materials Letter

Effects of the F4TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors Ching-Lin Fan 1,2, *, Wei-Chun Lin 2 , Hsiang-Sheng Chang 1 , Yu-Zuo Lin 1 and Bohr-Ran Huang 2 Received: 10 November 2015; Accepted: 6 January 2016; Published: 13 January 2016 Academic Editors: Federico Bella and Claudio Gerbaldi 1

2

*

Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Da’an District, Taipei City 106, Taiwan; [email protected] (H.-S.C.); [email protected] (Y.-Z.L.) Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Da’an District, Taipei City 106, Taiwan; [email protected] (W.-C.L.); [email protected] (B.-R.H.) Correspondence: [email protected]; Tel.: +886-2-2737-6374

Abstract: In this paper, the top-contact (TC) pentacene-based organic thin-film transistor (OTFT) with a tetrafluorotetracyanoquinodimethane (F4 TCNQ)-doped pentacene interlayer between the source/drain electrodes and the pentacene channel layer were fabricated using the co-evaporation method. Compared with a pentacene-based OTFT without an interlayer, OTFTs with an F4 TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. In addition, the dependence of the OTFT performance on the thickness of the F4 TCNQ-doped pentacene interlayer is weaker than that on a Teflon interlayer. Therefore, a molecular doping-type F4 TCNQ-doped pentacene interlayer is a suitable carrier injection layer that can improve the TC-OTFT performance and facilitate obtaining a stable process window. Keywords: pentacene; organic thin-film transistors (OTFTs); F4 TCNQ; Teflon; carrier injection layer

1. Introduction Over the past few decades, pentacene-based organic thin-film transistors (OTFTs) have attracted considerable research interest as promising candidates for smart cards, sensors, flexible displays, and radio frequency identification circuitry, because of their unique characteristics, which include their light weight, low-temperature processing, and high mechanical flexibility [1–4]. Au is usually used as the source/drain (S/D) electrode material in pentacene-based OTFTs since its work function matches the highest occupied molecular orbital level of pentacene; this matching benefits hole injection between the S/D electrodes and the pentacene channel [5]. In a typical top-contact (TC) pentacene-based OTFT structure, the S/D metal electrodes are formed by depositing Au onto the pentacene channel layer. However, when Au is directly deposited onto the pentacene channel layer, it diffuses into the upper layer of pentacene to form a mixture layer of metal and pentacene. The formation of the mixture layer is associated with the formation of hole injection barriers between Au and the pentacene channel layer [6–8]. The formation of the hole injection barriers leads to a low carrier injection efficiency and a high contact resistance (RC ), which degrade the performance of TC pentacene-based OTFTs. In organic light-emitting diodes, the carrier injection efficiency can be enhanced by introducing a carrier injection layer between the organic material and the metal electrode. Introducing a carrier injection layer reduces the barrier height between the organic layer and the metal electrode, increasing the luminance efficiency and current density [9,10]. Thus, in TC pentacene-based OTFTs, enhancement

Materials 2016, 9, 46; doi:10.3390/ma9010046

www.mdpi.com/journal/materials

Materials 2016, 9, 46

2 of 9

of carrier injection efficiency, which is crucial, can be achieved by introducing a carrier injection layer between the S/D metal electrodes and the pentacene channel layer. The carrier injection layer is believed to play a critical role in improving the electrical characteristics of the TC pentacene-based OTFTs. Carrier injection layers used in TC pentacene-based OTFTs can be divided into two categories: the insulating type of layers, which enables carriers from the S/D metal electrodes to tunnel to the pentacene channel layer easily, and the molecular doping type of layers, which forms a step hole transport configuration and is characterized by high local conductivity, thereby enhancing the injection of holes from the S/D metal electrodes to the pentacene channel layer [7,8,11,12]. The present author have previously reported TC pentacene-based OTFTs fabricated by introducing an ultrathin insulating Teflon carrier injection layer, which enhanced the drain current and field-effect mobility as a result of a decrease in the hole injection barrier and increased tunneling at the Au electrode/pentacene channel interface [7]. However, when the thickness of the Teflon layer exceeds a critical value, the carrier tunneling probability decreases because of an increase in the local resistance at the Au electrode/pentacene channel interface. It was found that the critical thickness of an insulating type of carrier injection layer is less than or equal to 5 nm. This critical thickness value is too low to accurately control the evaporation process, and therefore, it results in an unstable and sensitive process window. In the case of the molecular doping type, the organic materials employed for the buffer layer should be highly conductive for pentacene-based OTFTs, which be attributed to the boost of carrier density. Therefore, the use of the molecular doping materials might be an efficient way to tune carrier injection from metal electrode to organic material, resulting in a conductivity enhancement and thereby improved device performance. Kentaro et al. have confirmed that the Fermi energy (EF ) of F4 TCNQ-doped pentacene layer shifts toward the valence states [13]. Therefore, the molecular doping type of layers can be attributed to the improved conductivity of the p-doped layer with the doping of F4 TCNQ into the pentacene. Li et al. proposed a molecular doping carrier injection layer scheme in which the pentacene carrier injection layer of TC pentacene-based OTFTs is doped with different concentrations of tetrafluorotetracyanoquinodimethane (F4 TCNQ) [12]. The scheme involves the evaporation of a mixture solution of F4 TCNQ and pentacene in chloroform with a specific F4 TCNQ:pentacene ratio. However, the melting point of organic molecules varies with their molecular weight. The melting points of F4 TCNQ and pentacene are 290 ˝ C and above 300 ˝ C, respectively. The direct evaporation of a mixture solution of F4 TCNQ and pentacene with a specific F4 TCNQ:pentacene ratio, rather than the evaporation of these two chemicals individually (i.e., simultaneous “co-evaporation”), results in a discrepancy between the practical and designed F4 TCNQ:pentacene ratios during the evaporation process. The published report indicated that the co-evaporation method also had been used for interlayer deposition between the pentacene channel layer and Au electrodes, such as m-MTDATA-doped V2 O5 [11], MoOx -doped pentacene [14], and MoO3 and m-MTDATA-doped pentacene [15]. However, the co-evaporation scheme of the F4 TCNQ and pentacene for forming an F4 TCNQ-doped pentacene interlayer had been not investigated. In this study, for the first time, the co-evaporation scheme is used for evaporating F4 TCNQ and pentacene simultaneously to form an F4 TCNQ-doped pentacene interlayer between the Au S/D electrodes and the pentacene channel layer of TC pentacene-based OTFTs and, thus, improve the OTFT performance. The field-effect mobility was enhanced by a factor of 1.6 and the on/off current ratio was enhanced by a factor of 1.5 compared with a control device. In addition, the influence of the F4 TCNQ-doped pentacene interlayer thickness on the electrical characteristics of the OTFTs was investigated. The dependence of the device performance on the F4 TCNQ-doped pentacene interlayer (molecular doping type) thickness was not stronger than that for a Teflon interlayer (insulating type). Therefore, the F4 TCNQ-doped pentacene layer is a suitable carrier injection layer between the Au electrodes and the pentacene channel layer because it can not only improve the device performance but also facilitate obtaining a larger and stable process window.

