GENES, CHROMOSOMES & CANCER 53:1018–1032 (2014)

Comprehensive Exploration of Novel Chimeric Transcripts in Clear Cell Renal Cell Carcinomas Using Whole Transcriptome Analysis Masahiro Gotoh,1† Hitoshi Ichikawa,2† Eri Arai,1 Suenori Chiku,3 Hiromi Sakamoto,2 Hiroyuki Fujimoto,4 Masaki Hiramoto,5 Takao Nammo,5 Kazuki Yasuda,5 Teruhiko Yoshida,2 and Yae Kanai1* 1

Division of Molecular Pathology,National Cancer Center Research Institute,Tokyo,Japan Division of Genetics,National Cancer Center Research Institute,Tokyo,Japan 3 Science Solutions Division,Mizuho Information and Research Institute,Inc.,Tokyo,Japan 4 Department of Urology,National Cancer Center Hospital,Tokyo,Japan 5 Department of Metabolic Disorder,Diabetes Research Center,National Center for Global Health and Medicine,Tokyo,Japan 2

The aim of this study was to clarify the participation of expression of chimeric transcripts in renal carcinogenesis. Whole transcriptome analysis (RNA sequencing) and exploration of candidate chimeric transcripts using the deFuse program were performed on 68 specimens of cancerous tissue (T) and 11 specimens of non-cancerous renal cortex tissue (N) obtained from 68 patients with clear cell renal cell carcinomas (RCCs) in an initial cohort. As positive controls, two RCCs associated with Xp11.2 translocation were analyzed. After verification by reverse transcription (RT)-PCR and Sanger sequencing, 26 novel chimeric transcripts were identified in 17 (25%) of the 68 clear cell RCCs. Genomic breakpoints were determined in five of the chimeric transcripts. Quantitative RT-PCR analysis revealed that the mRNA expression levels for the MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes, being partner genes involved in the chimeric transcripts in the initial cohort, were significantly reduced in 26 T samples relative to the corresponding 26 N samples in the second cohort. Moreover, the mRNA expression levels for the above partner genes in T samples were significantly correlated with tumor aggressiveness and poorer patient outcome, indicating that reduced expression of these genes may participate in malignant progression of RCCs. As is the case when their levels of expression are reduced, these partner genes also may not fully function when involved in chimeric transcripts. These data suggest that generation of chimeric transcripts may participate in renal carcinogenesis by inducing C 2014 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. V dysfunction of tumor-related genes.

INTRODUCTION

Clear cell renal cell carcinoma (RCC) is the most common histological subtype of adult kidney cancer (Ljungberg et al., 2011). In general, RCCs at an early stage are curable by nephrectomy. However, some RCCs relapse and metastasize to distant organs. Even though molecular targeting agents have been developed for treatment of RCCs, their effectiveness for relapsed or metastasized RCCs after nephrectomy is very limited. To improve prognostication and the effectiveness of targeting therapy in patients with RCCs, the molecular background of renal carcinogenesis should be further elucidated. We and other groups have revealed both genetic and epigenetic events during renal carcinogenesis (Arai and Kanai, 2010). Especially, recent developments in high-throughput sequence capture methods and next-generation sequencing technologies have made exome sequencing technically feasible.

Such whole exome analyses have revealed that renal carcinogenesis involves inactivation of histone-modifying genes such as SETD2 (Dalgliesh et al., 2010), KDM5C (Dalgliesh et al., 2010), UTX (van Haaften et al., 2009), and PBRM1 This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is nonommercial and no modifications or adaptations are made. Additional Supporting Information may be found in the online version of this article. Supported by: the Program for Promotion of Fundamental Studies in Health Sciences (10-42 and 10-43) of the National Institute of Biomedical Innovation (NiBio), Japan and the National Cancer Center Research and Development Fund (23-A-1), Japan. † Masahiro Gotoh and Hitoshi Ichikawa contributed equally to this work. *Correspondence to: Yae Kanai; Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. E-mail: [email protected] Received 17 April 2014; Accepted 7 August 2014 DOI 10.1002/gcc.22211 Published online 18 September 2014 in Wiley Online Library (wileyonlinelibrary.com).

