochera,k Institute for Nutritional Science, University of Potsdam, Potsdam, bCenter for Cardiovascular Research, Charité, Berlin, Germany; cClinic for Cardiovascular Surgery, University Hospital of Zürich, Zürich, Switzerland; dBayer HealthCare AG, Wuppertal, eInstitute of Pharmacy, University of Halle-Wittenberg, Halle (Saale), fDepartment of Nephrology, Campus Benjamin Franklin, Charité, Berlin, gHelmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, hChair of Experimental Genetics, Technische Universität München, Munich, iGerman Center for Diabetes Research, Neuherberg, jDiaverum, Potsdam, kIFLb Laboratoriumsmedizin Berlin GmbH, Berlin, Germany

a

Key Words Chronic kidney disease • Endothelial nitric oxide synthase • Endothelin • Mice • Nitric oxide Abstract Background/Aims: To investigate the renal phenotype under conditions of an activated UHQDO(7V\VWHPLQWKHVWDWXVRIQLWULFR[LGHGHÀFLHQF\ZHFRPSDUHGNLGQH\IXQFWLRQDQG morphology in wild-type, ET-1 transgenic (ET+/+), endothelial nitric oxide synthase knockout (eNOS-/-) and ET+/+eNOS-/- mice. Methods: We assessed blood pressure, parameters of renal morphology, plasma cystatin C, urinary protein excretion, expression of genes DVVRFLDWHGZLWKJORPHUXODUÀOWUDWLRQEDUULHUDQGWLVVXHUHPRGHOLQJDQGSODVPDPHWDEROLWHV using metabolomics. Results: eNOS-/- and ET+/+eNOS-/- mice developed hypertension. Osteopontin, albumin and protein excretion were increased in eNOS-/- and restored in (7H126 DQLPDOV $OO JHQHWLFDOO\ PRGLÀHG PLFH GHYHORSHG UHQDO LQWHUVWLWLDO ÀEURVLV and glomerulosclerosis. Genes involved in tissue remodeling (serpine1, TIMP1, Col1a1, CCL2) were up-regulated in eNOS-/-, but not in ET+/+eNOS-/- mice. Plasma levels of free carnitine and acylcarnitines, amino acids, diacyl phosphatidylcholines, lysophosphatidylcholines and hexoses were descreased in eNOS-/- and were in the normal range in ET+/+eNOS-/- mice. Conclusion: eNOS-/- mice developed renal dysfunction, which was partially rescued by ET-1 overexpression in eNOS-/- mice. The metabolomics results suggest that ET-1 overexpression on top of eNOS knockout is associated with a functional recovery of mitochondria (rescue HIIHFWLQDŽR[LGDWLRQRIIDWW\DFLGV DQGDQLQFUHDVHLQDQWLR[LGDWLYHSURSHUWLHV QRUPDOL]DWLRQ of monounsaturated fatty acids levels). © 2015 The Author(s) Published by S. Karger AG, Basel

Institute of Nutritional Science, University of Potsdam 14558 Nuthetal, Potsdam, (Germany) Tel. +49 33200/88-5508, Fax +49 33200/88-5541, E-Mail [email protected] Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Prof. Berthold Hocher

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1475

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

Introduction

Endothelin-1 (ET-1) and nitric oxide (NO) closely interact in a manner of a local network, i.e. ET-1 stimulates NO production, NO in turn inhibits ET-1 expression proportionally in different cell-types [1]. An in vivo example of interaction between ET-1 and NO production was demonstrated in transgenic mice overexpressing ET-1 (ET+/+), which have a normal blood pressure. The vasoconstrictory effects of ET-1 were antagonized by an increased production of NO, the endothelial counterpart of ET-1 in animals overexpressing ET-1 [2]. An excessive renal production of ET-1 is often observed in patients with chronic kidney disease (CKD) of diabetic and non-diabetic origin [3]. In contrast, in CKD the overall NO availability is decreased, in part due to endothelial dysfunction [4]. To date, the only known agents to block the activity of ET-1, which have been approved for clinical use, are ET receptor antagonists [5], although they have not so far been validated for a therapeutic use in CKD due to adverse effects such as water and salt retention [3, 6]. We have previously generated crossbred animals of ET transgenic mice (ET+/+) and endothelial nitric oxide synthase knockout (eNOS-/-) mice to investigate the role of ET-1 overproduction in endothelial function and blood pressure in the conditions of NO †‡ϐ‹…‹‡…›ȏ͹ȐǤ ƒ‘–Š‡”•–—†›’‡”ˆ‘”‡†„›‘—”‰”‘—’ǡ™‡†‡‘•–”ƒ–‡†–Šƒ–„‘–Š‡Ǧ /- and ET+/+eNOS-/- mice developed high blood pressure in contrast to wild-type (WT) and ET+/+ mice, which remained normotensive [8]. Interestingly, left ventricular catheterization showed that only eNOS-/- mice, but not ET+/+eNOS-/- developed diastolic dysfunction [8]. The aim of the present work was to investigate renal phenotypic consequences and mechanisms of ET/eNOS interaction using crossbred ET+/+eNOS-/- mice. Materials and Methods Mouse model Human ET-1 transgenic mice (line 856) [9] and eNOS-/- mice [10] were generated as described previously. Only homozygous mice were used for breeding. We ensured the steadiness of the genotype over the generations. Crossbred mice were created by breeding female eNOS-/- mice with male ET+/+. Study groups were composed as follows: WT, ET+/+, eNOS-/-, and ET+/+eNOS-/- mice. The number of animals ’‡”‰”‘—’™ƒ•ͳͶǤŽ›ƒŽ‡‹…‡™‡”‡—•‡†‹–Š‡•–—†›ǤŽŽ‹…‡™‡”‡•ƒ…”‹ϐ‹…‡†ƒ––Š‡ƒ‰‡‘ˆͻ‘–Š•Ǥ The protocol was approved by the Committee on the Ethics of Animal Experiments of the city of Berlin, Germany. Blood pressure ›•–‘Ž‹…„Ž‘‘†’”‡••—”‡ȋȌ™ƒ•‡ƒ•—”‡†„›–Š‡–ƒ‹Ž…—ˆˆ‡–Š‘†ȏ͹Ȑƒ––™‘–‹‡’‘‹–•ȋ͵ƒ†ͻ months). Histological studies Š‡ ’ƒ”ƒ‡–‡”• ‘ˆ ”‡ƒŽ ‘”’Š‘Ž‘‰› ™‡”‡ ‡ƒ•—”‡† ƒ• ’”‡˜‹‘—•Ž› †‡•…”‹„‡† ȏͻǡ ͳͳȐǤ ”‹‡ϐŽ›ǡ ‹–‡”•–‹–‹ƒŽϐ‹„”‘•‹•™ƒ•‡˜ƒŽ—ƒ–‡†‹‹”‹—•‡†•–ƒ‹‡†‹†‡›•‡…–‹‘•Ǥ”ƒ–‹‘‘ˆ‹”‹—•‡†Ǧ•–ƒ‹‡†ƒ”‡ƒ to the total area of the picture was analyzed using the program ImageJ (shareware by National Institutes ‘ˆ ‡ƒŽ–Šǡ‡–Š‡•†ƒǡǡȌǤŠ‡‡š–‡–‘ˆ‰Ž‘‡”—Ž‘•…Ž‡”‘•‹•™ƒ•“—ƒ–‹ϐ‹‡†ƒ•’‡”…‡–ƒ‰‡‘ˆ’‡”‹‘†‹… acid-Schiff positive area within the glomerulus by a semi-quantitative score system using a score of 1-4 by two investigators who were blinded to the study groups. Scores 1, 2, 3, and 4 represented mesangial matrix ‡š’ƒ•‹‘‹˜‘Ž˜‹‰ͲǦʹͷΨǡʹͷǦͷͲΨǡͷͲǦ͹ͷΨǡƒ†͹ͷǦͳͲͲΨ‘ˆ–Š‡‰Ž‘‡”—Žƒ”–—ˆ–ƒ”‡ƒǡ”‡•’‡…–‹˜‡Ž›Ǥ

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Plasma and urinary analyses Urinary concentrations of albumin, H-FABP, and osteopontin were determined in urine samples collected in a six hours time period in metabolic cages. ELISA assays were conducted to determine the levels of albumin (CellTrend GmbH kit. no. 50200, Luckenwalde, Germany), H-FABP (Hycult Biotech, kit no. HK403, †‡Š‡‡–Š‡”Žƒ†•Ȍǡ‘•–‡‘’‘–‹ȋƬ›•–‡•ǡ‹–‘ǤͲͲǡ‹‡•„ƒ†‡ǡ ‡”ƒ›Ȍƒ……‘”†‹‰–‘–Š‡

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1476

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

protocols provided by the suppliers of the assays. Optical density of the samples was measured at 450 nm —•‹‰ƒƒ—–‘ƒ–‹… ”‡ƒ†‡”ȋ‡…ƒ ϐ‹‹–‡ʹͲͲǡ‡…ƒ ”‘—’–†Ǥ¡‡†‘”ˆǡ™‹–œ‡”Žƒ†ȌǤ”‹ƒ”› creatinine, albumin, and protein were quantitatively determined in the samples using a Cobas Integra 400 Ž—•ƒƒŽ›œ‡”ȋ‘…Š‡‹ƒ‰‘•–‹…•‡—–•…ŠŽƒ† „ ǡƒŠ‡‹ǡ ‡”ƒ›Ȍƒ……‘”†‹‰–‘–Š‡ƒ—ƒŽ‘ˆ–Š‡ ƒ—ˆƒ…–—”‡”ǤŽƒ•ƒ…›•–ƒ–‹™ƒ•‡ƒ•—”‡†—•‹‰‘—•‡Ȁ”ƒ–…›•–ƒ–‹—ƒ–‹‹‡ ‹–ˆ”‘Ƭ Systems Inc. (Minneapolis, MN, USA) according to manufacturer’s guidelines with readout performed with ƒ‡…ƒ ϐ‹‹–‡ʹͲͲ ‡ƒ†‡”ȋ”ƒ‹Ž•Š‡‹ǡ ‡”ƒ›ȌǤ Western blotting ‡•–‡”„Ž‘––‹‰™ƒ•’‡”ˆ‘”‡†ƒ•’”‡˜‹‘—•Ž›†‡•…”‹„‡†ȏ͹Ȑ. ”‹‡ϐŽ›ǡ™Š‘Ž‡‹†‡›’”‘–‡‹‡š–”ƒ…–•™‡”‡ separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a nitrocellulose membrane (AmershamTM HybondTM ECL, GE Healthcare, Milwaukee, USA) in transfer buffer (184 mM Glycin, 24 mM Tris, 20% methanol) at 110 V for 2.5 hours. Membranes were blocked in 5% non-fat milk TBS-T for ͳŠ‘—”ƒ–”‘‘–‡’‡”ƒ–—”‡Ǥ”‹ƒ”›ƒ–‹„‘†‹‡•ƒ‰ƒ‹•–Ǧͳ–›’‡”‡…‡’–‘”ȋǡ•…Ǧ͵͵ͷ͵͸ȌǡǦͳ–›’‡ ”‡…‡’–‘”ȋǡ•…Ǧ͵͵ͷ͵ͺǡ„‘–Šˆ”‘ƒ–ƒ”—œ‹‘–‡…Š‘Ž‘‰›ǡƒ–ƒ”—œǡǡȌǡ‡ȋǦʹͳͲǦͷͲͻȌǡ ‹†—…‹„Ž‡ȋ‹ǡǦʹͳͲǦͷͳͷǡ„‘–Šˆ”‘Ž‡š‹•‹‘…Š‡‹…ƒŽ•ǡƒ‹‡‰‘ǡǡȌǡƒ…–‹ȋͷͲ͸Ͳǡ‹‰ƒǦ Aldrich, Steinheim, Germany) were used. ‡Žƒ–‹˜‡“—ƒ–‹ϔ‹…ƒ–‹‘‘ˆ„›Ǧ ‘–ƒŽ™ƒ•‡š–”ƒ…–‡†ˆ”‘™Š‘Ž‡‹†‡›•ƒ’Ž‡•—•‹‰‡ƒ•›ϐ‹„”‘—•–‹••—‡‹–ȋ‹ƒ‰‡ǡ ‹Ž†‡ǡ Germany) and checked for integrity on a Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). For ”‡˜‡”•‡–”ƒ•…”‹’–‹‘ǡͳɊ‰‘ˆ–‘–ƒŽ™ƒ•ϐ‹”•–†‹‰‡•–‡†™‹–Šƒ•‡Ǧˆ”‡‡ƒ•‡ ȋ ‹„…‘ǡ ˜‹–”‘‰‡‘”’Ǥ Carlsbad, CA, USA) for 15 minutes at room temperature and then reverse-transcribed with the use of ImProm ‡˜‡”•‡”ƒ•…”‹’–‹‘›•–‡ȋ”‘‡‰ƒ‘”’Ǥ ‹–…Š„—”‰ǡ ǡȌ‹ƒ–‘–ƒŽ”‡ƒ…–‹‘˜‘Ž—‡‘ˆͶͲɊ ƒ……‘”†‹‰–‘–Š‡•–ƒ†ƒ”†’”‘–‘…‘Ž‘ˆ–Š‡‹–•—’’Ž‹‡”Ǥ‡ƒŽǦ–‹‡’‘Ž›‡”ƒ•‡…Šƒ‹”‡ƒ…–‹‘™ƒ•’‡”ˆ‘”‡† „› ”‹•‡“—‡…‡‡–‡…–‹‘›•–‡ȋ’’Ž‹‡†‹‘•›•–‡• ”‹•͹͹ͲͲ‡“—‡…‡‡–‡…–‘”ȌǤ… •ƒ’Ž‡• ™‡”‡ ƒ’Ž‹ϐ‹‡† ™‹–Š ƒ  ‹š …‘–ƒ‹‹‰ ƒ“ ’‘Ž›‡”ƒ•‡ ȋ“ ƒ•–‡”‹š Ž—•ǡ —”‘‰‡–‡…ǡ ‹‡‰‡ǡ‡Ž‰‹—Ȍƒ†’”‹‡”•‡–•ȋƒ„Ž‡ͳȌ™‹–Š͸Ǧ ƒ†Žƒ„‡Ž‡†’”‘„‡•ȋ‹‰ƒ ‡‘•›•Ȍ‹͵ͺͶǦ well microtiter plates. cDNA samples (20 ng) were run in triplicates in reaction volumes of 20 μl (384-well microtiter plates) under standard thermocycler conditions. TaqMan probe sets were generated by using Primer3Plus (Š––’ǣȀȀ™™™Ǥ„‹‘‹ˆ‘”ƒ–‹…•ǤŽȀ…‰‹Ǧ„‹Ȁ’”‹‡”͹’Ž—•Ȁ’”‹‡”͹’Ž—•ȌǤ ‡Žƒ–‹˜‡ ‰‡‡ ‡š’”‡••‹‘ was calculated using the ddCt term (Applied Biosystems, User Bulletin No. 2) related to endogenous controls ”‹„‘•‘ƒŽ’”‘–‡‹͵ʹƒ†ȾǦƒ…–‹Ǥ‡ƒŽ‹‡’”‹‡”•™‡”‡†‡†—…‡†ˆ”‘”‡ˆ‡”‡…‡‰‡‡•‡“—‡…‡•‘ˆ the following NCBI GenBank accession numbers (Table 1).