Materials 2016, 9, 46

3 of 9

2. Device Fabrication Materials 2016, 9, 46 

Pentacene-based OTFTs with a bottom-gate and top-contact structure were fabricated. A glass substrate with an indium-tin-oxide (ITO) layer was used as the substrate and as the bottom-gate 2. Device Fabrication  electrode. A 350-nm-thick cross-linked poly (4-vinylphenol) (PVP) coating was provided on the Pentacene‐based OTFTs with a bottom‐gate and top‐contact structure were fabricated. A glass  ITO layer for use as the gate dielectric, and it was cured in a vacuum oven at 200 ˝ C for 1.5 h. A substrate  with  an  indium‐tin‐oxide  (ITO)  layer  was  used  as  the  substrate  and  as  the  bottom‐gate  50-nm-thick pentacene channel layer was then deposited on the PVP layer through a shadow mask electrode. A 350‐nm‐thick cross‐linked poly (4‐vinylphenol) (PVP) coating was provided on the ITO  by using a thermal evaporator (base pressure: 2.0 ˆ 10´6 Torr) at a deposition rate of 0.2 Å/s and layer for use as the gate dielectric, and it was cured in a vacuum oven at 200 °C for 1.5 h. A 50‐nm‐thick  withpentacene channel layer was then deposited on the PVP layer through a shadow mask by using a  the substrate temperature maintained at room temperature. Before the deposition of the S/D evaporator  (base  pressure:  2.0  ×  10−6  Torr)  at  a  deposition  rate  of  0.2  Å/s  and was with  the  metalthermal  electrodes, a 1.5-nm-thick F4 TCNQ-doped pentacene carrier injection interlayer deposited substrate  temperature  maintained  at  room  temperature.  Before  the  deposition  of  the  S/D  metal  on the pentacene channel layer through a metal mask by simultaneously co-evaporating F4 TCNQ 1.5‐nm‐thick  F4TCNQ‐doped  carrier  injection process, interlayer  was  deposited  on  of and electrodes,  pentacenea from a thermal evaporator. pentacene  In the co-evaporation the source materials the pentacene channel layer through a metal mask by simultaneously co‐evaporating F 4TCNQ and  pentacene and F4 TCNQ were independently controlled, and were heated by linear thermal boat when pentacene  from  a  thermal  evaporator.  In  the  co‐evaporation  process,  the  source  materials  of  the materials are deposited, as shown in Figure 1a. The deposition rate of F4 TCNQ was fixed at pentacene  and  F4TCNQ  were  independently  controlled,  and  were  heated  by  linear  thermal  boat  0.1 Å/s, while that of pentacene was set at 0.1, 0.3 and 1.0 Å/s; the designed F4 TCNQ:pentacene when the materials are deposited, as shown in Figure 1a. The deposition rate of F4TCNQ was fixed  ratios corresponding to the pentacene deposition rates were 1:1, 1:3 and 1:10 respectively. Finally, Au at 0.1 Å/s, while that of pentacene was set at 0.1, 0.3 and 1.0 Å/s; the designed F 4TCNQ:pentacene  (50 nm) S/D electrodes were formed through a shadow mask by using a thermal evaporator. Therefore, ratios corresponding to the pentacene deposition rates were 1:1, 1:3 and 1:10 respectively. Finally,  the FAu  TCNQ-doped pentacene can be uniformly deposited to form the interlayer between pentacene 4 (50  nm)  S/D  electrodes  were  formed  through  a  shadow  mask  by  using  a  thermal  evaporator.  Therefore, the F TCNQ‐doped pentacene can be uniformly deposited to form the interlayer between  channel layer and 4Au metal electrodes. The width and length of the electrode channels were 500 pentacene channel layer and Au metal electrodes.  The width and length of the electrode channels  and 100 µm, respectively. Figure 1b shows a schematic structure of the pentacene-based OTFTs with were 500 and 100 μm, respectively. Figure 1b shows a schematic structure of the pentacene‐based  F4 TCNQ-doped pentacene interlayer, and Figure 1c,d show the molecular structures of F4 TCNQ and OTFTs with F 4TCNQ‐doped pentacene interlayer, and Figure 1c,d show the molecular structures of  pentacene, respectively. For convenience, the devices with F4 TCNQ:pentacene ratios of 1:1, 1:3 and F4TCNQ and pentacene, respectively. For convenience, the devices with F4TCNQ:pentacene ratios of  1:10 are hereafter designated as Devices 1, 2 and 3, respectively. A device without an F4 TCNQ-doped 1:1,  1:3 and 1:10 are  hereafter  designated as  Devices 1,  2 and 3,  respectively. A  device  without an  pentacene interlayer was considered the control sample. All measurements were performed under F4TCNQ‐doped  pentacene  interlayer  was  considered  the  control  sample.  All  measurements  were  darkperformed  conditions and dark  at anconditions  ambient and  temperature by using a semiconductor analyzer under  at  an  ambient  temperature  by  using  a parameter semiconductor  (HP parameter analyzer (HP 4145B, HP Inc., Palo Alto, CA, USA).  4145B, HP Inc., Palo Alto, CA, USA).

  (a) 

(b)

(c) 

(d)

  Figure  1.  (a)  a  schematic  diagram  of  the  co‐evaporation  process;  (b)  a  schematic  structure  of  the   

Figure 1. (a) a schematic diagram of the co-evaporation process; (b) a schematic structure of the pentacene‐based organic thin‐film transistors (OTFTs) with F4TCNQ‐doped pentacene injection layer,  pentacene-based organic thin-film transistors (OTFTs) with F4 TCNQ-doped pentacene injection layer, and the molecular structures of (c) F4TCNQ and (d) pentacene, respectively.  and the molecular structures of (c) F4 TCNQ and (d) pentacene, respectively.