C 2014 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. V

1019

WHOLE TRANSCRIPTOME ANALYSIS IN RCCs

TABLE 1. The Clinicopathological Parameters of Clear Cell Renal Carcinomas Belonging to the Initial and Second Cohorts Clinicopathological parameters Age (mean 6 SD) Sex Male Female Tumor diameter (cm, mean 6 SD) Macroscopic configurationc Type 1 Type 2 Type 3 Predominant histological gradesd,e G1 G2 G3 G4 Highest histological gradesf G1 G2 G3 G4 Vascular involvementg Negative Positive Predominant growth patterne Expansive Infiltrative Most aggressive growth patternf Expansive Infiltrative Tumor necrosis Negative Positive Renal pelvic invasion Negative Positive Distant metastasis Negative Positive Pathological TNM stageh Stage I Stage II Stage III Stage IV

Initial cohort (n 5 68)

Second cohort (n 5 26)

P

62.25 6 11.00

57.12 6 10.80

0.078a

49 19 5.55 6 3.21

17 9 5.86 6 2.84

0.616b

25 17 26

13 5 8

0.562b

36 21 9 2

12 8 4 2

0.696b

5 32 16 15

1 6 11 8

0.105b

38 30

13 13

0.649b

61 7

24 2

1.000b

43 25

21 5

0.139b

51 17

16 10

0.212b

61 7

23 3

1.000b

58 10

24 2

0.500b

33 4 19 12

13 3 8 2

0.531b

0.407a

a

Mann–Whitney U test. Fisher’s exact test. No significant differences of clinicopathologcial parameters were observed between two cohorts. c Macroscopic configuration was evaluated on the basis of previously described criteria (Arai et al., 2006). d All the tumors were graded on the basis of previously described criteria (Fuhrman et al., 1982). e If the tumor showed heterogeneity, findings in the predominant area were described. f If the tumor showed heterogeneity, the most aggressive features of the tumor were described. g The presence or absence of vascular involvement was examined microscopically on slides stained with hematoxylin-eosin and elastica van Gieson. h All the tumors were classified according to the pathological Tumor-Node-Metastasis classification (Sobin et al., 2009). b

(Varela et al., 2011). Moreover, it is well known that clear cell RCCs are characterized by inactivation of the VHL tumor suppressor gene encoding a component of the protein complex that possesses ubiquitin ligase E3 activity (Baldewijns et al., 2010). Frequent mutation of a further component of the ubiquitin-mediated proteolysis pathway gene, BAP1 (Guo et al., 2012), and VHL-associated

transcription elongation factor, TCEB1 (Sato et al., 2013), has also been demonstrated on the basis of exome analyses. However, only a limited number of reports have described next-generation sequencing-based whole transcriptome analysis (RNA sequencing) of RCCs, and the molecular background of renal carcinogenesis has not been fully elucidated. Genes, Chromosomes & Cancer DOI 10.1002/gcc

Sample

Genes, Chromosomes & Cancer DOI 10.1002/gcc

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

Clear

Clear

Clear

Clear

Clear

Clear

Clear

Clear

Clear

Clear

Clear

Clear

(A) Initial cohort Clear K1

Subtype

NM_001193329 NM_001904 NM_001005862 NM_015506 NM_015506 NM_015153 NM_001001484

C9orf3

CTNNB1

ERBB2

MMACHC

MMACHC

PHF3

PTER

ASAP1

UPF3A

TEX264

RP11–322M19.1

SEMA6A

RIC8A

AC010724.1

POLR2G

RP1–45C12.1

ATXN7

EPC2

PLOD2

NM_001247996

NM_023011

NM_001129884

NM_020796

NM_021932

NM_002696

NM_000333

NM_015630

NM_000935

NM_003777

NM_001005417

B4GALT2

DNAH11

NM_032208

ANTXR1

Symbol

RNA accession no.