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

ƒ”‰‡–‡†‡–ƒ„‘Ž‘‹…‡ƒ•—”‡‡–• ‡–ƒ„‘Ž‹–‡• ™‡”‡ •‹—Ž–ƒ‡‘—•Ž› “—ƒ–‹ϐ‹‡† ‹ ’Žƒ•ƒ •ƒ’Ž‡• —•‹‰ –Š‡ „•‘Ž—–‡IDQTM p150 kit ȋ ‹ˆ‡…‹‡…‡ ǡ •„”—…ǡ—•–”‹ƒȌǤŠ‡•‡‡ƒ•—”‡‡–•ƒ”‡„ƒ•‡†‘ ǦȀȋ ǣϐŽ‘™ injection analysis) [12, 13]. The assay includes free carnitine, 40 acylcarnitines (Cx:y), 14 amino acids (13 proteinogenic + ornithine), hexoses (sum of hexoses – about 90-95 % glucose), 92 glycerophospholipids ȋͳͷŽ›•‘’Š‘•’Šƒ–‹†›Ž…Š‘Ž‹‡•ȋŽ›•‘Ȍƒ†͹͹’Š‘•’Šƒ–‹†›Ž…Š‘Ž‹‡•ȋȌȌǡƒ†ͳͷ•’Š‹‰‘Ž‹’‹†•ȋšǣ›ȌǤ The abbreviations Cx:y are used to describe the total number of carbons and double bonds of all chains, respectively [13]. Mass spectrometric (MS) analyses were done on a API 4000 system (AB Sciex Deutschland GmbH, Darmstadt, Germany) equipped with a 1200 Series HPLC (Agilent Technologies Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto sampler (CTC Analytics, Zwingen, Switzerland) controlled by the ƒŽ›•–•‘ˆ–™ƒ”‡˜‡”•‹‘ͳǤͶǤͳȋ’’Ž‹‡†‹‘•›•–‡•ǡ ‘•–‡”‹–›ǡǡȌǤƒ–ƒ‡˜ƒŽ—ƒ–‹‘ˆ‘”“—ƒ–‹ϐ‹…ƒ–‹‘ of metabolite concentrations as well as quality assessment was performed with the MetIQ™ software, which is an integral part of the AbsoluteIDQ™ kit (both from Biocrates Life Sciences AG, Innsbruck, Austria). The AbsoluteIDQTM p150 kit has been proven to be in conformance with FDA-Guidline "Guidance for Industry - Bioanalytical Method Validation” (May 2001) [14], which implies proof of reproducibility within a given error range. The metabolite panel covered by targeted metabolomics approach has been succesfully used to evaluate mechanistic background of phenotypes observed in human [15] and mouse ȏͳ͸ȐǤ‡–ƒ„‘Ž‘‹…•Šƒ•„‡‡‹•–”—‡–ƒŽ‹ƒƒŽ›•‹‰‹†‡›†‹•ˆ—…–‹‘ȏͳ͹ȂͳͻȐǤ

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1477

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

Table 1.‡ƒŽ‹‡’”‹‡”•

Statistical analysis All data are expressed as means ± SEM. Statistical analyses were performed using GraphPad Prism 5 software (La Jolla, CA, USA). For comparison of two parametrically distributed groups of data unpaired t-test with equal or unequal variance (Welch’s correction) was applied. For nonparametrically distributed ‰”‘—’• ‘ˆ †ƒ–ƒ –Š‡ ƒǦŠ‹–‡› Ǧ–‡•– ™ƒ• —•‡†Ǥ ‹ˆˆ‡”‡…‡• ™‡”‡ …‘•‹†‡”‡† •–ƒ–‹•–‹…ƒŽŽ› •‹‰‹ϐ‹…ƒ– when P < 0.05.

Results

Systolic blood pressure ™ƒ••‹‰‹ϐ‹…ƒ–Ž›‡Ž‡˜ƒ–‡†‹‡ǦȀǦȋͳ͵͹Ǥ͸ά͵Ǥ͸ ‰ǢP < 0.001 versus WT) ƒ†‹ΪȀΪ‡ǦȀǦȋͳʹͻǤͳάͷǤͲ ‰ǢP < 0.05 versus WT) compared to WT (111.9 ± 4.2  ‰Ȍƒ†ΪȀΪ‰”‘—’•ȋͳͲͻǤ͹ά͹Ǥͷ ‰Ȍ‹ͻ‘–Š‘Ž†‹…‡ǤŠ‡ƒˆ‘”‡‡–‹‘‡† tendencies were revealed starting as early as 3 months of age (Table 2). SBP in eNOS-/‰”‘—’™ƒ•‘–•‹‰‹ϐ‹…ƒ–Ž›†‹ˆˆ‡”‡–ˆ”‘–Šƒ–‹ΪȀΪ‡ǦȀǦ‹…‡Ǥ

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

‡ƒŽˆ—…–‹‘ Plasma cystatin C was elevated in both groups with eNOS genetic ablation (P < 0.05 versus WT), but not in ET+/+ mice (Fig. 1a). In contrast, albuminuria and proteinuria were „‘–Š•‹‰‹ϐ‹…ƒ–Ž›ȋP < 0.01 versus WT) increased only in eNOS-/- compared to WT (15.0ƒ†͵ǤͳǦˆ‘Ž†‹…”‡ƒ•‡˜‡”•—•”‡•’‡…–‹˜‡Ž›ǡ ‹‰Ǥͳ„Ǧ…Ȍǡ™Š‹Ž‡–Š‡‘–Š‡”‰‡‡–‹…ƒŽŽ›‘†‹ϐ‹‡† ‰”‘—’• †‹† ‘– •Š‘™ •‹‰‹ϐ‹…ƒ– †‹ˆˆ‡”‡…‡• ‹ ƒŽ„—‹—”‹ƒ ƒ† ’”‘–‡‹—”‹ƒ Ž‡˜‡Ž• ˜‡”•—• control. Interestingly, in crossbred mice both albuminuria and proteinuria levels were observed to be diminished compared to eNOS-/- (P < 0.01 versus eNOS-/-).

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1478

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

Table 2. Systolic Blood Pressure. Systolic blood pressure in 3 and 9 months old mice, mm Hg. Values are given as mean ± SEM. * P δͲǤͲͷǢȗȗP δͲǤͲͳǢȗȗȗP < 0.001 vs WT

Fig. 1. Plasma cystatin C levels (a), urinary albumin (b) and protein (c) daily excretion. Values are given as mean ± SEM. * P < 0.05, ** P < 0.01. Fig. 2. Values are given as mean ± SEM. * P δ ͲǤͲͷǢ ȗȗ P δ ͲǤͲͳǢ *** P < 0.001.

Urine biomarkers Urinary excretion of osteopontin was 3.4-fold increased in eNOS-/- mice versus WT (P < 0.01) and restored in crossbred mice versus eNOS-/- (P < 0.001, Fig. 2a). Urinary excretion of heart muscle-type fatty acid binding protein (H-FABP, measured in ng/24h) was ͸Ǥ͸ͻΪȀǦͳǤͺͷ‹Ǣ͵Ǥ͵͸ΪȀǦͳǤ͸Ͷ‹ΪȀΪǢͳͶǤͻͻΪȀǦ͵Ǥͻͳ‹‡ǦȀǦǢƒ†͹ǤͻͳΪȀǦͳǤͷ͸‹ ΪȀΪ‡ǦȀǦǤŠ‡”‡™‡”‡‘•‹‰‹ϐ‹…ƒ–†‹ˆˆ‡”‡…‡•‹ Ǧ —”‹ƒ”›‡š…”‡–‹‘„‡–™‡‡ the genotypes (Fig. 2b).

‡ƒŽ’”‘ϔ‹Ž‡‘ˆǦƒ†Ǧƒ••‘…‹ƒ–‡†’”‘–‡‹• The eNOS protein expression was increased in the ET+/+ group (P < 0.01 versus WT). ǡǡƒ†‹•Š‘™‡†‘•‹‰‹ϐ‹…ƒ–†‹ˆˆ‡”‡…‡•„‡–™‡‡–Š‡•–—†›‰”‘—’•ƒ••Š‘™ in Table 4.

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Kidney morphology Š‡ ƒ„•‘Ž—–‡ ƒ† ”‡Žƒ–‹˜‡ ‹†‡› ™‡‹‰Š– ™ƒ• •‹‰‹ϐ‹…ƒ–Ž› Š‹‰Š‡” ‹ ΪȀΪ ƒ† ET+/+eNOS-/- versus WT, whereas in the eNOS-/- group it was lower compared to all other groups (Table 3). ET+/+, eNOS-/- and ET+/+eNOS-/- mice all developed glomerulosclerosis, as assessed by increased deposits of periodic acid Schiff (PAS) positive material within the ‰Ž‘‡”—Ž‹ƒ†‹–‡”•–‹–‹ƒŽϐ‹„”‘•‹•ǡƒ•‡˜‹†‡…‡†„›ƒ‹…”‡ƒ•‡†’‡”…‡–ƒ‰‡‘ˆϐ‹„”‘–‹…ƒ”‡ƒ …‘’ƒ”‡†–‘ȋƒ„Ž‡͵ȌǤ‡”‹˜ƒ•…—Žƒ”ϐ‹„”‘•‹•ǡ‡†‹ƒǦ–‘ǦŽ—‡”ƒ–‹‘ȋƒ„Ž‡͵Ȍǡ‰Ž‘‡”—Ž‹ •‹œ‡ ƒ† —„‡” ȋ†ƒ–ƒ ‘– •Š‘™Ȍ ”‡˜‡ƒŽ‡† ‘ •‹‰‹ϐ‹…ƒ– †‹ˆˆ‡”‡…‡• „‡–™‡‡ –Š‡ •–—†› groups.

