Issue Highlights – Cytometry Part B March 2014  This issue of the Journal contains articles that address many important topics for those  practicing clinical cytometry, including the selection of specific antigens for cell identification,  documenting phenotypic variation in non‐neoplastic cells, distinguishing between neoplastic and non‐ neoplastic cells, identifying subtypes of disease, and reliably evaluating markers of prognosis.   Which is the most sensitive and specific immunophenotypic marker of monocytes?  CD14 is  probably the most frequently used monocytic marker, and for many purposed is sufficient.  However,  CD14 is often negative on immature monocytes and is GPI‐linked and therefore absent in paroxysmal  nocturnal hemoglobinuria (PNH).  Bright intensity staining for CD33 is characteristic of monocytes, and  has been utilized in PNH WBC assays1 but, as outlined by Hudig et al. in this issue of the Journal, CD33  expression varies significantly between individuals2.  Two recently published articles illustrate the use of  CD64 for identifying monocytes in PNH WBC assays3, 4, and more recently Sutherland et al. report using  CD157 to detect both granulocytes and monocytes in a one tube 5‐color PNH WBC assay5.  In this issue  of the Journal, Hudig at al. propose that CD91 expression along with orthogonal light scatter is a more  robust method for identifying non‐neoplastic monocytes than either CD14 or CD33.  In their study, CD91  was restricted to monocytes and expressed at a consistent level among non‐neoplastic monocytes2.  It  will be of interest to further evaluate CD91 in the setting of immunophenotyping for leukemia and PNH.   After confirming that CD91 is a useful marker for the identification of monocytes, Hudig et al.  used it as a tool to evaluate variation in expression of other monocyte‐associated molecules, and report  their findings in a second article in the same issue of the Journal6.   It’s interesting to read about  variation in the expression of markers routinely use in diagnostic practice.   For example, monocyte  expression of HLA‐Dr varied within, and among, individuals.  Indeed, in a previous issue of the Journal,  Demaret et al, reported using differences in monocyte HLA‐Dr expression as a marker of immune  function7.  Therefore, diminished expression of HLA‐Dr on monocytes should be interpreted with  caution and not considered to represent phenotypic aberrancy.  This is important information for those  of us developing flow cytometric immunophenotyping panels for the detection of phenotypic aberrancy  as a marker of disease.    Some of you are probably saying “I told you we shouldn’t rely on detection of aberrant antigen  expression to identify disease.  Now, light chain monotypia, that’s something you can hang your hat on!”   Well maybe not.  In this issue of the Journal, Vafaii and DiGiuseppe describe three patients with multiple  sclerosis who had monotypic light chain restricted B‐cell populations identified in CSF specimens, but no  other evidence of lymphoma8.  Flow cytometric immunophenotyping has well established utility in the  detection of CSF involvement by previously diagnosed lymphoma and has also been advocated as a  primary diagnostic tool9, 10_ENREF_8.  However, the article by Vafaii and DiGiuseppe is a good reminder  that it is important for all clinical flow cytometric data to be interpreted in the context of the clinical and  other information.  In addition, it might be prudent to evaluate for both light chain restriction and  phenotypic aberrancy.  Those of you, like me, who plan to continue offering flow cytometric CSF  evaluation for lymphoma, will also be interested in the brief communication by Greig and Stetler‐ Stevenson describing increased cell yields and flow cytometric immunophenotyping results from CSF  specimens after addition of RPMI without fetal calf serum11. 