3

Materials 2016, 9, 46

4 of 9

Materials 2016, 9, 46 

3. Results and Discussion 3. Results and Discussion  Figure 2a shows the output characteristics (IDS -V DS ) of the devices with different DS‐Vsaturation DS) of the devices with different F 4TCNQ:pentacene  Figure 2a shows the output characteristics (I F4 TCNQ:pentacene ratios for a V GS = ´20 V. The current of Device 1 was ´3.02 ˆ 10´6 ratios for a V GS = −20 V. The saturation current of Device 1 was −3.02 × 10  A for Vwas DS and V GS values  A for V DS and V GS values of ´30 and ´20 V, respectively; this saturation−6current much higher of −30 and −20 V, respectively; this saturation current was much higher than those of Devices 2 and  than those of Devices 2 and 3 and the control sample. The IDS value of Device 1 was approximately 3 and the control sample. The I DS value of Device 1 was approximately 193% higher than that of the  193% higher than that of the control sample. Figure 2b shows the transfer characteristics (IDS -V GS ) of control  sample.  2b Fshows  the  transfer  ratios. characteristics  DS‐VGSof )  of  the  devices  with  different  the devices withFigure  different The µFE (Ivalue Device 1 was enhanced by a 4 TCNQ:pentacene F4TCNQ:pentacene ratios. The μ FE value of Device 1 was enhanced by a factor of 1.6 and the on/off  factor of 1.6 and the on/off current ratio was enhanced by a factor of 1.5 compared with the control current ratio was enhanced by a factor of 1.5 compared with the control sample. This appreciable  sample. This appreciable improvement in the electrical performance of Device 1 could be attributed to improvement in the electrical performance of Device 1 could be attributed to the F the F4 TCNQ:pentacene ratio being appropriate and to the charge density at interface4TCNQ:pentacene  between the S/D ratio  being  appropriate  and channel to  the  charge  density  at  interface  between  the  S/D  electrodes  electrodes and the pentacene being high, improving charge injection [12,16]. However,and  the µthe  FE pentacene channel being high, improving charge injection [12,16]. However, the μ FE  value of the devices  value of the devices decreased with a decrease in the F4 TCNQ concentration of the F4 TCNQ-doped decreased with a decrease in the F 4TCNQ concentration of the F4TCNQ‐doped pentacene interlayer.  pentacene interlayer. -5

10

Control Device 1 Device 2 Device 3

-3.0 -2.5

Drain current (A)

Drain current (A)

-3.5

W/L=500/100 (m) VGS= -20V

-2.0 -1.5 -1.0 -0.5 0.0

0

-5

-10

-15

-20

Drain voltage (V)

-25

-30

(a) 

Control Device 1

-6

10

Device 2 Device 3

-7

10

-8

10

W/L=500/100 (m)

VDS= -20V

-9

10

-10

10

10

5

0

-5 -10 -15 -20 -25 -30

Gate voltage (V) (b) 

Figure 2. 2.  Drain  pentacene‐based  OTFTs  with  different different  Figure Drain current  current characteristics  characteristics of  of top‐contact  top-contact (TC)  (TC) pentacene-based OTFTs with F 4TCNQ:pentacene  ratios  (Device  1  =  1:1,  Device  2  =  1:3,  and  Device  3  =  1:10)  (a)  Output  curves  F4 TCNQ:pentacene ratios (Device 1 = 1:1, Device 2 = 1:3, and Device 3 = 1:10) (a) Output curves DS). (b) Transfer curves (IDS‐VGS).  (IDS‐V (I DS -V DS ). (b) Transfer curves (IDS -V GS ).

To  quantitate  the  effect  of  the  F4TCNQ:pentacene  ratio  of  the  F4TCNQ‐doped  pentacene  To quantitate the effect of the F4 TCNQ:pentacene ratio of the F4 TCNQ-doped pentacene interlayer interlayer on the electrical contact between the pentacene channel layer and the S/D metal electrodes,  on the electrical contact between the pentacene channel layer and the S/D metal electrodes, the channel the channel length dependence of the total resistance (RTotal) was determined according to the linear  length dependence of the total resistance (RTotal ) was determined according to the linear regions regions of the output characteristics of the fabricated devices. The channel lengths were 100, 150, 200  of the output characteristics of the fabricated devices. The channel lengths were 100, 150, 200 and and 250 μm. The RC value was obtained from the transmission line model (TLM) by extrapolating  250 µm. The RC value was obtained from the transmission line model (TLM) by extrapolating the the  RTotal  curve  to  obtain  the  y‐intercept  for  zero  channel  length  [17].  The  RC  values  of  the  four  RTotal curve to obtain the y-intercept for zero channel length [17]. The RC values of the four devices, devices, determined from the TLM, are shown in Figure 3. The RC value of Device 1 at a gate voltage  determined from the TLM, are shown in Figure 3. The RC value of Device 1 at a gate voltage of 6 Ω, which is approximately 1.5 times lower than that of the control sample  of −20 V was 0.617 × 10 ´20 V was6 0.617 ˆ 106 Ω, which is approximately 1.5 times lower than that of the control sample (0.935 × 10  Ω). As shown in Figure 3, RC first decreases and then increases with a decrease in the  (0.935 ˆ 106 Ω). As shown in Figure 3, RC first decreases and then increases with a decrease in F4TCNQ  concentration  of  the  F4TCNQ‐doped  pentacene  interlayer.  Apparently,  the  F4TCNQ  the F4 TCNQ concentration of the F4 TCNQ-doped pentacene interlayer. Apparently, the F4 TCNQ concentration  affects  hole  transport  across  the  interface  between  the  S/D  metal  electrodes  and  the  concentration affects hole transport across the interface between the S/D metal electrodes and the pentacene channel layer. In the presence of an F4TCNQ‐doped pentacene interlayer, the hole carrier  pentacene channel layer. In the presence of an F4 TCNQ-doped pentacene interlayer, the hole carrier could easily move through the F4TCNQ‐doped pentacene layer into the pentacene channel because  could easily move through the F4 TCNQ-doped pentacene layer into the pentacene channel because of  the  improvement  in  the  local  conductivity  and  the  formation  of  a  multiple  step  barrier  at  the  of the improvement in the local conductivity and the formation of a multiple step barrier at the interlayer [12,16]. F4TCNQ is an acceptor dopant, and therefore, in the interlayer, it leads to which  interlayer [12,16]. F4 TCNQ is an acceptor dopant, and therefore, in the interlayer, it leads to which hole  doping  involving  the  electron  transfer  of  energy  level  between  pentacene  and  F4TCNQ,  hole doping involving the electron transfer of energy level between pentacene and F4 TCNQ, resulting resulting in enhancing conductivity. Furthermore, the F4TCNQ‐doped pentacene interlayer changes  in enhancing conductivity. Furthermore, the F4 TCNQ-doped pentacene interlayer changes the Fermi the Fermi energy (EF) position of the intrinsic pentacene, which leads to the formation of subdivided  energy (EF ) position of the intrinsic pentacene, which leads to the formation of subdivided barriers barriers instead of a single barrier in the interlayer, and enhances the injection of hole carriers from  instead of a single barrier in the interlayer, and enhances the injection of hole carriers from the the Au electrodes to the pentacene channel. Consequently, the F4TCNQ dopant amount can be easily  fine‐tuned  to  achieve  the  optimal  device  performance,  which  corresponds  to  a  reduction  in  RC,    as shown in Figure 3.  4