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1479

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

Table 3. ‡ƒŽ‘”’Š‘Ž‘‰›ǤŠ‡’ƒ”ƒ‡–‡”•‘ˆ”‡ƒŽ‘”’Š‘Ž‘‰›‹ͻ‘–Š•‘Ž†‹…‡ǤƒŽ—‡•ƒ”‡‰‹˜‡ƒ• mean ± SEM. * P δͲǤͲͷǢȗȗȗδͲǤͲͲͳ˜•ǢȚȚȚ P < 0.001 vs eNOS-/-

Table 4. ‡ƒŽ ”‘ϐ‹Ž‡ ‘ˆ †‘–Š‡Ž‹Ǧͳ ƒ† ‹–”‹… š‹†‡ ›–Šƒ•‡Ǧ ••‘…‹ƒ–‡† ”‘–‡‹•Ǥ‡Žƒ–‹˜‡”‡ƒŽ’”‘–‡‹‡š’”‡••‹‘‘ˆ‡†‘–Š‡Ž‹”‡…‡’–‘”–›’‡ȋǦȌǡ‡†‘thelin receptor type B (ET-B), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) in 9 months old mice. Values are given as mean ± SEM. ** P < 0.01 vs WT

Plasma metabolites Free carnitine and acyl carnitines (Fig. 5), diacyl phosphatidylcholines (PCaa), Ž›•‘’Š‘•’Šƒ–‹†›Ž…Š‘Ž‹‡•ȋ•Ȍȋ ‹‰Ǥ͸Ȍǡ‘•–ƒ‹‘ƒ…‹†•ȋ ‹‰Ǥ͹Ȍǡƒ†Š‡š‘•‡•ȋ ‹‰ǤͺƒȌ exhibited a similar pattern, in which the metabolites in eNOS-/- or transgenic ET+/+ were lower in concentration, whereas these metabolites of crossbred (ET+/+eNOS-/-) animals were comparable in concentration to those found in WT animals. We did not observe changes in the activity of mitochondrial carnitine palmitoyl transferase I in any of the transgenic models, as depicted by a stable CPT-I ratio (calculated from octadecanoylcarnitine + hexadecanoylcarnitine/carnitine free (C18+C16)/C0). The oxidative degradation of even-

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Ž‘‡”—Žƒ”ϔ‹Ž–”ƒ–‹‘„ƒ””‹‡”Ǧƒ••‘…‹ƒ–‡†‰‡‡‡š’”‡••‹‘ Podocyte-associated genes (podocalyxin-like protein 1, nephrin and integrin alpha 3 subunit) showed only minor regulation patterns (Fig. 3a-c). In contrast, glomerular basement membrane (GBM) – associated genes were differently regulated. In ET+/+ and eNOS-/- mice a down-regulation of collagen IV gene expression was observed, whereas the gene encoding one of the laminin subunits (Lamc1) was up-regulated. Lamb2, a gene responsible for the synthesis of another laminin subunit, showed a trend (P = 0.056 versus WT) towards up-regulation in eNOS-/- mice. Crossbred animals showed only a minor regulation of GBM associated genes (Fig. 3d-f). Endothelial cells-associated genes CD34 and ͵ͳ™‡”‡•‹‰‹ϐ‹…ƒ–Ž›†‘™Ǧ”‡‰—Žƒ–‡†‹ΪȀΪ‡ǦȀǦ‹…‡˜‡”•—•ƒ†‡ǦȀǦȋ ‹‰Ǥ ͵‰ǦŠȌǤ‹••—‡”‡‘†‡Ž‹‰ƒ••‘…‹ƒ–‡†‰‡‡•ȋ‡”’‹‡ͳǡ ͳƒ†ʹȌ™‡”‡•‹‰‹ϐ‹…ƒ–Ž› up-regulated in eNOS-/- animals compared to WT. Col1a1 gene showed a trend towards up”‡‰—Žƒ–‹‘ȋαͲǤͲ͹͹Ȍ‹‡ǦȀǦ‹…‡…‘’ƒ”‡†–‘ǤŠ‡–‰ˆ‰‡‡™ƒ•‘–”‡‰—Žƒ–‡† ȋ ‹‰ǤͶƒǦ‡ȌǤ‡š’”‡••‹‘Ž‡˜‡Ž•‘ˆ‡”’‹‡ͳǡ ͳǡʹƒ†‘Žͳƒͳ™‡”‡‹’”‘˜‡† in the ET+/+eNOS-/- mice. Interleukin 18 gene expression was up-regulated in ET+/+ mice versus all other groups (Fig. 4f). The angiotensin I-converting enzyme 2 (ACE2) gene was down-regulated in eNOS-/- animals compared to all other groups (Fig. 4g).

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1480

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

numbered fatty acids in mitochondria (characterized by carnitine free/acetylcarnitine (C2/ C0) ratio) compared to the overall activity of ß-oxidation (measured by acetylcarnitine + propionylcarnitine/carnitine free (C2+C3)/C0) ratio) revealed the aforementioned pattern ȋ ‹‰Ǥ ͷ„Ǧ†ȌǤ ‡”‡‹ǡ ™‡ ’”‡•‡– •‡Ž‡…–‡† ‘Ž‡…—Ž‡• ȋ”ƒ‡† „› •–ƒ–‹•–‹…ƒŽ •‹‰‹ϐ‹…ƒ…‡Ȍǡ representative of each metabolite class. Desaturation of fatty acid chains in the PC(aa) or acyl carnitines abrogated the †‹ˆˆ‡”‡…‡•‘„•‡”˜‡†„‡–™‡‡ǡ‡ǦȀǦƒ†ΪȀΪȋ ‹‰Ǥͷ‡ǦŠǢ ‹‰Ǥ͸ƒǦ…ȌǤ•ǡ”‡‰ƒ”†Ž‡•• of their saturation level, revealed differences between WT, eNOS-/- and ET+/+ (Fig. 6d-f).

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Fig. 3. ‡Žƒ–‹˜‡‡š’”‡••‹‘‘ˆ’‘†‘…›–‡Ǧȋ’‘†‘…ƒŽ›š‹ǦŽ‹‡’”‘–‡‹ͳȋƒȌǡ‡’Š”‹ȋ„Ȍǡ‹–‡‰”‹ƒŽ’Šƒ͵•—„unit (c)), glomerular basement membrane- (collagen IV alpha 1 (d), laminin beta 2 (e), laminin gamma 1 (f)) and endothelial cells- associated genes (cluster of differentiation 34 (g) and cluster of differentiation 31 (h)) in whole kidney. Values are given as mean ± SEM. * P δͲǤͲͷǢȗȗP δͲǤͲͳǢȗȗȗP < 0.001.

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1481

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

Fig. 4. ‡Žƒ–‹˜‡‡š’”‡••‹‘‘ˆ‰‡‡•‹˜‘Ž˜‡†‹–‹••—‡”‡‘†‡Ž‹‰’”‘…‡••‡•‹™Š‘Ž‡‹†‡›Ǥ‡”’‹‡ͳȀ plasminogen activator inhibitor-1 (a), tissue inhibitor of metalloproteinase 1 (TIMP-1) (b), collagen type I alpha 1 (c), connective tissue growth factor (d), chemokine (C-C motif) ligand 2 / monocyte chemoattractant protein-1 (e), interleukin 18 (f), angiotensin I-converting enzyme 2 (ACE2) (g). Values are given as mean ± SEM. * P δͲǤͲͷǢȗȗP δͲǤͲͳǢȗȗȗP < 0.001.

Total alkyl-alkyl phosphatidylcholines PCaa showed a rescue effect but total acyl-alkylphosphatidylcholines (PCae) did not (Fig. 6g-i).

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Fig. 5. Plasma levels of free carnitine (a), acetylcarnitine (b), carnitine free/acetylcarnitine ratio (c), acetylcarnitine + propionylcarnitine/carnitine free ratio (d), dodecenoyl-L-carnitines C12 and C12:1 (e and f), tiglyl-L-carnitine (g), glutaconyl-L-carnitine (h). Values are given as mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001.

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1482

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

Fig. 6. Plasma levels of phosphatidylcholine diacyls C30:0 (a) and C30:2 (b), mono-unsaturated glycerophosphocholines (c), lysophosphatidylcholine acyls C18:0 (d), C18:1 (e) and C18:2 (f), total lysophosphatidylcholines (g), total diacyl-containing phosphatidylcholines (h) and total acyl-alkyl- containing phosphatidylcholines (i). Values are given as mean ± SEM. * P < 0.05, ** P < 0.01.

We compared kidney function and morphology in wild-type mice, ET-1 transgenic (ET+/+) mice, endothelial nitric oxide synthase knockout (eNOS-/-) mice, and ET+/+eNOS-/crossbred mice to investigate the renal phenotype under conditions of an activated renal Ǧͳ •›•–‡ ‹ ƒ •–ƒ–—• ‘ˆ  †‡ϐ‹…‹‡…›Ǥ —” •–—†› †‡‘•–”ƒ–‡• –Šƒ– ‰‡‡–‹… †‡ϐ‹…‹‡…› of eNOS leads to the development of proteinuria, which is improved by overexpression of Ǧͳȋ ‹‰ǤͳȌǤƒŽ›•‹•‘ˆ‰‡‡•‹˜‘Ž˜‡†‹–Š‡‰Ž‘‡”—Žƒ”ϐ‹Ž–”ƒ–‹‘„ƒ””‹‡”ȋ ‹‰Ǥ͵Ȍ‹†‹…ƒ–‡† that the restoration of the markedly increased protein/albumin excretion in eNOS knockout mice might be due to a normalization of gene expression involved in glomerular basement

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Discussion

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1483

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

Fig. 7. Plasma levels of arginine (a), histidine (b), phenylalanine (c), leucine (d), threonine (e), valine (f), methionine (g) and tryptophan (h). Values are given as mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001. Fig. 8. Plasma levels of hexoses (a) and sphingomyeline C16:0 (b). Values are given as mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001.

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

integrity. Increased urinary osteopontin excretion, (Fig. 2a) as well as renal expression of ‰‡‡• ‹˜‘Ž˜‡† ‹ ‹†‡› ϐ‹„”‘•‹• ȋ•‡”’‹‡ͳǡ  Ǧͳǡ …Š‡‘‹‡ Ž‹‰ƒ† ʹȌǡ ƒ† †‡…”‡ƒ•‡† ƒ–‹ϐ‹„”‘–‹…ʹȏʹͲȐ‰‡‡‡š’”‡••‹‘‹‡ǦȀǦ‹…‡ȋ•‡‡ ‹‰ǤͶȌ™‡”‡Ž‹‡™‹•‡‹’”‘˜‡† by ET-1 overexpression. In order to identify potential mechanisms leading to the restoration of the renal phenotype of eNOS-/- mice, we performed metabolomic analyses. These analyses indicated that ET-1 overexpression, in addition to an eNOS knockout is associated ™‹–Šˆ—…–‹‘ƒŽ”‡…‘˜‡”›‘ˆ‹–‘…Š‘†”‹ƒȋ”‡•…—‡‡ˆˆ‡…–‹ȾǦ‘š‹†ƒ–‹‘‘ˆˆƒ––›ƒ…‹†•Ȍƒ†ƒ increase in antioxidative properties (normalization of monounsaturated fatty acids levels). Importantly, the phenotype of the ET-1 transgenic mice did not exhibit a measurable †‡…”‡ƒ•‡ ‘ˆ ‰Ž‘‡”—Žƒ” ϐ‹Ž–”ƒ–‹‘ ”ƒ–‡ ȋ Ȍ ƒ– –Š‡ ƒ‰‡ ‘ˆ ͻ ‘–Š•ǡ ™Š‹…Š ‹• ‹ Ž‹‡ ™‹–Š earlier reports indicating that kidney function in these animals starts to decrease in later stages (>12 months) [9]. Protein excretion was only seen in eNOS-/- mice [21–23], but not in ET+/+ as reported earlier [9, 24, 25]. ET-1 overexpression on its own does not cause proteinuria, but in cases of underlying proteinuric renal diseases, such as pediatric nephrotic syndrome or diabetic renal disease, an activated ET-system enhances protein excretion [26]. Blood pressure was normal in ET-1+/+ mice, most likely due to an activated NO system