50 -partner gene

29 (ch 8, 131072825)

5 (ch 13, 115052104)

3 (ch 3, 51708578)

(ch 10, 89005872)

18 (ch 5, 115803279)

ADCY8

CDC16

FAM107A

MINPP1

CAMK4

RP11–34P13.7

CPEB1

(ch 15, 83207631) 1 (ch 11, 211349)

CYP1A2

KIFAP3

FHIT

RP11–715D1.1

CCNYL1

RAPGEF5

MSRB2

PTP4A1

BX004987.7

BX004987.7

LTBP4

PLAG1

PRUNE2

ZSWIM5

GKN1

Symbol

2 (ch 11, 62529376)

(ch 1, 171137243)

5 (ch 3, 63938159)

2 (ch 2, 149447942)

1 (ch 3, 145878668)

79 (ch 7, 21934617)

5 (ch 10, 16547159)

1 (ch 6, 64356700)

2 (ch 1, 45973222)

1 (ch 1, 45966085)

15 (ch 17, 37872192)

1 (ch 3, 41241161)

12 (ch 9, 97767898)

3 (ch 1, 44450537)

17 (ch 2, 69420547)

Exon (chromosome, position)

Exon boundariesb

NM_001115

NM_001078645

NM_001076778

NM_001178118

NM_001744

NM_001079533

NM_000761

NM_001204514

NM_001166243

NM_001142300

NM_012294

NM_012228

NM_003463

NM_001042545

NM_002655

NM_015225

NR_024270

NM_019617

RNA accession no

30 -partner gene

10 (ch 8, 131862049)

15 (ch 13, 115027362)

1 (ch 3, 58594984)

2 (ch 10, 89268093)

11 (ch 5, 110825288)

(ch 1, 92240)

8 (ch 15, 83218408)

7 (ch 15, 75047132)

21 (ch 1, 169890922)

2 (ch 3, 61186339)

(ch 3, 108828611)

4 (ch 2, 208602135)

7 (ch 7, 22306631)

4 (ch 10, 23399171)

1 (ch 6, 64237724)

(ch 1, 143529235)

(ch 1, 143529235)

12 (ch 19, 41116438)

3 (ch 8, 57083748)

19 (ch 9, 79229516)

1 (ch 1, 45769599)

2 (ch 2, 69204627)

Exon (chromosome, position)

789224

24742

6886406

262221

4977991

10777

1246321

2751820

372014

6852012

118976

97556013

97563150

18538382

1319062

215920

Distance (bp)