Materials 2016, 9, 46

5 of 9

Au electrodes to the pentacene channel. Consequently, the F4 TCNQ dopant amount can be easily fine-tuned to achieve the optimal device performance, which corresponds to a reduction in RC , as shown in Figure 3. Materials 2016, 9, 46  Materials 2016, 9, 46  1.0

1.0

RC(M RC (M ) )

0.9

0.9

0.8

0.8 0.7 0.7 0.6 0.6 Control Device 1 Device 2 Device 3

 

Figure 3. The R  value as a function of F 4TCNQ:pentacene ratio of TC pentacene‐based OTFTs for  Figure 3. The RC value Cas a function of F4Control TCNQ:pentacene ratio TC pentacene-based OTFTs for V DS Device 3   2 of Device 1 Device VDS and VGS values of −2 and −20 V, respectively.  and V GS values of ´2 and ´20 V, respectively.

Figure 3. The RC value as a function of F4TCNQ:pentacene ratio of TC pentacene‐based OTFTs for  The  dependence  of  the  device  performance  on  the  thickness  of  the  molecular‐doping‐type  VDS and VGS values of −2 and −20 V, respectively.  F4TCNQ‐doped pentacene layer was investigated. In a previous report of the present authors, the  The dependence of the device performance on the thickness of the molecular-doping-type performance of pentacene‐based OTFTs was found to be strongly dependent on the thickness of the  F4 TCNQ-doped pentacene of  layer investigated. previous report of the present authors, the The  dependence  the  was device  performance In on a the  thickness  of  the  molecular‐doping‐type  insulating‐type  Teflon  interlayer  [7].  To  investigate  the  effect  of  the  thickness  of  F4TCNQ‐doped  F4TCNQ‐doped pentacene layer was investigated. In a previous report of the present authors, the  performance of pentacene-based OTFTs was found to be strongly dependent on of the pentacene  and  Teflon  interlayers  on  the  device  performance,  the  F4TCNQ:pentacene  the ratio thickness of  the  performance of pentacene‐based OTFTs was found to be strongly dependent on the thickness of the  insulating-type Teflon interlayer [7]. To investigate the effect of the thickness of F4 TCNQ-doped F4TCNQ‐doped pentacene interlayer was fixed at 1:1, and the thicknesses of both carrier injection  insulating‐type  Teflon  investigate  the shows  effect the  of thickness‐dependent  the  thickness  of  F4transfer  TCNQ‐doped  interlayers  were  set  at interlayer  0,  1.5,  3,  and  10  nm.  Figure  4a,b  pentacene and Teflon interlayers on5 [7].  the To  device performance, the F4 TCNQ:pentacene ratio of the property of the device with Teflon and F 4TCNQ‐doped pentacene interlayers of various thicknesses.  pentacene  and  Teflon  interlayers  on  the  device  performance,  the  F 4TCNQ:pentacene  ratio  of  the  F4 TCNQ-doped pentacene interlayer was fixed at 1:1, and the thicknesses of both carrier injection The  device  with  Teflon  interlayer  showed  remarkable  thickness  dependence,  while  the  one  with  F4TCNQ‐doped pentacene interlayer was fixed at 1:1, and the thicknesses of both carrier injection  interlayersF4were set at pentacene  0, 1.5, 3, interlayer  5 and 10showed  nm. Figure 4a,b showsIn the thickness-dependent transfer TCNQ‐doped  a  slight  dependence.  addition,  Figure 4c,d shows transfer  interlayers  were  set  at  0,  1.5,  3,  5  and  10  nm.  Figure  4a,b  shows  the  thickness‐dependent  the AFM micrographs of the pentacene layers without and with a 5 nm F 4TCNQ‐doped pentacene  property of the device with Teflon and F4 TCNQ-doped pentacene interlayers of various thicknesses. property of the device with Teflon and F 4TCNQ‐doped pentacene interlayers of various thicknesses.  interlayer deposited on the PVP dielectric surface. The root mean square (rms) roughness for both  The device with Teflon interlayer showed remarkable thickness dependence, whilethe  the one with The devices  device without  with  Teflon  interlayer  showed  remarkable  thickness  dependence,  while  one  with  and  with  5  nm  F4TCNQ‐doped  pentacene  interlayer  is  5.62  and  4.97  nm,  F4 TCNQ-doped pentacene interlayer showed a slight dependence. In addition,  addition,Figure 4c,d shows  Figure 4c,d shows F4TCNQ‐doped  pentacene  interlayer  showed  a  slight  dependence.  In  respectively. It had been clearly seen that the surface  become more smooth for devices with 5 nm  the AFM micrographs of the pentacene layers without and with a 5 nm F TCNQ-doped the AFM micrographs of the pentacene layers without and with a 5 nm F 4 TCNQ‐doped pentacene  4 F4TCNQ‐doped pentacene interlayer, which is necessary for providing a better contact with metal pentacene interlayer deposited on the PVP dielectric surface. The root mean square (rms) roughness for both  electrodes. This is the mechanism for lowering the barrier height and increasing the charge injection,  interlayer deposited on the PVP dielectric surface. The root mean square (rms) roughness for both and  then  improving  The pentacene field‐effect  mobility  (μ FE)  was  calculated  a  Vrespectively. GS  devices  without  and  with  5  nm  F4TCNQ‐doped  pentacene  interlayer  is  5.62  and  4.97  nm,  devices without and with 5 device  nm F4performance.  TCNQ-doped interlayer is 5.62 and 4.97for  nm, value of −30 V in the saturation region, and the threshold voltage (V TH) was determined according  respectively. It had been clearly seen that the surface  become more smooth for devices with 5 nm  It had been clearly seen that the surface become more smooth for devices with 5 nm F4 TCNQ-doped to  the  saturation  region  of  the  plot  of  |IDS|1/2  versus  VGS  [18].  The  sub‐threshold  swing  (SS)  was  F4TCNQ‐doped pentacene interlayer, which is necessary for providing a better contact with metal  pentacene interlayer, which is necessary for providing a better contact with metal electrodes. This is calculated using the equation SS = dVGS/d(log10|IDS|). The maximum and minimum values of I DS at a  electrodes. This is the mechanism for lowering the barrier height and increasing the charge injection,  −20  V  were  the designated  ION  (on  current)  and  Ithe OFF  (off  current),  respectively  [19]. improving   VDS  of for the mechanism lowering barrieras  height and increasing charge injection, and then and The  then  improving  device  performance.  The  field‐effect  mobility  (μFE) and  was F4calculated  for  a  VGS  thickness‐dependent  properties  of  pentacene‐based  with  Teflon  TCNQ‐doped  device performance. The field-effect mobility (µFE ) was OTFTs  calculated for a V value of ´30 V in the GS value of −30 V in the saturation region, and the threshold voltage (V pentacene interlayers of various thicknesses were summarized in Table 1.  TH) was determined according 