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1484

ȏʹ͹ȐǤ Š‹• Š›’‘–Š‡•‹• ‹• ‹ Ž‹‡ ™‹–Š ϐ‹†‹‰• ‹ ΪȀΪ‡ǦȀǦ …”‘••„”‡† ‹…‡ǡ ™Š‹…Š Šƒ˜‡Š‹‰Š‡”„Ž‘‘†’”‡••—”‡–Šƒ‡ǦȀǦ‹…‡ȏ͹ȐǤ ‘™‡˜‡”ǡƒ••‡‡‹‘—”•–—†›ǡ‹Žƒ–‡” generations of ET+/+eNOS-/- mice, the blood pressure was similar in eNOS-/- mice and ET+/+eNOS-/- mice [8, 24, 25]. The reasons why the blood pressure phenotype changes slightly over the years is still unknown. One of the reasons for a leakage of plasma proteins into the urine might be a damaged ‰Ž‘‡”—Žƒ”ϐ‹Ž–”ƒ–‹‘„ƒ””‹‡”ȋ ȌǤ ‹•…‘’‘•‡†‘ˆ–Š”‡‡Žƒ›‡”•ǣ’‘†‘…›–‡•ǡ‰Ž‘‡”—Žƒ” basement membrane (GBM) and endothelial cells. Albumin- and proteinuria can be caused by disturbances of any GFB element [28]. In order to better understand the morphology of

†ƒƒ‰‡ǡ™‡‡ƒ•—”‡†‡š’”‡••‹‘‘ˆ‰‡‡••’‡…‹ϐ‹…ˆ‘”‡ƒ…Š‘ˆ‹–•Žƒ›‡”•ǤŠ‡ ‹• lined by a layer of interdigitating podocyte foot processes from the urinary-space side. Our †ƒ–ƒ†‘‘–‹†‹…ƒ–‡–Šƒ–’‘†‘…›–‡Ǧƒ†‡†‘–Š‡Ž‹ƒŽ•…‡ŽŽ•’‡…‹ϐ‹…’”‘…‡••‡•…‘–”‹„—–‡–‘–Š‡ •‹‰‹ϐ‹…ƒ–”‡†—…–‹‘‘ˆ–Š‡ƒ”‡†Ž›‹…”‡ƒ•‡†’”‘–‡‹ȀƒŽ„—‹‡š…”‡–‹‘‹‡ǦȀǦ‹…‡ seen in ET+/+eNOS-/- mice (Fig. 3). The GBM itself is composed of extracellular matrix proteins assembled through an interweaving of type IV collagen with laminins, nidogen, and sulfated proteoglycans [29]. Any changes in the balance of extracellular matrix proteins within GBM may lead to an increased permeability. The eNOS-/- mice were characterized by pronounced changes in expression of

ƒ••‘…‹ƒ–‡†‰‡‡•ǡƒ‡Ž›„›ƒ†‘™Ǧ”‡‰—Žƒ–‹‘‘ˆ‘ŽͶȽͳǤƒ„ʹƒ†ƒ…ͳƒ”‡–Š‡ ‰‡‡•”‡•’‘•‹„Ž‡ˆ‘”•›–Š‡•‹•‘ˆŽƒ‹‹ǦͷʹͳȋȽͷȾʹɀͳȌ–”‹‡”ǡ‘‡‘ˆ–Š‡ƒ‹…‘’‘‡–• ‘ˆ ȏ͵ͲȐǤ ‡ǦȀǦ‹…‡ǡ–Š‡ƒ…ͳ‰‡‡™ƒ••‹‰‹ϐ‹…ƒ–Ž›—’Ǧ”‡‰—Žƒ–‡†ȋδͲǤͲͳ˜‡”•—• WT), while Lamb2 showed a trend towards up-regulation (P = 0.056 versus WT). Similar, although less pronounced changes were revealed in ET+/+ mice, whereas in crossbreds GBM associated gene expression was similar to WT (Fig. 3d-f). Mutations in genes encoding ƒ„ʹǡ‘ŽͶȽ͵ǡ‘ŽͶȽͶǡƒ†‘ŽͶȽͷ…ƒ—•‡‰Ž‘‡”—Žƒ”†‹•‡ƒ•‡‹Š—ƒ•ƒ•™‡ŽŽƒ•‹‹…‡ ȏ͵ͳȐ™Š‹…Š‹•‹Ž‹‡™‹–Š‘—”ϐ‹†‹‰•Ǥƒ‹‹•–‘‰‡–Š‡”™‹–Š‘–Š‡”‘•–‡‘’‘–‹„‹†‹‰ proteins, including integrins are known to act as osteopontin receptors [32]. Although their interaction in the context of renal dysfunction is not clear yet, it is known that osteopontin is ƒ••‘…‹ƒ–‡†™‹–Š–‹••—‡”‡‘†‡Ž‹‰’”‘…‡••‡•ǡ‹ϐŽƒƒ–‹‘ƒ†ϐ‹„”‘•‹•ȏ͵͵ȐǤ‹…”‡ƒ•‡‘ˆ osteopontin observed in eNOS-/- (Fig. 2) was consistent with an elevation of SBP (Table 1). In addition, we further analyzed renal expression of genes involved in tissue remodeling. In agreement with our assumption, increased urinary osteopontin excretion together with an up-regulation of osteopontin binding proteins Lamb2 and Lamc1 was accompanied by an up”‡‰—Žƒ–‹‘‘ˆ•‡”’‹‡ͳǡ Ǧͳǡ…Š‡‘‹‡ȋǦ‘–‹ˆȌŽ‹‰ƒ†ʹ‡š’”‡••‹‘ǡ‡•’‡…‹ƒŽŽ› ’”‘‘—…‡†‹‡‘…‘—–•ȋ ‹‰ǤͶȌǤ‹‹Žƒ”–‘‘—”ϐ‹†‹‰•ǡ‹—et al. previously reported that decreased NO levels in the kidney aggravated renal dysfunction, damage, hypertrophy, ‹ϐŽƒƒ–‹‘ǡ ƒ† ϐ‹„”‘•‹• ƒ• ‡˜‹†‡…‡† „› †‡…”‡ƒ•‡† …”‡ƒ–‹‹‡ …Ž‡ƒ”ƒ…‡ ƒ† ‹…”‡ƒ•‡† serum creatinine, blood urea nitrogen and urinary protein levels, accompanied by increases ‹–Š‡‡š’”‡••‹‘‘ˆ–Š‡’”‘ϐ‹„”‘–‹…‰‡‡•…‘ŽŽƒ‰‡ ǡ–”ƒ•ˆ‘”‹‰‰”‘™–Šˆƒ…–‘”ǦȾǡƒ†–‹••—‡ inhibitors of metalloproteinases [34]. Therefore, we suggest that the proteinuric phenotype in eNOS knockout mice is caused, at least partially, by an impaired GBM composition, which is improved in crossbred animals (Fig. 3d-f). Our current data of an improvement of the functional consequences of a systemic eNOS ‘…‘—–‘ ƒ†’”‘–‡‹‡š…”‡–‹‘ϐ‹–˜‡”›™‡ŽŽ™‹–Šƒ‡ƒ”Ž‹‡”•–—†›•Š‘™‹‰–Šƒ–‡Ǧ /-, but not ET+/+eNOS-/- mice, developed cardiac dysfunction manifested in increased end diastolic pressure and time of left ventricular relaxation [8]. Cardioprotective properties of ET-1 overexpression on top of eNOS knockout were explained by reduction of cardiac oxidative •–”‡•• ‹ –Š‡•‡ ƒ‹ƒŽ• ȏͺȐǤ ‘™‡˜‡”ǡ –Š‡•‡ ϐ‹†‹‰• ƒ”‡ ‹ …‘ϐŽ‹…– ™‹–Š •‡˜‡”ƒŽ •–—†‹‡• ‡’Ž‘›‹‰„‘–Š•‡Ž‡…–‹˜‡ƒ†‘•‡Ž‡…–‹˜‡ƒ–ƒ‰‘‹•–•ȏ͵ͷȂ͵͹ȐǤ ‘”‹•–ƒ…‡ǡ‡‰ et al. reported that in patients with CKD plasma ET-1 levels positively correlated with left ventricular hypertrophy [35]. The opposite effects of ET-1 overproduction in two different settings might be explained by a big heterogeneity within the patient cohort (concomitant chronic diseases, age, race etc. are the factors affecting organ function independently of ET-1 production) in the clinical trial, while our preclinical study was conducted in mice lines

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1485

‘ˆƒ‘™‰‡‘–›’‡ƒ†ƒ‹†‡–‹…ƒŽƒ‰‡Ǥƒƒ—”ƒ‡–ƒŽǤ•–ƒ–‡†–Šƒ––Š‡•‡Ž‡…–‹˜‡ antagonist T-0115 ameliorated glomerulosclerosis, the rise in SBP, and prevented left ventricular hypertrophy in rats with G-nitro-l-arginine methyl ester (L-NAME) induced inhibition of NO synthesis [36]. The differences in the results might be explained by the fact –Šƒ–‹‘—”•–—†›†‡ϐ‹…‹‡…›‹ΪȀΪ‡ǦȀǦ‹…‡™ƒ•ƒŽ‹ˆ‡ǦŽ‘‰ˆ‡ƒ–—”‡ǡ™Š‡”‡ƒ•‹–Š‡ study by Nakamura et al. NO production was blocked only for a given time frame. In addition, ǦǦ‹†—…‡††‡ϐ‹…‹‡…›ƒ›‘–Šƒ˜‡”‡•—Ž–‡†‹ƒ…‘’Ž‡–‡‹ƒ…–‹˜ƒ–‹‘‘ˆ‡Ǥ Moreover, L-NAME may also have blocked the other isoforms of NOS, which was not the case in our model. In the present study, we observed a reduction of urinary protein excretion by ET-1 overexpression on top of eNOS-/- genotype. This is somewhat in contradiction with ‡ƒ”Ž‹‡”–”‹ƒŽ•ȏ͵ǡ͸ǡʹ͸Ȑǡ™Š‹…Š”‡’‘”–‡†–Šƒ–„‘–Š•‡Ž‡…–‹˜‡ƒ†‘•‡Ž‡…–‹˜‡”‡…‡’–‘” ƒ–ƒ‰‘‹•–• ƒ‡Ž‹‘”ƒ–‡ ’”‘–‡‹—”‹ƒǤ ‘™‡˜‡”ǡ ‹ –Š‡•‡ •–—†‹‡•  •‡Ž‡…–‹˜‡ ƒ–ƒ‰‘‹•–• were shown to have much more pronounced renoprotective effect than nonselective ones. ‡˜‡”–Š‡Ž‡••ǡ–Š‡•‡Ž‡…–‹˜‡ƒ–ƒ‰‘‹•–ƒ–”ƒ•‡–ƒ•Š‘™‡†‘‡ˆˆ‡…–•‘’”‘–‡‹—”‹ƒ”› excretion, SBP, or kidney morphology parameters in uremic rats with 5/6 nephrectomy [38]. The aforementioned effects of ET antagonists were investigated in CKD models such as 5/6 nephrectomy or diabetic nephropathy, however the pathophysological conditions induced in these models are different in comparison to the model used in our study, in which ET-1 overexpression was not combined with any other insult to the kidney. The kidney is very active in carnitine metabolism and releases the metabolites into the plasma and urine [39]. The metabolic pattern observed in the ET+/+eNOS-/- animals suggests a functional recovery of mitochondria. This effect is prominent for internal mitochondrial enzymes but not for the carnitine shuttle (CPT-I, EC 2.3.1.21) [40]. Furthermore, the same rescue effect is seen in oxidation of even-numbered fatty acids and overall activity ‘ˆȾǦ‘š‹†ƒ–‹‘‘ˆˆƒ––›ƒ…‹†•Ǥ”‡ƒ–‡–™‹–ŠǦͳ‹†—…‡•–Š‡”‡†‹•–”‹„—–‹‘‘ˆ‡ˆ”‘ –Š‡’Žƒ•ƒ‡„”ƒ‡–‘–Š‡‹–‘…Š‘†”‹ƒȏͶͳȐƒ†–Š‡”‡ˆ‘”‡•ŠƒŽŽ„‡”‡ϐŽ‡…–‡†‹‘˜‡”ƒŽŽ ‹–‘…Š‘†”‹ƒŽ ˆ—…–‹‘Ǥ —„•–‹–—–‹‘ ‘ˆ ”ƒ–• ™‹–Š Ǧ…ƒ”‹–‹‡ Šƒ• „‡‡ϐ‹…‹ƒŽ ‡ˆˆ‡…–• ‘ oxidative damage in the renal cortex of hypertensive rats [42]. It results in an up-regulation of both antioxidant enzymes and eNOS [43]. Desaturation of fatty acid chains in the PC(aa) or carnitines abrogates the differences observed between WT, eNOS -/- and ET +/+, which is in agreement with the observation that saturated fatty acids (e.g. palmitic acids) activate ‡ȏͶͶȐǤ ‘–Š‡”•–—†‹‡•‘‹†‡›†›•ˆ—…–‹‘…Šƒ‰‡•‹•’‡…‹ϐ‹…Ž‹’‹†…‘…‡–”ƒ–‹‘• and the underlying mechanisms were reported. In erythrocyte membrane lipid composition monounstaturated fatty acids (MUFA) are increased in non-diabetic patients with continuous ambulatory peritoneal dialysis [45]. In addition, MUFAs are increased in the plasma of Š‡‘†‹ƒŽ›•‹•’ƒ–‹‡–•ȏͶ͸ȐǤ •”‡‰—Žƒ–‡–Š‡”‡ƒ…–‹˜‡‘š›‰‡•’‡…‹‡•ȋȌ’”‘†—…–‹‘˜‹ƒ –Š‡ Ɉ’ƒ–Š™ƒ›ȏͶ͹Ȑǡ™Š‡”‡ƒ•ƒŽ•‘‹†—…‡–Š‡”ˆʹƒ–‹‘š‹†ƒ–‹˜‡’ƒ–Š™ƒ›ȏͶͺȐǤ†‡” Š›’‡”Š‘‘…›•–‡‹‡‹ƒȋ…ƒ—•‡†„›ƒ‡–Š‹‘‹‡ǦŠ‹‰Š†‹‡–Ȍ™‡”‡•Š‘™–‘”‡†—…‡ activity [49]. Lysophosphatidylcholines (LPCs) are more sensitive to desaturation changes as they are composed of only one hydrocarbon chain instead of two present in the PCaas and PCaes. Peroxisomal metabolism of phosphatidylcholines is not affected in any of the models (neither single nor double mutants) included in our study as the levels of PC(ae)s were not affected [50]. Similarly to concentrations of carnitines and lipids, the amino acid levels are normalized in ET+/+eNOS-/- animals. This is of interest as these metabolites are biomarkers of complex diseases like diabetes type 2 and CKD. Arginine is a known precursor of NO [51] and induces oxidative stress through a modulation of NOS activity. Short-term exposure causes an increase, and long term exposure a decrease of NOS activity in human endothelial cells [52]. ‡–ƒ„‘Ž‹•‘ˆ˜ƒŽ‹‡ǡ‹•‘Ž‡—…‹‡ƒ†Ž‡—…‹‡‹•”‡ϐŽ‡…–‡†ƒ•™‡ŽŽ„›‹•‘˜ƒ”‡Ž›Ž…ƒ”‹–‹‡ȋͷȌǡ tiglylcarnitine (C5:1) and glutaconylcarnitine (C5:1-DC) [53, 54]. The C5:1 is listed within a panel of biomarkers patented for the diagnosis of kidney disease [55]. Branched chain amino acids (BCAA, leucine, isoleucine and valine) constitute 40% of all amino acids from daily nutrition intake [56]. Changes in BCAA concentrations are risk biomarkers of diabetes type ʹȏͷ͹Ȑƒ†ƒ……——Žƒ–‡†ƒ”‡Ž‹‡†–‘…‘‰‡‹–ƒŽŠ‡ƒ”–†‹•‡ƒ•‡•ƒ†Š‡ƒ”–ˆƒ‹Ž—”‡ȏͷͺȐǤ