TCTGTGATGCGTCCACAGCCAGGAGACACG| ATCGTCTTTGCTGGACTTCTTGGAGTCTTT CTTGGCCCGGTTGAAGGTGTCCTCACCATG| GGTTTCGGAGTAAGGGGAGCGGCCCGGCGA CGCAGGGAGAAGGAAGAGGTGTTTGAAAAG| TATTGACTTGAAGCTGAAAGAAAAGCCTTA CCCGCGGCGGGAGGAGCCTGTTCCCCTGAG| ATTGGCCAAAATGGGAAGGATTGGATTCCA ACACTGCCAACCGGCCAGAGGACGAGTGTG| ATGTGGACGAGTGCCACCGCGTGCCGCCGC CCTTTTGGCTTCGAGGTTTACCCCTTCCAG| GTTATATGCAGTACTGAAGAGCAACTTCAG GTGGCCTACCATCTGGGCCGTGTTAGAGAG| GTTATATGCAGTACTGAAGAGCAACTTCAG ATCCCAATTTCCAGATGCCTTGTTCAACAG| AGACTTGCTTCAACACCAGGAAGAACATGA CATGCCTGATGATAACAAAAGAATTAGAAG| CCTTTCAGTGGGATCTACCTGAATAACAAG TTATCCTTCTACTTATGGCCTAGCCCAGTG| GTGCAGAGAGAGCTAGCAGCTGTTATTGCT CTCGGAGAAGCCCTCGAGCATCCCCACAG| TGTGACCTTAGCAATATATTACCACATAAAG AACAGCCAAAACAGTTCATTCATATTCAGC| GAGAGAGCTGCCTGCAGAGAGCGTGAGTCC TCAAACCGCAGGCATTTCAATCACATTATG| CTTTGAAGCTCAGGAAAGAAGAGAAATCCA AGATGACAATTCATGTTGTTTTCAGGAAAG| CCTTGGAATGGATGGCTTTGGCCAACCAGT CACCGAGGTGGAGGGGACCTGCACAGGGAA| AGAGCTGTGGGAGGACCCCTCTGAGTTCCG AGAGAAAGGAGAGACAATTATGTTCCTGAG| GTGCAGGTGATCCCCTGGGTATTAGCCGAC CTCATCTTCCTAGAGAAGCGTTTGCACAAG| ACCAAACCAATGCAGACCAAACCAATGCAG TGTCTTCCCATAATCACCAAGACAAGAAGG| AGGTCCACCAGGGCAAAATAGAAGCCTTGC CCTCAGCCTCCAAAGTAGCTGAGACTACAG| ATATGGAGTTTGGACCTCCAACAGTTAATG ATCGCTGTCTACTATGACAACCCCCACATG| AAAAAGAAATGAAGGCCCAGACACGTTACG AGATGGAGGCGAAGACAAGAGAGCTCATTG| GTAACAGTTGACAAATGGGAACCTTTGTTG CCCGTACCACTGCCCAGAAAAATCAATACG| AGTGATGCCAATGACCATCCAGTTCTCCAT

Flanking sequencesc

TABLE 2. The 33 Chimeric Transcriptsa from the 61 Genes Verified by Reverse Transcription-PCR and Sanger Sequencing

2

2

2

2

2

2

1

1

2

2

2

2

2

2

2

2

2

1

2

2

2

1

In-frame transcripts

1020 GOTOH ET AL.

K14

K15

K16

K17

Clear

Clear

Clear

Clear

K96

RBM10

NM_001204468

NM_006521

NM_014226

RAGE

TFE3

NM_003631

PARG

NM_001039350

NM_001145408

NONO

DPP6

NM_001961

NM_007030

NM_014244

NM_016207

NM_020640

EEF2

TPPP

ADAMTS2

CPSF3

DCUN1D1

Symbol

17 (ch X, 47041725)

4 (ch X, 48895722)

1 (ch 7, 153584819)

1 (ch 14, 102771299)

8 (ch 10, 51093249)

10 (ch X, 70517788)

1 (ch 19, 3985376)

2 (ch 5, 677865)

2 (ch 5, 178770768)

7 (ch 2, 9576490)

(ch 3, 182679014)

Exon (chromosome, position)

TFE3

RBM10

ACTR3B

EML1

BMS1

TFE3

ENHO

TERT

RP11–798K23.4

ASAP2

MCCC1

Symbol

NM_006521

NM_001204468

NM_020445

NM_001008707

NM_014753

NM_006521

NM_198573

NM_198253

NM_001135191

NM_020166

RNA accession no

30 -partner gene

5 (ch X, 48895639)

18 (ch X, 47044454)

4 (ch 7, 152498706)

2 (ch 14, 100317190)

6 (ch 10, 43287075)

6 (ch X, 48891766)

2 (ch 9, 34521854)

3 (ch 5, 1282739)

(ch 5, 178930741)

23 (ch 2, 9533611)

18 (ch 3, 182735125)

Exon (chromosome, position)

1853914

1851268

1086113

2454109

7806174

21626022

604874

159973

42879

56111

Distance (bp)