Drain current (A)

saturation region, and the threshold (V was determined according to theswing  saturation region to  the  saturation  region  of  the  voltage plot  of  |I DSTH |1/2)  versus  VGS  [18].  The  sub‐threshold  (SS)  was  of the plot of |IDS |1/2 versus V GS [18]. TheGSsub-threshold swing (SS) was calculated using the equation calculated using the equation SS = dV /d(log10|IDS|). The maximum and minimum values of I DS at a  SS = dV |I The maximum values of IDS at a Vrespectively  were   /d(log of  −20 10V  were  designated  as  ION and (on  minimum current)  Unstable and  Iprocess OFF  (off  current),  [19].    VDS GS DS |). DS of ´20 V window Stable process window 10 10 The  thickness‐dependent  pentacene‐based  OTFTs  with  Teflon  F4TCNQ‐doped  designated as ION (on current)properties  and IOFFof  (off current), respectively [19]. The and  thickness-dependent pentacene interlayers of various thicknesses were summarized in Table 1.  10 properties of pentacene-based OTFTs Control with Teflon and F410TCNQ-doped pentacene interlayers of various Control 1.5nm 1.5nm 3nm 1. thicknesses were 10summarized in Table 3nm 10 -7

-8

5nm 10nm

-9

Stable process window

Drain current (A)

-6

10

F4TCNQ-doped pentacene

10

-10

10

10

5

-7

10

0

(a) 

10

-9

1.5nm 3nm 5nm 10nm F4TCNQ-doped pentacene

10

10

5

0

-5 -10 -15 -20 -25 -30

Gate voltage (V)

-8

10

5nm 10nm Teflon

-9

-10

10

-6

10

10

-7

10

-8

10

-9

Figure 4. Cont. 

W/L=500/150 (m) VDS= -20V

-10

-7

10

-5 -10 -15 -20 -25 -30

Gate voltage (V) Control

-8

10

W/L=500/150 (m) VDS= -20V

-6

Drain current (A)

Drain current (A)

-6

10

W/L=500/150 m Unstable process window (

5

0

-5 -10 -15 -20 -25 -30

Gate voltage (V) (b)

(a) 

10

5

0

Figure 4. Cont. 

5

 

-5 -10 -15 -20 -25 -30

Gate voltage (V) (b)

Figure 4. Cont.

Control 1.5nm 3nm 5nm 10nm Teflon

W/L=500/150 (m) VDS= -20V

-10

5

)

VDS= -20V

 

Materials 2016, 9, 46 Materials 2016, 9, 46 

6 of 9

  (c) 

(d)

Figure 4. Transfer characteristics of pentacene‐based OTFTs with (a) F TCNQ‐doped pentacene and  Figure 4. Transfer characteristics of pentacene-based OTFTs with (a) F44TCNQ-doped pentacene and (b)  Teflon  interlayers  of  various  thicknesses,  and  AFM  images  of  pentacene  films (c) (c) without without and and    (b) Teflon interlayers of various thicknesses, and AFM images of pentacene films 4 TCNQ‐doped pentacene interlayer.  (d) with 5 nm F (d) with 5 nm F4 TCNQ-doped pentacene interlayer. Table 1.1.  The The  electrical electrical  characteristics characteristics  for for  the the devices devices with with FF4TCNQ-doped TCNQ‐doped  pentacene pentacene  and and  Teflon Teflon  Table 4 interlayers of various thicknesses.  interlayers of various thicknesses. Molecular Doping Type:  Insulating Type:    Electrical  Molecular Doping Type: F4TCNQ‐Doped Pentacene  Teflon  Insulating Type: Teflon Parameters    F4 TCNQ-Doped Pentacene Electrical Parameters Control  1.5 nm  3 nm 5 nm 10 nm Control 1.5 nm 3 nm  5 nm  10 nm 1.5 nm −4.4  3 nm −4.1  5 nm −4.2  10 nm −6  Control 1.5 nm 3−5.5  nm 5−3  nm 10 nm VTH (V)  −7.7 Control −5.7  −5.9  −5.3  SS (V/decade)  2.2  2.7  2.5  2.6  2.9  1.77  1.98  1.73  1.93  2.5  V TH (V) ´7.7 ´5.7 ´4.4 ´4.1 ´4.2 ´6 ´5.9 ´5.5 ´3 ´5.3 2 V−1 s−1)  0.12  2.2 0.14 2.7 0.17 2.5 0.21 2.6 0.2 2.9 0.08  0.09  0.12  0.15  0.02  μFE (cm SS (V/decade) 1.77 1.98 1.73 1.93 2.5 2¨ V ´1 ¨ s´1 )4.95  0.12 3)  0.14 0.17 0.21 0.2 0.08 0.09 0.12 0.15 0.02 (cm /I OFF  (10 5  5.34  4.3  5.76  10.4  9.86  20.2  15.6  39.7  IµON FE 4.95 5 5.34 4.3 5.76 10.4 9.86 20.2 15.6 39.7 ION /IOFF (103 )