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1486

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

ƒŽ‹‡„—–‘–‘–Š‡”•™‡”‡”‡’‘”–‡†–‘”‡ϐŽ‡…–ȏͷͻȐǤƒ–‡”•–—†‹‡•‹†‹…ƒ–‡†–Šƒ– patients with CKD showed a decrease in BCAA which might as well be caused by malnutrition [60]. Metabolic exchange of BCAA between different tissues was observed to modulate BCAA metabolism in CKD [61]. BCAA can enter energy generation in tricarboxylic acid cycle (TCA) through the action of branched-chain alpha-keto acid dehydrogenase complex [62]. Branched …Šƒ‹ƒ‹‘ƒ…‹†•‹†‹‡–ƒ”›•—’’Ž›’”‘Ž‘‰Ž‹ˆ‡•’ƒ–Š”‘—‰Šƒ…–‹˜ƒ–‹‘‘ˆƒ†‡ ȏ͸͵ȐǤŠ‡ƒ…–‹‘˜‹ƒ‹‰Š–„‡‹†‡’‡†‡–ˆ”‘‹•—Ž‹–Š”‘—‰Šƒ…–‹˜ƒ–‹‘‘ˆ translation via elF4E [64]. eNOS was shown to support both mitochondrial biogenesis and metabolic activity [65]. The restoration effects seen in ET+/+eNOS-/- animals in our study ‹‰Š–„‡†—‡–‘ Ɉǡ”ˆʹǡƒ†ƒŽ’Šƒ—’”‡‰—Žƒ–‹‘˜‹ƒ–Š‡Ǧͳ’ƒ–Š™ƒ›ȏͶ͵ǡ͸ͷȐǤ—” interpretation of the processes is summarized in Fig. 9 and is based on published and our own records. —”†ƒ–ƒƒ›Šƒ˜‡…‘•‹†‡”ƒ„Ž‡…Ž‹‹…ƒŽ‹’ƒ…–Ǥ†‡ϐ‹…‹‡…›‹•ƒ…‘†‹–‹‘ƒ••‘…‹ƒ–‡† with CKD and heart failure. We have demonstrated that the functional consequences of a lack ‘ˆ‡‹–Š‡‹†‡›ǡ•—…Šƒ•‹’ƒ‹”‡† ƒ††‡˜‡Ž‘’‡–‘ˆ’”‘–‡‹—”‹ƒǡƒ”‡‹’”‘˜‡† by overexpression of ET-1. We suggest that this might be due to a functional recovery of ‹–‘…Š‘†”‹ƒ ȋ”‡•…—‡ ‡ˆˆ‡…– ‹ ȾǦ‘š‹†ƒ–‹‘ ‘ˆ ˆƒ––› ƒ…‹†•Ȍ ƒ† ‹…”‡ƒ•‡ ‹ ƒ–‹‘š‹†ƒ–‹˜‡ properties (normalization of monounsaturated fatty acids levels). The current study is in agreement with a previous report showing that eNOS knockout mice develop diastolic

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

Fig. 9. Hypothesis: ET-1 overexpression on top of eNOS knockout may cause functional recovery of mitochondria in ET+/+eNOS-/- crossbred mice. ET-1 overexpression on top of eNOS knockout is associated ™‹–Šˆ—…–‹‘ƒŽ”‡…‘˜‡”›‘ˆ‹–‘…Š‘†”‹ƒȋ”‡•…—‡‡ˆˆ‡…–‹ȾǦ‘š‹†ƒ–‹‘‘ˆˆƒ––›ƒ…‹†•Ȍƒ†‹…”‡ƒ•‡‹ƒ–‹‘xidative properties (normalization of monounsaturated fatty acids levels) possibly due to NFNB, Nrf2, and ǦƒŽ’Šƒ—’”‡‰—Žƒ–‹‘˜‹ƒǦͳ’ƒ–Š™ƒ›Ǥƒ–Š™ƒ›•ƒ”‡†‹•…—••‡†‹–Š‡–‡š–™‹–Š”‡ˆ‡”‡…‡•–Š‡”‡‹Ǥ‡› enzymes are given in orange rounded rectangles. Abbreviations: BCKDC - branched-chain alpha-keto acid dehydrogenase complex, PEMT - phosphatidyl ethanolamine methyltransferase, eNOS- endothelial nitric ‘š‹†‡•›–Šƒ•‡ǡ Ȃ…ƒ”‹–‹‡’ƒŽ‹–‘›Ž–”ƒ•ˆ‡”ƒ•‡ ǡ•Ǧ’‡”‘š‹•‘‡’”‘Ž‹ˆ‡”ƒ–‘”ƒ…–‹˜ƒ–‡†”‡…‡’–‘”ǡ PCae- phosphatidylcholine acylalkyl-chains, PCaa - phosphatidylcholine acylacyl-chains, TCA- tricarboxylic acid cycle, ET-1 – endothelin 1, Nrf2 - nuclear factor (erythroid-derived 2)-like 2, elF4E - eukaryotic transŽƒ–‹‘ ‹‹–‹ƒ–‹‘ ˆƒ…–‘” Ͷǡ   Ǧ —…Ž‡ƒ” ˆƒ…–‘” ƒ’’ƒǦŽ‹‰Š–Ǧ…Šƒ‹Ǧ‡Šƒ…‡” ‘ˆ ƒ…–‹˜ƒ–‡†  …‡ŽŽ•ǡ  – mammalian target of rapamycin, BCAA – branched chain amino acids, MUFAs – monounsaturated fatty ƒ…‹†•ǡ•Ǧ”‡ƒ…–‹˜‡‘š›‰‡•’‡…‹‡•Ǥ

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1487

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

dysfunction which could be restored by ET-1 overexpression in the heart. This study ˆ—”–Š‡”‘”‡•—‰‰‡•–‡†–Šƒ–…ƒ”†‹ƒ…Ǧͳ‘˜‡”‡š’”‡••‹‘‹‡†‡ϐ‹…‹‡…›‹–‡”ˆ‡”‡•™‹–Š the regulation of cardiac proteins playing a role in oxidative stress, myocyte contractility, and energy metabolism [8]. Thus, besides the fact that blockade of both the ETA and ETB receptors may lead to water and salt retention [3, 5, 6], our current data further challenges the idea to block the endothelin system in patients with endothelial dysfunction, as it is present in CKD due to diabetic nephropathy. Acknowledgements

This study was supported in part by a grant from the German Federal Ministry of †—…ƒ–‹‘ƒ†‡•‡ƒ”…Šȋ Ȍ–‘–Š‡ ‡”ƒ‡–‡”‹ƒ„‡–‡•‡•‡ƒ”…Šȋ‡ǤǤȌ Disclosure Statement

Š‡ƒ—–Š‘”•Šƒ˜‡‘ϐ‹ƒ…‹ƒŽ‹–‡”‡•–•”‡Ž‡˜ƒ––‘–Š‡”‡•‡ƒ”…Š

References

2 3 4 ͷ ͸ ͹

ͺ

ͻ

10 ͳͳ

Ž‘™‹•‹ǡƒŽǡŠ”‹•–‹ƒǡ…Šƒ‰‡” ǡ‡ŽŽ‡ǡ ‘†‡•ǡ —‡Ǧƒ‹•‡” ǡ‡—ƒ›‡” ǡƒ—‡”ǡ Š‡—”‹‰ ǡ ‘…Š‡”ǣ‡ŽŽǦ–›’‡•’‡…‹ϐ‹…‹–‡”ƒ…–‹‘‘ˆ‡†‘–Š‡Ž‹ƒ†–Š‡‹–”‹…‘š‹†‡•›•–‡ǣ’ƒ––‡” of prepro-ET-1 expression in kidneys of L-NAME treated prepro-ET-1 promoter-lacZ-transgenic mice. J Š›•‹‘ŽʹͲͲ͹Ǣͷͺͳǣͳͳ͹͵ȂͳͳͺͳǤ Quaschning T, Koçak S, Bauer C, Neumayer H-H, Galle J, Hocher B: Increase in nitric oxide bioavailability ‹’”‘˜‡•‡†‘–Š‡Ž‹ƒŽˆ—…–‹‘‹‡†‘–Š‡Ž‹Ǧͳ–”ƒ•‰‡‹…‹…‡Ǥ‡’Š”‘Ž‹ƒŽ”ƒ•’Žƒ–ʹͲͲ͵ǢͳͺǣͶ͹ͻȂͶͺ͵Ǥ Kohan DE, Pollock DM: Endothelin antagonists for diabetic and non-diabetic chronic kidney disease. Br J Ž‹Šƒ”ƒ…‘ŽʹͲͳ͵Ǣ͹͸ǣͷ͹͵Ȃͷ͹ͻǤ Baylis C: Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Clin Pract ‡’Š”‘ŽʹͲͲ͸ǢʹǣʹͲͻȂʹʹͲǤ ƒ‰—‹”‡