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1002/cytob.21161

Imagine you overcome all these challenges and detect a mature B‐cell neoplasm.  What  prognosis can the patient anticipate?  Although flow cytometric immunophenotyping provides  information useful for the classification of small B‐cell lymphoid neoplasms, the distinction between  chronic lymphocytic leukemia (CLL) and mantle cell lymphoma remains difficult, but is important for  predicting outcome.  CD200 has recently been proposed to assist in the diagnosis of CLL, hairy cell  leukemia and plasma cell myeloma12‐14.   In this issue of the Journal, Sandes et al, report their experience  with CD200, including evaluation of cases of atypical CLL, and propose an algorithm for the classification  of CD5+ mature B‐cell neoplasms15.  Once a diagnosis of CLL has been established, there remains  interest in evaluating for indicators of prognosis.  Should clinical flow cytometry laboratories be offering  testing for ZAP‐70 expression?  Flow cytometric evaluation of ZAP‐70 expression has been fraught with  problems, and several alternate procedures have been published previously in the Journal16, 17.  In this  issue, Adams et al. evaluate three different flow cytometric methods for calculating ZAP‐70 expression  by flow cytometry in comparison with IgVH mutational status, quantitative PCR for ZAP‐70, and time to  first treatment 18.  The most promising method identified in this study is quantitative flow cytometric  assessment for ZAP‐70 using a corrected mean fluorescence intensity algorithm (MFI ZAP‐70 B‐cells –  MFI isotype B‐cells/MFI ZAP‐70 T‐cells – MFI isotype T‐cells).  This result is interesting given the ongoing  controversy about the use of isotypic control antibodies and the recent report in the Journal by Rizzo et  al, that the T/B ratio does not accurately reflect levels of ZAP‐70 expression in CLL due to T‐cell over‐ expression19, 20.  However, the study by Adams at al. does have the advantage over many previous  studies of incorporating clinical data18.   Serum soluble CD23 (sCD23) is another prognostic marker in CLL.  In this issue of the Journal  Grelier et al. describe a flow cytometric bead array‐based assay for sCD23 and suggest that this assay  might be a more convenient alternative to RIA and ELISA‐based assays21.  In addition, flow cytometric  bead‐based prognostic assays might be easier to standardize than cell‐based fluorescence prognostic  assays, since they probably conform to many of the established validation guidelines for soluble  analytes.  However, the need for similar guidelines for the validation of cell‐based assays has recently  been addressed, as outlined in pivotal publications in the recent special issue of the Journal22‐26.    Fiona Craig, Pittsburgh, PA, USA.  E‐mail: [email protected]    References:  1.  Borowitz MJ, Craig FE, Digiuseppe JA, Illingworth AJ, Rosse W, Sutherland DR, et al. Guidelines  for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow  cytometry. Cytometry Part B, Clinical cytometry. 2010; 78B(4): 211‐230.  2.  Hudig D, Hunter KW, Diamond WJ, Redelman D. Properties of Human Blood Monocytes.  I.   CD91 expression and log orthogonal light scatter provide a robust method to identify monocytes that is  more acurate than CD14 expression. Cytometry Part B, Clinical cytometry. 2014; 86B(B2).  3.  Dalal BI, Khare NS. Flow cytometric testing for paroxysmal nocturnal hemoglobinuria: CD64 is  better for gating monocytes than CD33. Cytometry Part B, Clinical cytometry. 2013; 84B(1): 33‐36. 

4.  Sutherland DR, Keeney M, Illingworth A. Practical guidelines for the high‐sensitivity detection  and monitoring of paroxysmal nocturnal hemoglobinuria clones by flow cytometry. Cytometry Part B,  Clinical cytometry. 2012; 82B(4): 195‐208.  5.  Sutherland DR, Acton E, Keeney M, Davis BH, Illingworth A. Use of CD157 in FLAER‐based assays  for high‐sensitivity PNH granulocyte and PNH monocyte detection. Cytometry Part B, Clinical cytometry.  2014; 86B(1): 44‐55.  6.  Hudig D, Hunter KW, Diamond WJ, Redelman D. Properties of human blood monocytes. II.  Monocytes from healthy adults are highly heterogeneous within and among individuals. Cytometry Part  B, Clinical cytometry. 2013.  7.  Demaret J, Walencik A, Jacob MC, Timsit JF, Venet F, Lepape A, et al. Inter‐laboratory  assessment of flow cytometric monocyte HLA‐DR expression in clinical samples. Cytometry Part B,  Clinical cytometry. 2013; 84B(1): 59‐62.  8.  Vafaii P, Digiuseppe JA. Detection of B‐cell populations with monotypic light chain expression in  cerebrospinal fluid specimens from patients with multiple sclerosis by polychromatic flow cytometry.  Cytometry Part B, Clinical cytometry. 2013.  9.  Stacchini A, Aliberti S, Demurtas A, Benevolo G, Godio L. Ten antibodies, six colors, twelve  parameters: a multiparameter flow cytometric approach to evaluate leptomeningeal disease in B‐cell  non‐Hodgkin's lymphomas. Cytometry Part B, Clinical cytometry. 2012; 82B(3): 139‐44.  10.  de Graaf MT, de Jongste AH, Kraan J, Boonstra JG, Sillevis Smitt PA, Gratama JW. Flow  cytometric characterization of cerebrospinal fluid cells. Cytometry Part B, Clinical cytometry. 2011;  80B(5): 271‐281.  11.  Greig B, Stetler‐Stevenson M, Lea J. Stabilization media increases recovery in paucicellular  cerebrospinal fluid specimens submitted for flow cytometry testing. Cytometry Part B, Clinical  cytometry. 2013.  12.  Cannizzo E, Bellio E, Sohani AR, Hasserjian RP, Ferry JA, Dorn ME, et al. Multiparameter  immunophenotyping by flow cytometry in multiple myeloma: The diagnostic utility of defining ranges of  normal antigenic expression in comparison to histology. Cytometry Part B, Clinical cytometry. 2010;  78B(4): 231‐238.  13.  Demurtas A, Stacchini A, Aliberti S, Chiusa L, Chiarle R, Novero D. Tissue flow cytometry  immunophenotyping in the diagnosis and classification of non‐Hodgkin's lymphomas: a retrospective  evaluation of 1,792 cases. Cytometry Part B, Clinical cytometry. 2013; 84B(2): 82‐95.  14.  Alapat D, Coviello‐Malle J, Owens R, Qu P, Barlogie B, Shaughnessy JD, et al. Diagnostic  usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell  myeloma. Am J Clin Pathol. 2012; 137(1): 93‐100.  15.  Sandes AF, Chauffaille MD, Oliveira CR, Maekawa Y, Tamashiro N, Takao TT, et al. CD200 has an  important role in the differential diagnosis of mature B‐cell neoplasms by multiparameter flow  cytometry. Cytometry Part B, Clinical cytometry. 2013.  16.  Preobrazhensky SN, Szankasi P, Bahler DW. Improved flow cytometric detection of ZAP‐70 in  chronic lymphocytic leukemia using experimentally optimized isotypic control antibodies. Cytometry  Part B, Clinical cytometry. 2012; 82B(2): 78‐84.  17.  Preobrazhensky SN, Bahler DW. Optimization of flow cytometric measurement of ZAP‐70 in  chronic lymphocytic leukemia. Cytometry Part B, Clinical cytometry. 2008; 74(2): 118‐27.  18.  Adams RL, Cheung C, Banh R, Saal R, Cross D, Gill D, et al. Prognostic value of ZAP‐70 expression  in chronic lymphocytic leukaemia as assessed by quantitative polymerase chain reaction and flow  cytometry. Cytometry Part B, Clinical cytometry. 2013.  19.  O'Gorman MR, Thomas J. Isotype controls‐‐time to let go? Cytometry. 1999; 38(2): 78‐80. 