The  RTotal  of  the  device  with  Teflon  and  F4TCNQ‐doped  pentacene  interlayers  of  various  thicknesses  is  shown  Figure  5a,b,  respective.  variation  of  the  RC  and  μFE  values  the    The RTotal of the in  device with Teflon and F4The  TCNQ-doped pentacene interlayers of with  various carrier‐injection  interlayer  thickness  for  the  devices  with  Teflon  and  TCNQ‐doped  thicknesses is shown in Figure 5a,b, respective. The variation of the RCF4and µFE valuespentacene  with the interlayers  is  shown  in  Figure  5c.  The  R C   value  of  the  device  with  a  molecular‐doping‐type  carrier-injection interlayer thickness for the devices with Teflon and F4 TCNQ-doped pentacene   F4TCNQ‐doped  pentacene  interlayer  depended  only  on  with the  Fa4TCNQ‐doped  pentacene  interlayers is shown in Figure 5c. The RC value of slightly  the device molecular-doping-type FE, increased with the  Finterlayer thickness. The performances of both types of devices, according to μ 4 TCNQ-doped pentacene interlayer depended only slightly on the F4 TCNQ-doped pentacene thickness. However, when the interlayer thickness exceeded 5 nm, the μ FE  value of the device with  interlayer thickness. The performances of both types of devices, according to µFE , increased with the an F4TCNQ‐doped pentacene interlayer decreased slightly; by contrast, the μ FE value of the device  thickness. However, when the interlayer thickness exceeded 5 nm, the µFE value of the device with with  a  Teflon  interlayer  decreased  appreciably.  It  is  presumed  that  the  degradation  μFE device can  be  an F4 TCNQ-doped pentacene interlayer decreased slightly; by contrast, the µFE value of  of the directly attributed to the increase in R C . Unlike the R C  value of the device with an insulating‐type  with a Teflon interlayer decreased appreciably. It is presumed that the degradation of µFE can be Teflon  interlayer,  the  C  value in of RCthe  device  a  molecular‐doping‐type  4TCNQ‐doped  directly attributed to theRincrease . Unlike thewith  RC value of the device with an F insulating-type pentacene interlayer depended only slightly on the F 4 TCNQ‐doped pentacene interlayer thickness.  Teflon interlayer, the RC value of the device with a molecular-doping-type F4 TCNQ-doped pentacene 18 Ω∙cm). Therefore, when the  Teflon is an insulating material with an extremely high resistivity (10 interlayer depended only slightly on the F4 TCNQ-doped pentacene interlayer thickness. Teflon is 18 Teflon  interlayer  thickness  exceeds  a  critical  value,  the  insulating  properties  the the interlayer  an insulating material with an extremely high resistivity (10 Ω¨ cm). Therefore, of  when Teflon become  dominant  and  reduce  the  carrier  tunneling  probability.  Consequently,  the  device  interlayer thickness exceeds a critical value, the insulating properties of the interlayer become dominant performance  is  carrier degraded  appreciably.  It  is  to Consequently, say  that  the  molecular doping‐type  F4TCNQ‐doped  and reduce the tunneling probability. the device performance is degraded pentacene  interlayer  is  a  suitable  carrier  injection  layer  that  can  not  only  improve  the  TC‐OTFT  appreciably. It is to say that the molecular doping-type F4 TCNQ-doped pentacene interlayer is a performance but also facilitate obtaining a stable process window. It is the first time to compare the  suitable carrier injection layer that can not only improve the TC-OTFT performance but also facilitate process windows for the interlayers of the insulating type and molecular‐doping type. It is believed  obtaining a stable process window. It is the first time to compare the process windows for the interlayers that the results will be interesting and important from the viewpoint of manufacturing as a result of  of the insulating type and molecular-doping type. It is believed that the results will be interesting and the stable process window.  important from the viewpoint of manufacturing as a result of the stable process window.

6

Materials 2016, 9, 46 Materials 2016, 9, 46 

7 of 9

  (a) 

(b) 0.25

F4TCNQ-doped pentacene Teflon

0.20 0.15 0.10

8.00

0.05

1 0

0

2

4

6

8

10

Mobility (cm2V-1s-1)

R C ( M )

8.25

0.00

Interlayer thickness (nm) (c) Figure  5. 5.  The    and  RC  of  pentacene‐based  OTFTs  with  the  different  thickness  of  the    Figure The RRTotal Total and RC of pentacene-based OTFTs with the different thickness of the (a) FF44TCNQ-doped TCNQ‐doped pentacene pentacene  and and (b) (b) Teflon Teflon interlayer. interlayer.  (c)  The  variation variation  of of  the the  mobility mobility  and and  Rc Rc  (a) (c) The 4 TCNQ‐doped  values  with  the  various  carrier‐injection  interlayer  thickness  for  the  devices  with  F values with the various carrier-injection interlayer thickness for the devices with F4 TCNQ-doped pentacene or Teflon interlayers.  pentacene or Teflon interlayers.