ǡƒ˜‡’‘”–ǣ†‘–Š‡Ž‹”‡…‡’–‘”•ƒ†–Š‡‹”ƒ–ƒ‰‘‹•–•Ǥ‡‹‡’Š”‘ŽʹͲͳͷǢ͵ͷǣͳʹͷȂͳ͵͸Ǥ ‡‹…Š‡–œ‡†‡”ǡ•—’”›‘˜ǡ ‘…Š‡”ǣ†‘–Š‡Ž‹”‡…‡’–‘”ƒ–ƒ‰‘‹•–•‹…Ž‹‹…ƒŽ”‡•‡ƒ”…ŠǦ‡••‘• Ž‡ƒ”‡†ˆ”‘’”‡…Ž‹‹…ƒŽƒ†…Ž‹‹…ƒŽ‹†‡›•–—†‹‡•Ǥ‹ˆ‡…‹ʹͲͳͶǢ ǣͳͲǤͳͲͳ͸ȀŒǤŽˆ•ǤʹͲͳͶǤͲʹǤͲʹͷ —ƒ•…Š‹‰ǡ‘•• ǡ‡ŽŽ‡ǡƒŽǡ‹‰‘Ǧ‡ŽŽ™‡‰‡”ǡˆƒ„ǡƒ—‡”ǡŠ‡‹Ž‹‰ ǡƒ…Šƒǡ”ƒ‡‡”Ǧ Guth A, Wanner C, Theuring F, Galle J, Hocher: Lack of endothelial nitric oxide synthase promotes endothelin-induced hypertension: lessons from endothelin-1 transgenic/endothelial nitric oxide synthase ‘…‘—–‹…‡Ǥ ‘…‡’Š”‘ŽʹͲͲ͹Ǣͳͺǣ͹͵ͲȂ͹ͶͲǤ ‹‰‘Ǧ‡ŽŽ™‡‰‡”ǡ‡ŽŽ‡ǡ‹‡Ž‡ǡŽ–‡”ǡ‡‹†‡”ǡŠƒ”‘˜•ƒ ǡ ‡‹†‡ǡƒŽǡ…Š™ƒ„ǡ Albrecht-Küpper B, Theuring F, Stasch JP, Hocher B: Endothelin-1 overexpression restores diastolic ˆ—…–‹‘‹‡‘…‘—–‹…‡Ǥ  ›’‡”–‡•ʹͲͳͳǢʹͻǣͻ͸ͳȂͻ͹ͲǤ ‘…Š‡”ǡŠÚ‡Ǧ‡‹‡‡ǡ‘Š‡‹••ǡ…Šƒ‰‡” ǡŽ‘™‹•‹ǡ—”•–ǡ‹‡‰—† ǡ—‡”–‡”‘—• T, Bauer C, Neumayer HH, Schleuning WD, Theuring F: Endothelin-1 transgenic mice develop ‰Ž‘‡”—Ž‘•…Ž‡”‘•‹•ǡ‹–‡”•–‹–‹ƒŽϐ‹„”‘•‹•ǡƒ†”‡ƒŽ…›•–•„—–‘–Š›’‡”–‡•‹‘Ǥ Ž‹ ˜‡•–ͳͻͻ͹Ǣͻͻǣͳ͵ͺͲȂ 1389. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC: Hypertension in mice Žƒ…‹‰–Š‡‰‡‡ˆ‘”‡†‘–Š‡Ž‹ƒŽ‹–”‹…‘š‹†‡•›–Šƒ•‡Ǥƒ–—”‡ͳͻͻͷǢ͵͹͹ǣʹ͵ͻȂʹͶʹǤ –– ǡŽ–‡”ǡ˜‘‡„•›ǡ”‡–•…Š‡”ǡ•—’”›‘˜ǡŠƒ”‘˜•ƒǡ”ƒ—•‡Ǧ‡ŽŽ‡ǡƒ‹Žƒ ǡ ‡œ‡ǡ Stasch JP, Hocher B.: Effects of stimulation of soluble guanylate cyclase on diabetic nephropathy in diabetic ‡‘…‘—–‹…‡‘–‘’‘ˆƒ‰‹‘–‡•‹ ”‡…‡’–‘”„Ž‘…ƒ†‡ǤŽ‘‡ʹͲͳʹǢ͹ǣ‡Ͷʹ͸ʹ͵Ǥ

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

ͳ

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1488

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

ͳ͵ ͳͶ ͳͷ

16

ͳ͹ ͳͺ

ͳͻ

ʹͲ 21

ʹʹ ʹ͵

ʹͶ ʹͷ

ʹ͸ ʹ͹ ʹͺ ʹͻ ͵Ͳ ͵ͳ

ŽŽ‹‰ǡ ‹‡‰‡”ǡŠƒ‹ ǡڏ‹•…ŠǦƒ”‰Žǡƒ‰Ǧƒ––Ž‡”ǡ”‡ŠǡŽ–ƒ‹‡”ǡƒ•–‡òŽŽ‡” ǡƒ–‘ǡ Mewes HW, Meitinger T, de Angelis MH, Kronenberg F, Soranzo N, Wichmann HE, Spector TD, Adamski J, —Š”‡Ǥǣ‰‡‘‡Ǧ™‹†‡’‡”•’‡…–‹˜‡‘ˆ‰‡‡–‹…˜ƒ”‹ƒ–‹‘‹Š—ƒ‡–ƒ„‘Ž‹•Ǥƒ– ‡‡–ʹͲͳͲǢͶʹǣͳ͵͹Ȃ 141. ڏ‹•…ŠǦƒ”‰Žǡ”‡Šǡ‘‰—‹Žǡڊ”‹‰ǡ—Š”‡ǡ†ƒ•‹ ǣ”‘…‡†—”‡ˆ‘”–‹••—‡•ƒ’Ž‡ ’”‡’ƒ”ƒ–‹‘ƒ†‡–ƒ„‘Ž‹–‡‡š–”ƒ…–‹‘ˆ‘”Š‹‰ŠǦ–Š”‘—‰Š’—––ƒ”‰‡–‡†Ǥ‡–ƒ„‘Ž‘‹…•ʹͲͳʹǢͺǣͳ͵͵ȂͳͶʹǤ

—‹†ƒ…‡ˆ‘” †—•–”›Ǥ‹‘ƒƒŽ›–‹…ƒŽ‡–Š‘†ƒŽ‹†ƒ–‹‘Ǥ‡’ ‡ƒŽ–Š —‡”˜ ƒ‡–”—‰˜ƒŽ‡• ‡–‡–‡†ʹͲͲͳǤ —Š”‡ǡŠ‹ǡ‡–‡”•‡ǡ‘Š‡›ǡ‡”‡†‹–Šǡ¡‰‡Ž‡ǡŽ–ƒ‹‡”Ǣ ‘ ǡ‡Ž‘—ƒ•ǡ Erdmann J, Grundberg E, Hammond CJ, de Angelis MH, Kastenmüller G, Köttgen A, Kronenberg F, Mangino ǡ‡‹•‹‰‡”ǡ‡‹–‹‰‡”ǡ‡™‡• ǡ‹Ž„—”ǡ”‡ŠǡƒˆϐŽ‡” ǡ‹‡† ǡڏ‹•…ŠǦƒ”‰Žǡƒƒ‹ NJ, Small KS, Wichmann HE, Zhai G, Illig T, Spector TD, Adamski J, Soranzo N, Gieger C: Human metabolic ‹†‹˜‹†—ƒŽ‹–›‹„‹‘‡†‹…ƒŽƒ†’Šƒ”ƒ…‡—–‹…ƒŽ”‡•‡ƒ”…ŠǤƒ–—”‡ʹͲͳͳǢͶ͹͹ǣͷͶȂ͸ͲǤ Horakova O, Medrikova D, van Schothorst EM, Bunschoten A, Flachs P, Kus V, Kuda O, Bardova K, Janovska ǡ ‡•Ž‡”ǡ‘••‡‹•Žǡƒ‰Ǧƒ––Ž‡”ǡ”‡Šǡ†ƒ•‹ ǡ ŽŽ‹‰ǡ‡‹Œ‡” ǡ‘’‡…› ǣ”‡•‡”˜ƒ–‹‘‘ˆ ‡–ƒ„‘Ž‹…ϐŽ‡š‹„‹Ž‹–›‹•‡Ž‡–ƒŽ—•…Ž‡„›ƒ…‘„‹‡†—•‡‘ˆǦ͵ ƒ†”‘•‹‰Ž‹–ƒœ‘‡‹†‹‡–ƒ”›‘„‡•‡ ‹…‡ǤŽ‘‡ʹͲͳʹǢ͹ǣ‡Ͷ͵͹͸ͶǤ —ŽŽ‡ǡƒ‹‰—•ƒǡ„‡ǡ†ƒ•‹ ǡ‹•…Šƒ ǣ”‘–‡‘‹…•ƒ†‡–ƒ„‘Ž‘‹…•ƒ•–‘‘Ž•–‘—”ƒ˜‡Ž‘˜‡Ž …—Ž’”‹–•ƒ†‡…Šƒ‹••‘ˆ—”‡‹…–‘š‹…‹–›ǣ‹•–”—‡–‘”Š›’‡ǫ‡‹‡’Š”‘ŽʹͲͳͶǢ͵ͶǣͳͺͲȂͳͻͲǤ

‘‡ǡ”‡Šǡ‡—Žƒǡڏ‹•…ŠǦƒ”‰Žǡڔ‹‰ǡ ‹‡‰‡”ǡ ‡‹‡”ǡ‘‡‹‰ǡƒ‰Ǧƒ––Ž‡”ǡ ŽŽ‹‰ T, Suhre K, Adamski J, Köttgen A, Meisinger C: Metabolites associate with kidney function decline and ‹…‹†‡–…Š”‘‹…‹†‡›†‹•‡ƒ•‡‹–Š‡‰‡‡”ƒŽ’‘’—Žƒ–‹‘Ǥ‡’Š”‘Ž‹ƒŽ”ƒ•’Žƒ–ʹͲͳ͵Ǣʹͺǣʹͳ͵ͳȂʹͳ͵ͺǤ

‘‡ǡڔ‹‰ǡ ‹‡‰‡”ǡ ‡‹‡”ǡ‘‡‹‰ǡ”‡Šǡڏ‹•…ŠǦƒ”‰Žǡƒ‰Ǧƒ––Ž‡”ǡ ŽŽ‹‰ǡ—Š”‡ǡ ‡—ŽƒǡŠƒ‹ ǡ†ƒ•‹ ǡږ–‰‡ǡ‡‹•‹‰‡”ǣ‡”—‡–ƒ„‘Ž‹–‡…‘…‡–”ƒ–‹‘•ƒ††‡…”‡ƒ•‡† ‹ –Š‡‰‡‡”ƒŽ’‘’—Žƒ–‹‘Ǥ ‹†‡›‹•ʹͲͳʹǢ͸Ͳǣͳͻ͹ȂʹͲ͸Ǥ Žƒ”‡ǡ—”‡” ǣ‰‹‘–‡•‹Ǧ‘˜‡”–‹‰œ›‡ʹǣŠ‡ ‹”•–‡…ƒ†‡Ǥ –  ›’‡”–‡•ʹͲͳʹǢʹͲͳʹǣͳȂ 12. Nakagawa T, Sato W, Glushakova O, Heinig M, Clarke T, Campbell-Thompson M, Yuzawa Y, Atkinson MA,