TGGGAGAATCCACCGCCATCCGCCACCATG| GCTCAGGACTGCAGGTAGACATCTCCACTG GAAGGATTCAAGGGAACCTTCCCTGATGCG| CTGCCTGTGTCAGGGAATCTGCTTGATGTG GCACTCTGTCTGCCAAATATTTGCACCCAG| GGTGTCAAGCTGTTCTACCTTTCTGGAATG TGTCACCGGCTTCCGCATCCAAGATGAAGA| ATGACAGCGCTTCTGCTGCAAGTAGCATGG AAGACCGCTAAGATGCAGGGGAACGTGATG| GTATACCAAGCTTGGCTACGCAGGCAACAC CTCACCATCGGGTCCAGCTCAGAGAAGGAG| ATTGCCAAGGACATGGAACGCTGGGCCCG GAGAAGCACAAGACCAAGACAGCTCAACAG| ATTGATGATGTCATTGATGAGATCATCAGC

TTGCAAAGAATCCAGGACAAAAAGGATTAG| GTGTTTGTCAAAGCTGGAGACAAAGTGAAA GAAGGGCTCAGGAGCTGCTCTTGATTCTAG| ATCCCCTGACCCCCACGCCGCCCCCACCCG TCTGTGGCGCTCAGCAACTGCGATGGGCTG| ACCTCTGAATAAGTCGTGGGAGCCCTCGGG TGACGTGGACATCGTCTTCAGCAAGATCAA| GGGTTGGCTGTGTTCCGGCCGCAGAGCACC

Flanking sequencesc

1

1

1

1

1

1

2

2

2

1

2

In-frame transcripts

b

Chimeric transcripts (33) included the transcripts (MMACHC-BX004987.7 and TFE3-RBM10) consisting of the same partner gene sets with a different exon boundary or different transcriptional direction, and the transcripts sharing a partner gene, TFE3. National Center for Biotechnology Information Database (Genome Build 37). c The exon boundaries are indicated by a vertical bar. Clear, clear cell renal cell carcinoma; Xp11.2, renal cell carcinoma associated with Xp11.2 translocation; ch, chromosome; 1, positive; 2, negative.

a

Xp11.2

(B) Positive controls Xp11.2 K69

Sample

Subtype

RNA accession no.

50 -partner gene

Exon boundariesb

TABLE 2. (Continued)

WHOLE TRANSCRIPTOME ANALYSIS IN RCCs

1021

Genes, Chromosomes & Cancer DOI 10.1002/gcc

1022

GOTOH ET AL.

TABLE 3. Genomic Breakpoints of Chimeric Transcripts Genomic breakpointsa 50 -partner gene

Sample

Symbol

30 -partner gene

Chr

Genomic position

Symbol

Chr

Genomic position

K6

POLR2G

11

62530558

CYP1A2

15

75045983

K7

AC010724.1

15

83207075

CPEB1

15

83219352

K9

SEMA6A

5

115796806

CAMK4

5

110823275

K13

ASAP1

8

131070249

ADCY8

8

131862252

K15

CPSF3

2

9578689

ASAP2

2

9532071

Flanking sequencesb TAGTCTCTCGGAAGATCTGGGTTGGGTTCT| GAGAATTGCTTGAACTCTGGAGGTAGAGGC GAGATTATTGAAGTAGATCCTGACACTAAG| GAAATTGGCTCCTCTCTTGTAACTTCTGCC CGTAAGAAATTTGGTACATAAGCTGGTATT| TTAATCCAATTCATCCAAATTATTCTATCG GGCAGACAACGATGACGAGCTCACATTCAT| TGCAAAGTTTCTCAATAGAGAGAGTGCTCT ACCCTGTCACCCAGGCTGGAGTGTGGTGGC| ACAATCATGGCTCACTGCAGCCTCCAACTC

a

National Center for Biotechnology Information Database (Genome Build 37). The genomic breakpoints are indicated by a vertical bar.