In Figure 6, the dependence of the carrier injection efficiency on the thickness of the Teflon and  In Figure 6, the dependence of the carrier injection efficiency on the thickness of the Teflon and F4TCNQ‐doped  pentacene  is  clearly  explained.  In  the  control  sample,  hot  Au  atoms  are  directly  F4 TCNQ-doped pentacene is clearly explained. In the control sample, hot Au atoms are directly deposited onto the pentacene channel layer, and  diffuse into the upper layer of pentacene.  A high  deposited onto the pentacene channel layer, and diffuse into the upper layer of pentacene. A high energy barrier formed because of the presence of an interface dipole, there is a hole injection barrier  energy barrier formed because of the presence of an interface dipole, there is a hole injection barrier of of 0.8–1 eV between the Au electrodes and the pentacene channel layer, resulting in a relatively large  0.8–1 eV between the Au electrodes and the pentacene channel layer, resulting in a relatively large hole injection barrier, as shown in Figure 6a [6,7]. In addition, a high energy barrier associated with  hole injection barrier, as shown in Figure 6a [6,7]. In addition, a high energy barrier associated with the formation of a metallic surface at the Au electrode/pentacene channel interface obstructed hole  the formation of a metallic surface at the Au electrode/pentacene channel interface obstructed hole carrier transport. In the 5‐nm‐thick Teflon interlayer, the carriers could easily tunnel through to the  carrier transport. In the 5-nm-thick Teflon interlayer, the carriers could easily tunnel through to the pentacene  channel  layer  because  of  suppressed  metal  penetration  and  a  reduced  hole  injection  pentacene channel layer because of suppressed metal penetration and a reduced hole injection barrier barrier  at  the  Au  electrode/pentacene  channel  interface  [7].  However,  for  a  Teflon  layer  thickness  at the Au electrode/pentacene channel interface [7]. However, for a Teflon layer thickness greater greater  than  5  nm,  the  probability  of  carriers  tunneling  through  clearly  decreased  because  of  the  than 5 nm, the probability of carriers tunneling through clearly decreased because of the increased increased  RC  at  the  Au  electrode/pentacene  channel  interface.  In  the  case  of  the  F4TCNQ‐doped  RC at the Au electrode/pentacene channel interface. In the case of the F4 TCNQ-doped pentacene pentacene  interlayer,  regardless  of  its  thickness  (5‐  or  10‐nm  thick),  the  hole  carriers  could  easily  interlayer, regardless of its thickness (5- or 10-nm thick), the hole carriers could easily move through move through the interlayer to the Au electrodes because of the formation of a subdivided barrier  the interlayer to the Au electrodes because of the formation of a subdivided barrier and high local and  high  local  conductivity  at  the  Au  electrode/pentacene  channel  interface,  which  effectively  conductivity at the Au electrode/pentacene channel interface, which effectively reduced the hole reduced the hole injection barrier. Moreover, in the device containing a 5‐nm‐thick F4TCNQ‐doped  injection barrier. Moreover, in the device containing a 5-nm-thick F4 TCNQ-doped pentacene interlayer pentacene interlayer with an F4TCNQ:pentacene ratio of 1:1, the carrier injection efficiency is high  with an F4 TCNQ:pentacene ratio of 1:1, the carrier injection efficiency is high and RC is low, resulting and RC is low, resulting in high device performance. Even when the thickness of the F4TCNQ‐doped  in high device performance. Even when the thickness of the F4 TCNQ-doped pentacene interlayer pentacene interlayer was 10 nm, the effect of the thickness on the OTFT electrical performance was  was 10 nm, the effect of the thickness on the OTFT electrical performance was not apparent, implying not apparent, implying that the thickness dependence of the electrical performance of OTFTs with a  that the thickness dependence of the electrical performance of OTFTs with a molecular-doping-type molecular‐doping‐type F4TCNQ‐doped pentacene interlayer is weaker than that of the performance  F4 TCNQ-doped pentacene interlayer is weaker than that of the performance of OTFTs with an of OTFTs with an insulating‐type Teflon interlayer. Therefore, it is believed that an F4TCNQ‐doped  insulating-type Teflon interlayer. Therefore, it is believed that an F4 TCNQ-doped pentacene interlayer pentacene interlayer is a good candidate as a carrier injection layer for TC pentacene‐based OTFTs  since it provides a high carrier injection efficiency and a stable process window.  7

Materials 2016, 9, 46

8 of 9

is a good candidate as a carrier injection layer for TC pentacene-based OTFTs since it provides a high and a stable process window.

Materials 2016, 9, 46  carrier injection efficiency

  Figure  6.  Band  Figure 6. Band diagram  diagram of  of top‐contact  top-contact (TC)  (TC) pentacene‐based  pentacene-based OTFTs  OTFTs with  with various  various interlayer  interlayer thicknesses  (a)  control  sample,  (b)  5‐,  and  (c)  10‐nm‐thick  Teflon  and  (d)  5‐,  and  (e)  10‐nm‐thick  thicknesses (a) control sample, (b) 5-, and (c) 10-nm-thick Teflon and (d) 5-, and (e) 10-nm-thick F44TCNQ‐doped pentacene.  TCNQ-doped pentacene.

4. Conclusions  4. Conclusions 4TCNQ‐doped  pentacene  interlayer  was  fabricated  as  a  carrier  injection  In  summation, An An FFTCNQ-doped In summation, pentacene interlayer was fabricated as a carrier injection layer 4 layer by using the co‐evaporation method, and the effect of the doping concentration and thickness  by using the co-evaporation method, and the effect of the doping concentration and thickness of the of the interlayer on the performance of pentacene‐based OTFTs was investigated. The results show  interlayer on the performance of pentacene-based OTFTs was investigated. The results show that the that  the  device  an  F4TCNQ:pentacene  of  considerably 1:1  showed  considerably  improved  electrical  device with an F4with  TCNQ:pentacene ratio of 1:1 ratio  showed improved electrical characteristics characteristics compared with the device without an interlayer, because of a decrease in the contact  compared with the device without an interlayer, because of a decrease in the contact resistance resistance  the  metal  and channel. the  pentacene  channel.  Furthermore,  observations  between thebetween  metal electrodes andelectrodes  the pentacene Furthermore, observations suggested that the suggested that the dependence of the electrical performance of the OTFTs on the molecular‐doping‐type  dependence of the electrical performance of the OTFTs on the molecular-doping-type F4 TCNQ-doped F 4TCNQ‐doped  pentacene  interlayer  thickness  was  weaker  than  that  of  the  performance  of  an  pentacene interlayer thickness was weaker than that of the performance of an insulating-type Teflon pentacene  insulating‐type  Teflon  interlayer.  Therefore,  it  is  believed  that  the interlayer F4TCNQ‐doped  interlayer. Therefore, it is believed that the F4 TCNQ-doped pentacene (molecular doping interlayer  (molecular  doping  type)  is  a  suitable  candidate  for  the  carrier  injection  layer  of  TC  type) is a suitable candidate for the carrier injection layer of TC pentacene-based OTFTs since it pentacene‐based  OTFTs  since  it  facilitates  obtaining  a  stable  process  window  and  improves  the  facilitates obtaining a stable process window and improves the OTFT performance. OTFT performance. 

Acknowledgments: The authors would like to acknowledge the financial support of the National Science Council Acknowledgments:  The  No. authors  would  like  to  acknowledge  financial  support  of  the  National  of Taiwan under contract MOST 104-2221-E-011-159, and of the  the Taiwan Building Technology CenterScience  (TBTC) Council  of  Taiwan  under  contract  No.  MOST  104‐2221‐E‐011‐159,  and  of  the  Taiwan  Building  Technology  of National Taiwan University of Science and Technology (NTUST). Center (TBTC) of National Taiwan University of Science and Technology (NTUST).  Author Contributions: Ching-Lin Fan advise the study and work; Ching-Lin Fan and Hsiang-Sheng Chang designedContributions:  the research; Hsiang-Sheng Chang andthe  Wei-Chun Lin work;  performed the experimental work; Wei-Chun Lin Author  Ching‐Lin  Fan  advise  study  and  Ching‐Lin  Fan  and  Hsiang‐Sheng  Chang  wrote the manuscript. All authors discussed, edited and approved the final version. designed  the  research;  Hsiang‐Sheng  Chang  and  Wei‐Chun  Lin  performed  the  experimental  work;    Conflicts of Interest: The authors declare no conflict of interest. Wei‐Chun Lin wrote the manuscript. All authors discussed, edited and approved the final version. 

Conflicts of Interest: The authors declare no conflict of interest. 