20.  Rizzo D, Bouvier G, Youlyouz‐Marfak I, Guerin E, Trimoreau F, Bordessoule D, et al. T/B ratio  does not reflect levels of ZAP70 expression in clonal CLL B‐cells due to ZAP70 overexpression in patient  T‐cells. Cytometry Part B, Clinical cytometry. 2013; 84B(2): 125‐32.  21.  Grelier A, Garff‐Tavernier ML, Nauwelaers F, Sarfati M, Merle‐Beral H. Soluble CD23  measurement by CBA: A convenient and reliable quantification method in chronic lymphocytic leukemia.  Cytometry Part B, Clinical cytometry. 2013.  22.  Wood B, Jevremovic D, Bene MC, Yan M, Jacobs P, Litwin V. Validation of cell‐based  fluorescence assays: practice guidelines from the ICSH and ICCS ‐ part V ‐ assay performance criteria.  Cytometry Part B, Clinical cytometry. 2013; 84B(5): 315‐323.  23.  Barnett D, Louzao R, Gambell P, De J, Oldaker T, Hanson CA. Validation of cell‐based  fluorescence assays: practice guidelines from the ICSH and ICCS ‐ part IV ‐ postanalytic considerations.  Cytometry Part B, Clinical cytometry. 2013; 84B(5): 309‐314.  24.  Tanqri S, Vall H, Kaplan D, Hoffman B, Purvis N, Porwit A, et al. Validation of cell‐based  fluorescence assays: practice guidelines from the ICSH and ICCS ‐ part III ‐ analytical issues. Cytometry  Part B, Clinical cytometry. 2013; 84B(5): 291‐308.  25.  Davis BH, Dasgupta A, Kussick S, Han JY, Estrellado A. Validation of cell‐based fluorescence  assays: practice guidelines from the ICSH and ICCS ‐ part II ‐ preanalytical issues. Cytometry Part B,  Clinical cytometry. 2013; 8B(5): 286‐290.  26.  Davis BH, Wood B, Oldaker T, Barnett D. Validation of cell‐based fluorescence assays: practice  guidelines from the ICSH and ICCS ‐ part I ‐ rationale and aims. Cytometry Part B, Clinical cytometry.  2013; 84B(5): 282‐285.     

Cytometry Part B March 2014.

Cytometry Part B March 2014. - PDF Download Free
416KB Sizes 3 Downloads 0 Views