‘Š•‘ ǡ”‘‡”ǣ‹ƒ„‡–‹…†‘–Š‡Ž‹ƒŽ‹–”‹…š‹†‡›–Šƒ•‡‘…‘—–‹…‡‡˜‡Ž‘’†˜ƒ…‡† ‹ƒ„‡–‹…‡’Š”‘’ƒ–Š›Ǥ ‘…‡’Š”‘ŽʹͲͲ͹Ǣͳͺǣͷ͵ͻȂͷͷͲǤ —ŽŽ‡”ǡƒ‹Ǧǡ”‘‡”ǡƒ›Ž‹•ǣŠ”‘‹…‹–”‹…š‹†‡‡ϐ‹…‹‡…›ƒ†”‘‰”‡••‹‘‘ˆ‹†‡›‹•‡ƒ•‡ ƒˆ–‡”‡ƒŽƒ••‡†—…–‹‘‹–Š‡ͷ͹Ž͸‘—•‡Ǥ ‡’Š”‘ŽʹͲͳͲǢ͵ʹǣͷ͹ͷȂͷͺͲǤ Šƒ‘ ǡƒ‰ǡŠ‡‰ ǡŠƒ‰ǡƒƒŠƒ•Š‹ǡ ‘‰‘ǡ”‡›‡”ǡ ƒ””‹•ǣ†‘–Š‡Ž‹ƒŽ‹–”‹…‘š‹†‡ •›–Šƒ•‡†‡ϐ‹…‹‡…›’”‘†—…‡•ƒ……‡Ž‡”ƒ–‡†‡’Š”‘’ƒ–Š›‹†‹ƒ„‡–‹…‹…‡Ǥ ‘…‡’Š”‘ŽʹͲͲ͸Ǣͳ͹ǣʹ͸͸ͶȂ 2669. ‹‰‘Ǧ‡ŽŽ™‡‰‡”ǡƒŠ‡ˆòŠ”‡” ǡŠ‡—”‹‰ ǡ ‘…Š‡”ǣƒŽ›•‹•‘ˆ…ƒ”†‹ƒ…ƒ†”‡ƒŽ‡†‘–Š‡Ž‹ ”‡…‡’–‘”•„›‹•‹–—Š›„”‹†‹œƒ–‹‘‹‹…‡ǤŽ‹ƒ„ʹͲͳʹǢͷͺǣͻ͵ͻȂͻͶͻǤ ‹‰‘Ǧ‡ŽŽ™‡‰‡”ǡ‡ŽŽ‡ǡƒŠ‡ˆòŠ”‡” ǡ…Š™ƒ„ǡ ‘…Š‡”ǡŠ‡—”‹‰ ǣ†‘–Š‡Ž‹Ǧͳ‘˜‡”‡š’”‡••‹‘ and endothelial nitric oxide synthase knock-out induce different pathological responses in the heart of ƒŽ‡ƒ†ˆ‡ƒŽ‡‹…‡Ǥ‹ˆ‡…‹ʹͲͳ͵Ǣ ǣͳͲǤͳͲͳ͸ȀŒǤŽˆ•ǤʹͲͳ͵ǤͳʹǤͲͲ͵ ‘…Š‡”ǡ…Š™ƒ”œǡ‡‹„ƒ…Š‡”ǡ ƒ…‘„‹ ǡ—ǡ”‹‡ ǡƒ—‡”ǡ‡—ƒ›‡” ǡƒ•…Šƒ…ǣˆˆ‡…–•‘ˆ ‡†‘–Š‡Ž‹”‡…‡’–‘”ƒ–ƒ‰‘‹•–•‘–Š‡’”‘‰”‡••‹‘‘ˆ†‹ƒ„‡–‹…‡’Š”‘’ƒ–Š›Ǥ‡’Š”‘ʹͲͲͳǢͺ͹ǣͳ͸ͳȂͳ͸ͻǤ ‘…Š‡”ǡ…Š™ƒ”œǡŽ‘™‹•‹ǡƒ…Šƒǡˆ‡‹Ž•…Š‹ˆ–‡” ǡ‡—ƒ›‡” ǡƒ—‡”ǣ Ǧ˜‹˜‘‹–‡”ƒ…–‹‘‘ˆ ‹–”‹…‘š‹†‡ƒ†‡†‘–Š‡Ž‹Ǥ  ›’‡”–‡•ʹͲͲͶǢʹʹǣͳͳͳȂͳͳͻǤ

ƒ”ƒ† ǡ‹‡” ǣ’†ƒ–‡‘–Š‡‰Ž‘‡”—Žƒ”ϐ‹Ž–”ƒ–‹‘„ƒ””‹‡”Ǥ—””’‹‡’Š”‘Ž ›’‡”–‡•ʹͲͲͻǢͳͺǣʹʹ͸Ȃ 232. —Š ǡ‹‡” ǣŠ‡‰Ž‘‡”—Žƒ”„ƒ•‡‡–‡„”ƒ‡ƒ•ƒ„ƒ””‹‡”–‘ƒŽ„—‹Ǥƒ–‡˜‡’Š”‘Ž ʹͲͳ͵ǢͻǣͶ͹ͲȂͶ͹͹Ǥ Š‡ǡŠ‘—ǡ ‘ ǡƒ”‡”•–‡‹ ǡ‹ƒ™ƒǡ‹‡” ǣƒ‹‹Ⱦʹ‰‡‡‹••‡•‡—–ƒ–‹‘’”‘†—…‡• ‡†‘’Žƒ•‹…”‡–‹…—Ž—•–”‡••‹’‘†‘…›–‡•Ǥ ‘…‡’Š”‘ŽʹͲͳ͵ǢʹͶǣͳʹʹ͵Ȃͳʹ͵͵Ǥ Š‡ǡ‹‡” ǣ Ž‘‡”—Žƒ”„ƒ•‡‡–‡„”ƒ‡ƒ†”‡Žƒ–‡†‰Ž‘‡”—Žƒ”†‹•‡ƒ•‡Ǥ”ƒ•Ž‡• ʹͲͳʹǢͳ͸ͲǣʹͻͳȂʹͻ͹Ǥ

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

ͳʹ

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1489

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

͵͵ 34

͵ͷ ͵͸

͵͹ ͵ͺ

39 ͶͲ

Ͷͳ

Ͷʹ

Ͷ͵

ͶͶ 45 Ͷ͸ Ͷ͹ 48

Ͷͻ

50 ͷͳ 52

ŽŽ‹•‘ ǡ‡Ž‹‡”

ǡ’‡”ƒǡ ‘ƒǡƒ‰ǡƒ”‘‡ ǡ ‡—‡”•–‡‹ ǣ•–‡‘’‘–‹ƒ†‹–•‹–‡‰”‹ receptor alpha(v)beta3 are upregulated during formation of the glial scar after focal stroke. Stroke J Cereb ‹”…ͳͻͻͺǢʹͻǣͳ͸ͻͺȂͳ͹Ͳ͸Ǣ†‹•…—••‹‘ͳ͹Ͳ͹Ǥ Ž–‡”ǡ”‡–•…Š‡”ǡ‘‡„•›ǡ•—’”›‘˜ǡ‡‹…Š‡–œ‡†‡”ǡ‹‘ǡ–ƒ•…Š ǡ ‘…Š‡”ǣƒ”Ž› —”‹ƒ”›ƒ†’Žƒ•ƒ„‹‘ƒ”‡”•ˆ‘”‡š’‡”‹‡–ƒŽ†‹ƒ„‡–‹…‡’Š”‘’ƒ–Š›ǤŽ‹ƒ„ʹͲͳʹǢͷͺǣ͸ͷͻȂ͸͹ͳǤ Liu Y, Bledsoe G, Hagiwara M, Shen B, Chao L, Chao J: Depletion of endogenous kallistatin exacerbates ”‡ƒŽƒ†…ƒ”†‹‘˜ƒ•…—Žƒ”‘š‹†ƒ–‹˜‡•–”‡••ǡ‹ϐŽƒƒ–‹‘ǡƒ†‘”‰ƒ”‡‘†‡Ž‹‰Ǥ Š›•‹‘Ž‡ƒŽŠ›•‹‘Ž ʹͲͳʹǢ͵Ͳ͵ǣ ͳʹ͵ͲȂͳʹ͵ͺǤ ‡‰ǡ —ǡ—ǡ‹ǡƒ‰ǣ‘””‡Žƒ–‹‘„‡–™‡‡‡†‘–Š‡Ž‹ƒŽ†›•ˆ—…–‹‘ƒ†Ž‡ˆ–˜‡–”‹…—Žƒ” ”‡‘†‡Ž‹‰‹’ƒ–‹‡–•™‹–Š…Š”‘‹…‹†‡›†‹•‡ƒ•‡Ǥ‹†‡›Ž‘‘†”‡••‡•ʹͲͳͶǢ͵ͻǣͶʹͲȂͶʹ͸Ǥ ƒƒ—”ƒǡ—”ƒ•Š‹ƒǡƒ‹–‘ǡ—‹‘ ǡ—œƒ™ƒǡ‹œƒ™ƒ ǡƒƒ‘–‘ ǡ‘ǡƒ‰ƒ‹ǣȋȌ receptor antagonist ameliorates nephrosclerosis and left ventricular hypertrophy induced in rat by ’”‘Ž‘‰‡†‹Š‹„‹–‹‘‘ˆ‹–”‹…‘š‹†‡•›–Š‡•‹•Ǥ ›’‡”–‡•‡•ͳͻͻͺǢʹͳǣʹͷͳȂʹͷ͹Ǥ ‘—”‹“—‡–ǡ—’‘–ǡ ‡”‹œ‹ǡ‹”ƒǡƒ•‡ŽŽƒ•ǣ”‡‰Ž‘‡”—Žƒ”•—†ƒ‘’Š‹Ž‹ƒ‹Ǧ Š›’‡”–‡•‹˜‡”ƒ–•ǣ‹˜‘Ž˜‡‡–‘ˆ‡†‘–Š‡Ž‹Ǥ ›’‡”–‡•‹‘ͳͻͻ͸Ǣʹ͹ǣ͵ͺʹȂ͵ͻͳǤ ‹––‡”ǡŠƒ‰ǡ ‹…Š ǡ‹ƒ’‹• ǡ—ƒ”‡œǡ ‡”†‡”ǡ‡Ž‡œ ǡŽƒ–‘’‘Ž•›ǣƒ”†‹ƒ…ƒ†”‡ƒŽ‡ˆˆ‡…–• ‘ˆƒ–”ƒ•‡–ƒ‹…‘„‹ƒ–‹‘™‹–Š‡ƒŽƒ’”‹Žƒ†’ƒ”‹…ƒŽ…‹–‘Ž‹—”‡‹…”ƒ–•Ǥ‹†‡›Ž‘‘†”‡••‡• ʹͲͳͶǢ͵ͻǣ͵ͶͲȂ͵ͷʹǤ Guder WG, Wagner S: The role of the kidney in carnitine metabolism. J Clin Chem Clin Biochem ͳͻͻͲǢʹͺǣ͵Ͷ͹Ȃ͵ͷͲǤ ‹‘Žƒ–‡ǡ ŒŽ•–ǡ—‹–‡” ǡ‘•–‡” ǡ˜ƒ‡–Š‡ ǡ—”ƒǡ†‡Ž‡‹†ƒ ǡƒ†‡”• ǡ ‘—–‡ǡ‡–—”ƒ Ǥǣ—„•–”ƒ–‡•’‡…‹ϐ‹…‹–›‘ˆŠ—ƒ…ƒ”‹–‹‡ƒ…‡–›Ž–”ƒ•ˆ‡”ƒ•‡ǣ ’Ž‹…ƒ–‹‘•ˆ‘”ˆƒ––›ƒ…‹†ƒ†„”ƒ…Š‡†Ǧ …Šƒ‹ƒ‹‘ƒ…‹†‡–ƒ„‘Ž‹•Ǥ‹‘…Š‹‹‘’Š›•…–ƒʹͲͳ͵Ǣͳͺ͵ʹǣ͹͹͵Ȃ͹͹ͻǤ ‹‘Žƒ–‡ǡ ŒŽ•–ǡ—‹–‡” ǡ‘•–‡” ǡ˜ƒ‡–Š‡ ǡ—”ƒǡ†‡Ž‡‹†ƒ ǡƒ†‡”• ǡ ‘—–‡ǡ‡–—”ƒ FV: Endothelin-1 Induces a Glycolytic Switch in Pulmonary Arterial Endothelial Cells via the Mitochondrial ”ƒ•Ž‘…ƒ–‹‘‘ˆ†‘–Š‡Ž‹ƒŽ›–Šƒ•‡Ǥ ‡•’‹”‡ŽŽ‘Ž‹‘ŽʹͲͳͶǢ ǣͳͲǤͳͳ͸ͷȀ”…„ǤʹͲͳ͵Ǧ Ͳͳͺ͹

׏‡œǦ‘”‡•ǡƒ–‡ǡ‹‰—‡ŽǦƒ””ƒ•…‘ ǡ ‹±‡œǡ ‘•ǡƒ‡žǡ‡˜‹ŽŽƒǡƒ–ƒǦƒ”Àƒǡ žœ“—‡œǣǦ…ƒ”‹–‹‡ƒ––‡—ƒ–‡•‘š‹†ƒ–‹˜‡•–”‡••‹Š›’‡”–‡•‹˜‡”ƒ–•Ǥ —–”‹‘…Š‡ʹͲͲ͹Ǣͳͺǣͷ͵͵Ȃ 540. ƒ„”ƒ‘ǡŽƒ…ƒ ǡ—‹œǦ”‡–ƒǡ‹‰—‡ŽǦƒ””ƒ•…‘ ǡ‡˜‹ŽŽƒǡƒ–ƒǦƒ”Àƒǡƒ–‡ǡžœ“—‡œ CM: The renoprotective effect of L-carnitine in hypertensive rats is mediated by modulation of oxidative •–”‡••Ǧ”‡Žƒ–‡†‰‡‡‡š’”‡••‹‘Ǥ—” —–”ʹͲͳ͵Ǣͷʹǣͳ͸ͶͻȂͳ͸ͷͻǤ ‘—Ž‘—„ƒŽ›ǡ‡Ž‘±‹‡ǡ‘—••‡ƒ—ǡƒ—Ž ǡ ”›„‡”‰ǡ‘—”…‹ǣ ƒ––›ƒ…‹†‹…‘”’‘”ƒ–‹‘‹ ‡†‘–Š‡Ž‹ƒŽ…‡ŽŽ•ƒ†‡ˆˆ‡…–•‘‡†‘–Š‡Ž‹ƒŽ‹–”‹…‘š‹†‡•›–Šƒ•‡Ǥ—” Ž‹ ˜‡•–ʹͲͲ͹Ǣ͵͹ǣ͸ͻʹȂ͸ͻͻǤ Lupo A, Bernich P, Fabris A, Zanni P, Trevisan MT, Ferrari S, Bassi A, Girelli D, Olivieri O, Maschio G: Cell ‡„”ƒ‡Ž‹’‹†…‘’‘•‹–‹‘‹’ƒ–‹‡–•Ǥ†˜‡”‹–‹ƒŽ‘ˆ‡”‹–‹ƒŽͳͻͻͲǢ͸ǣʹ͵ͲȂʹ͵ʹǤ