References

1. Lin, S.K.; Li, Y.C.; Lin, Y.J.; Wang, Y.H. Effects of tri-layer polymer dielectrics on electrical characteristics in References 

1. 2. 2.

3.

pentacene thin-film transistors. ECS Solid State Lett. 2014, 3, N19–N22. [CrossRef] Lin, S.K.; Li, Y.C.; Lin, Y.J.; Wang, Y.H. Effects of tri‐layer polymer dielectrics on electrical  characteristics  Chen, H.Y.; Wu, I.W.; Chen, C.T.; Liu, S.W.; Wu, C.I. Self-assembled monolayer modification of silver in pentacene thin‐film transistors. ECS Solid State Lett. 2014, 3, N19–N22.  source-drain electrodes for high-performance pentacene organic field-effect transistors. Org. Electron. 2012, Chen,  H.Y.;  Wu,  I.W.;  Chen,  C.T.;  Liu,  S.W.;  Wu,  C.I.  Self‐assembled  monolayer  modification  of  silver  13, 593–598. [CrossRef] source‐drain electrodes for high‐performance pentacene organic field‐effect transistors. Org. Electron. 2012,  13, 593–598.  Fan, C.L.; Lin, Y.Z.; Chiu, P.C.; Wang, S.J.; Lee, W.D.  Teflon/SiO2  bilayer  passivation  for  improving  the  electrical reliability of pentacene‐based organic thin‐film transistors. Org. Electron. 2013, 14, 2228–2232. 

Materials 2016, 9, 46

3.

4.

5.

6. 7. 8. 9. 10.

11. 12. 13. 14. 15.

16. 17. 18.

19.

9 of 9

Fan, C.L.; Lin, Y.Z.; Chiu, P.C.; Wang, S.J.; Lee, W.D. Teflon/SiO2 bilayer passivation for improving the electrical reliability of pentacene-based organic thin-film transistors. Org. Electron. 2013, 14, 2228–2232. [CrossRef] Fujisaki, Y.; Nakajima, Y.; Takei, T.; Fukagawa, H.; Yamamoto, T.; Fujikake, H. Flexible active-matrix organic light-emitting diode display using air-stable organic semiconductor of Dinaphtho[2, 3-b: 21 , 31 -f]thieno[3, 2-b]-thiophene. IEEE Trans. Electron. Devices 2012, 59, 3442–3449. [CrossRef] Su, Y.; Wang, M.; Xie, F.; Chen, J.; Xie, W.; Zhao, N.; Xu, J. In situ modification of low-cost Cu electrodes for high-performance low-voltage pentacene thin-film transistors (TFTs). Org. Electron. 2013, 14, 775–781. [CrossRef] Xu, Y.; Liu, C.; Sun, H.; Balestra, F.; Ghibaudo, G.; Scheideler, W.; Noh, Y.Y. Metal evaporation dependent charge injection in organic transistors. Org. Electron. 2014, 15, 1738–1744. [CrossRef] Fan, C.L.; Chiu, P.C. Performance improvement of top-contact pentacene-based organic thin-film transistors by inserting an ultrathin Teflon carrier injection layer. Jpn. J. Appl. Phys. 2011, 50. [CrossRef] Alam, M.W.; Wang, Z.; Naka, S.; Okada, H. Mobility enhancement of top contact pentacene based organic thin-film transistor with bi-layer GeO/Au electrodes. Appl. Phys. Lett. 2013, 102. [CrossRef] Wang, H.; Wang, L.; Gao, Y.; Zhang, D.; Qiu, Y. Efficient organic light-emitting diodes with Teflon as buffer layer. Jpn. J. Appl. Phys. 2004, 43, L1353–L1355. [CrossRef] Wu, Z.; Wang, L.; Wang, H.; Gao, Y.; Qiu, Y. Charge tunneling injection through a thin teflon film between the electrodes and organic semiconductor layer: Relation to morphology of the teflon film. Phys. Rev. B 2006, 74, 165307–165315. [CrossRef] Su, S.H.; Wu, C.M.; Kung, S.Y.; Yokoyama, M. Enhancing the performance of organic thin-film transistors using an organic-doped inorganic buffer layer. Thin Solid Films 2013, 536, 229–234. [CrossRef] Li, J.; Zhang, X.W.; Zhang, L.; Haq, K.U.; Jiang, X.Y.; Zhu, W.Q.; Zhang, Z.L. Improving organic transistor performance through contact-area-limited doping. Solid State Commun. 2009, 149, 1826–1830. [CrossRef] Harada, K.; Riede, M.; Leo, K.; Hild, O.R.; Elliott, C.M. Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses. Phys. Rev. B 2008, 78. [CrossRef] Lee, C.T.; Chen, H.C. Performance improvement mechanisms of organic thin-film transistors using MoOx -doped pentacene as channel layer. Org. Electron. 2011, 12, 1852–1857. [CrossRef] Yan, P.; Liu, Z.; Zhang, S.; Liu, D.; Wang, X.; Yue, S.; Zhao, Y. Observation of hole injection boost via two parallel paths in Pentacene thin-film transistors by employing Pentacene: 4,4”-tris(3-methylphenylphenylamino) triphenylamine: MoO3 buffer layer. APL Mater. 2014, 2. [CrossRef] Wakatsuki, Y.; Noda, K.; Wada, Y.; Toyabe, T.; Matsushige, K. Molecular doping effect in bottom-gate, bottom-contact pentacene thin-film transistors. J. Appl. Phys. 2011, 110. [CrossRef] Jin, S.H.; Jung, K.D.; Shin, H.; Park, B.G.; Lee, J.D. Grain size effects on contact resistance of top-contact pentacene TFTs. Synth. Met. 2006, 156, 196–201. [CrossRef] Fan, C.L.; Yang, T.H.; Chiu, P.C. Performance improvement of bottom-contact pentacene-based organic thin-film transistors by inserting a thin polytetrafluoroethylene buffer layer. Appl. Phys. Lett. 2010, 97. [CrossRef] Bae, J.H.; Choi, Y. Engineered interface using a hydroxyl group-free polymeric buffer layer onto a TiO2 nanocomposite film for improving the electrical properties in a low-voltage operated organic transistor. Surf. Interface Anal. 2012, 44, 445–449. [CrossRef] © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Effects of the F₄TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors.

In this paper, the top-contact (TC) pentacene-based organic thin-film transistor (OTFT) with a tetrafluorotetracyanoquinodimethane (F₄TCNQ)-doped pent...
NAN Sizes 0 Downloads 7 Views