ƒŽŽ‹ ǡƒ”‰ƒǡƒŽŽƒ ǡ ‡””ƒ”‘ǡƒ‡•–”ƒ”‹ ǡ Ž‘”‹†‹ǡƒ— ǡ—‘…”‹•–‹ƒ‹ǣ‹–ƒ‹ǡŽ‹’‹†’”‘ϐ‹Ž‡ǡ ƒ†’‡”‘š‹†ƒ–‹‘‹Š‡‘†‹ƒŽ›•‹•’ƒ–‹‡–•Ǥ‹†‡› –ʹͲͲͳǢ͹ͺǣͳͶͺȂͳͷͶǤ ‘–ŠƒǡŠ‡‡Ž‡”Ǧ ‘‡•ǣ‘•–’”ƒ†‹ƒŽŽ‹’‘’”‘–‡‹•ƒ†–Š‡‘Ž‡…—Žƒ””‡‰—Žƒ–‹‘‘ˆ˜ƒ•…—Žƒ” Š‘‡‘•–ƒ•‹•Ǥ”‘‰‹’‹†‡•ʹͲͳ͵ǢͷʹǣͶͶ͸ȂͶ͸ͶǤ Zucker SN, Fink EE, Bagati A, Mannava S, Bianchi-Smiraglia A, Bogner PN, Wawrzyniak JA, Foley C, Leonova KI, Grimm MJ, Moparthy K, Ionov Y, Wang J, Liu S, Sexton S, Kandel ES, Bakin AV, Zhang Y, Kaminski N, Segal  ǡ‹‹ˆ‘”‘˜ǣ”ˆʹ’Ž‹ϐ‹‡•š‹†ƒ–‹˜‡–”‡••˜‹ƒ †—…–‹‘‘ˆŽˆͻǤ‘Ž‡ŽŽʹͲͳͶǢͷ͵ǣͻͳ͸ȂͻʹͺǤ ‘‘ˆ–Ǧ‹Ž•‘ǡ•ŠŽ‡›ǡ‹ŽŽ‹‰ ǡ‘Žˆ‡”–ǡ„”‡…Š–ǡ‡ƒ”†‡ǣŠ”‘‹…†‹‡–Ǧ‹†—…‡† Š›’‡”Š‘‘…›•–‡‹‡‹ƒ‹’ƒ‹”•‡”‡‰—Žƒ–‹‘‹‘—•‡‡•‡–‡”‹…ƒ”–‡”‹‡•Ǥ Š›•‹‘Ž‡‰—Ž –‡‰” ‘’Š›•‹‘ŽʹͲͲͺǢʹͻͷǣͷͻȂ͸͸Ǥ Hardeman D, van den Bosch H: Topography of ether phospholipid biosynthesis. Biochim Biophys Acta ͳͻͺͻǢͳͲͲ͸ǣͳȂͺǤ †”‡™ ǡƒ›‡”ǣœ›ƒ–‹…ˆ—…–‹‘‘ˆ‹–”‹…‘š‹†‡•›–Šƒ•‡•Ǥƒ”†‹‘˜ƒ•…‡•ͳͻͻͻǢͶ͵ǣͷʹͳȂͷ͵ͳǤ Mohan S, Wu C-C, Shin S, Fung H-L: Continuous exposure to L-arginine induces oxidative stress and ’Š›•‹‘Ž‘‰‹…ƒŽ–‘Ž‡”ƒ…‡‹…—Ž–—”‡†Š—ƒ‡†‘–Š‡Ž‹ƒŽ…‡ŽŽ•Ǥ‹‘…‹†•ʹͲͳʹǣͳͳ͹ͻȂͳͳͺͺǤ

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

͵ʹ

Physiol Biochem 2015;37:1474-1490 Cellular Physiology Cell © 2015 The Author(s). Published by S. Karger AG, Basel DOI: 10.1159/000438516 and Biochemistry Published online: October 29, 2015 www.karger.com/cpb

1490

Tsuprykov et al: ET+/+eNOS-/- Genotype is Renoprotective

ͷͶ ͷͷ ͷ͸ ͷ͹

ͷͺ 59 ͸Ͳ

͸ͳ ͸ʹ 63 ͸Ͷ

͸ͷ

‘‡ǡ‡†‡”„ƒ—ǡ‘‡ǡƒ”†ƒ…Šǡ ƒŽ‹†‘ǡ™‡‡–ƒǣ •‘Žƒ–‡†‹•‘„—–›”›ŽǦ‘†‡Š›†”‘‰‡ƒ•‡ †‡ϐ‹…‹‡…›ǣƒ—”‡…‘‰‹œ‡††‡ˆ‡…–‹Š—ƒ˜ƒŽ‹‡‡–ƒ„‘Ž‹•Ǥ‘Ž ‡‡–‡–ƒ„ͳͻͻͺǢ͸ͷǣʹ͸ͶȂʹ͹ͳǤ ‘…Ž‡› ǡ•‡ƒ—‡”ǣ •‘˜ƒŽ‡”‹…ƒ…‹†‡‹ƒǣ‡™ƒ•’‡…–•‘ˆ‰‡‡–‹…ƒ†’Š‡‘–›’‹…Š‡–‡”‘‰‡‡‹–›Ǥ  ‡† ‡‡–‡‹‡† ‡‡–ʹͲͲ͸ǢͳͶʹǣͻͷȂͳͲ͵Ǥ —†‹ǡ‡‹„‡”‰‡”ǣ‡™„‹‘ƒ”‡”•ˆ‘”ƒ••‡••‹‰‹†‡›†‹•‡ƒ•‡•ȏ –‡”‡–ȐʹͲͳʹǢ˜ƒ‹Žƒ„Ž‡ˆ”‘ǣ Vol. EP 2438441 A1 ƒ”’‡”ǡ‹ŽŽ‡” ǡŽ‘…ǣ”ƒ…Š‡†Ǧ…Šƒ‹ƒ‹‘ƒ…‹†‡–ƒ„‘Ž‹•Ǥ—‡˜—–”ͳͻͺͶǢͶǣͶͲͻȂͶͷͶǤ ƒ‰ ǡƒ”•‘ ǡƒ•ƒǡŠ‡‰ǡŠ‡‡ǡ…ƒ„‡ǡ‡™‹• ǡ ‘šǡ ƒ…“—‡• ǡ ‡”ƒ†‡œǡ ̵‘‡ŽŽ ǡƒ””ǡ‘‘–Šƒǡ Ž‘”‡œ ǡ‘—œƒǡ‡Žƒ†‡”ǡŽ‹•Šǡ ‡”•œ–‡ǣ‡–ƒ„‘Ž‹–‡’”‘ϐ‹Ž‡• ƒ†–Š‡”‹•‘ˆ†‡˜‡Ž‘’‹‰†‹ƒ„‡–‡•Ǥƒ–‡†ʹͲͳͳǢͳ͹ǣͶͶͺȂͶͷ͵Ǥ — ǡ— ǡ‡ǡŠ‡ ǡƒ‰ǣƒ–ƒ„‘Ž‹•‘ˆ„”ƒ…Š‡†Ǧ…Šƒ‹ƒ‹‘ƒ…‹†•‹Š‡ƒ”–ˆƒ‹Ž—”‡ǣ‹•‹‰Š–•ˆ”‘ ‰‡‡–‹…‘†‡Ž•Ǥ‡†‹ƒ–”ƒ”†‹‘ŽʹͲͳͳǢ͵ʹǣ͵ͲͷȂ͵ͳͲǤ Langer K, Fröhling PT, Diederich J, Brandl M, Lindenau K, Fekl W: Plasma amino and keto acids in chronic ”‡ƒŽˆƒ‹Ž—”‡Ǥ‘–”‹„‡’Š”‘ŽͳͻͺͺǢ͸ͷǣͷͷȂͷͻǤ —ƒ”ǡ‹–ŽƒǡƒŒ—ǡƒ‘Šƒ”ǡ—ƒ”ǡƒ”ƒ•‹Šƒǣ”ƒ…Š‡†…Šƒ‹ƒ‹‘ƒ…‹† ’”‘ϐ‹Ž‡‹‡ƒ”Ž›…Š”‘‹…‹†‡›†‹•‡ƒ•‡Ǥƒ—†‹ ‹†‡›‹•”ƒ•’Žƒ–ˆˆ—„Žƒ—†‹‡–”‰ƒ”ƒ•’Žƒ– ƒ—†‹”ƒ„ʹͲͳʹǢʹ͵ǣͳʹͲʹȂͳʹͲ͹Ǥ ‹œ‹ƒ‡ŽŽ‘ǡ‡ˆ‡””ƒ”‹ ǡ ƒ”‹„‘––‘ ǡ‘„ƒ—†‘ǡ—–ƒǡƒ••‡”‘‡ ǡ”—œœ‘‡ǣ”ƒ…Š‡†Ǧ…Šƒ‹ ƒ‹‘ƒ…‹†‡–ƒ„‘Ž‹•‹…Š”‘‹…”‡ƒŽˆƒ‹Ž—”‡Ǥ‹†‡› –ͳͻͺ͵Ǣͳ͸ǣͳ͹ȂʹʹǤ ‡ƒƒ ǣŠ‡ʹǦ‘š‘ƒ…‹††‡Š›†”‘‰‡ƒ•‡…‘’Ž‡š‡•ǣ”‡…‡–ƒ†˜ƒ…‡•Ǥ‹‘…Š‡ ͳͻͺͻǢʹͷ͹ǣ͸ʹͷȂ͸͵ʹǤ Valerio A, D’Antona G, Nisoli E: Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an ‡˜‘Ž—–‹‘ƒ”›’‡”•’‡…–‹˜‡Ǥ‰‹‰ʹͲͳͳǢ͵ǣͶ͸ͶȂͶ͹ͺǤ ƒ•ǡƒ•Š‹”‘ǡ‘‰‡Žǡ‹„ƒŽŽǡǯŽ‡…› ǡ‹ŽŽ‹ƒ• ǣ‡—…‹‡ƒ…–‹˜ƒ–‡•’ƒ…”‡ƒ–‹… –”ƒ•Žƒ–‹‘ƒŽƒ…Š‹‡”›‹”ƒ–•ƒ†‹…‡–Š”‘—‰Š‹†‡’‡†‡–Ž›‘ˆƒ†‹•—Ž‹Ǥ —–” ʹͲͲ͸Ǣͳ͵͸ǣͳ͹ͻʹȂͳ͹ͻͻǤ ƒ•„—”›ǡ—‹•ǡƒ‰ǡ ‡ŽŽƒ ǡ ‘Ž†‡ǡ ƒ”„‡•‘ǡŠ‡ǡƒ–‡Žǡ’‹–‡ǡ Bhatnagar A, Hill BG: Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity ƒ†”‡‰—Žƒ–‡•ƒ†‹’‘…›–‡’Š‡‘–›’‡Ǥ‹”…‡•ʹͲͳʹǢͳͳͳǣͳͳ͹͸ȂͳͳͺͻǤ

Downloaded by: Lund University Libraries 130.235.66.10 - 9/3/2017 12:59:27 PM

ͷ͵

Endothelin-1 Overexpression Improves Renal Function in eNOS Knockout Mice.

To investigate the renal phenotype under conditions of an activated renal ET-1 system in the status of nitric oxide deficiency, we compared kidney fun...
977KB Sizes 2 Downloads 7 Views