b

Human hematologic (Shima and Kitabayashi, 2011) and soft tissue malignancies (Cantile et al., 2013), prostatic adenocarcinoma (Tomlins et al., 2005), and distinct subtypes of lung adenocarcinoma (Soda et al., 2007; Kohno et al., 2012; Takeuchi et al., 2012) show “addiction” for gene fusion events. Although their incidence is low, fusion events involving the transcription factor TFE3 gene have been reported in RCCs: RCC associated with Xp11.2 translocation, which harbors TFE3 fusion, is considered to represent a distinct subtype according to the World Health Organization (WHO) classification (Eble et al., 2004). Moreover, fusion events including anaplastic lymphoma kinase (ALK), such as TMP3ALK, EML4-ALK, and VCL-ALK fusion, have been reported in a distinct group of RCCs, including socalled “unclassified RCC” and papillary RCC in adults (Sugawara et al., 2012) and pediatric RCCs associated with the sickle cell trait (Debelenko et al., 2011; Mari~ no-Enrıquez et al., 2011), based on fluorescence in situ hybridization (FISH) and immunohistochemistry. These findings have prompted us to perform comprehensive exploration of chimeric transcripts in the most common subtype, clear cell RCC, using next-generation sequencing technology. In the present study, to clarify the participation of expression of chimeric transcripts in renal carcinogenesis, whole transcriptome analysis was performed using tissue specimens of 68 clear cell RCCs in adults. MATERIALS AND METHODS Patients and Tissue Samples

The initial cohort subjected to whole transcriptome analysis comprised 68 samples of cancerous Genes, Chromosomes & Cancer DOI 10.1002/gcc

tissue (T) and 11 samples of non-cancerous renal cortex tissue (N) obtained from materials that had been surgically resected from 68 patients with primary clear cell RCCs. There were 49 men and 19 women with a mean (6standard deviation) age of 62.3 6 11.0 years (range, 36 to 85 years). All patients underwent nephrectomy at the National Cancer Center Hospital, Tokyo, and had not received any preoperative treatment. Two expert pathologists specializing in genitourinary pathology, E.A. and Y.K., examined all histological slides and performed histological diagnosis in accordance with the WHO classification (Eble et al., 2004). All the tumors were graded on the basis of previously described criteria (Fuhrman et al., 1982) and classified according to the macroscopic configuration (Arai et al., 2006) and the pathological Tumor-Node-Metastasis (TNM) classification (Sobin et al., 2009). As a positive control for chimeric transcript detection, two T samples showing histological findings compatible with Xp11.2 translocation RCC based on the WHO criteria were also subjected to whole transcriptome analysis. For comparison, three T samples of papillary RCCs diagnosed in accordance with the WHO criteria were also subjected to whole transcriptome analysis. The second cohort subjected to quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis comprised 26 paired T and N samples obtained from materials that had been surgically resected from 26 other patients with primary clear cell RCCs. These patients comprised 17 men and nine women with a mean (6standard

Figure 1. Levels of mRNA expression for the partner genes involved in chimeric transcripts in 26 paired samples of tumorous tissue (T) and non-cancerous renal cortex tissue (N) in the second cohort. mRNA expression was analyzed using custom TaqMan Gene Expression Assays on the 7500 Fast Real-Time PCR System (Life Technologies) employing the relative standard curve method. The probes and PCR primer sets used are summarized in Supporting Information Table S6. Experiments were performed in triplicate for each sample-

primer set, and the mean value for the three experiments was used as the CT value. All CT values were normalized to that of GAPDH in the same sample. Levels of mRNA expression for the MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes were significantly reduced in T samples (shaded column) relative to N samples (white column). Bar, standard deviation.

1024

GOTOH ET AL.

TABLE 4. Correlations Between Levels of mRNA Expression for Each of the Partner Genes Involved in Chimeric Transcripts in Tumorous Tissue Samples and Clinicopathological Parameters Reflecting Tumor Aggressiveness in the Second Cohort MMACHC Clinicopathological parameters

Number of tumors

PTER

EPC2

ATXN7

Expressiona

P

Expressiona

P

Expressiona

P

Expressiona

P

0.0528 6 0.0226 0.0250 6 0.0116 0.0384 6 0.0202

1:6131022 c

0.558 6 0.557 0.324 6 0.400 0.277 6 0.248

1.88 3 1021c

0.114 6 0.065 0.0546 6 0.0480 0.0784 6 0.0596

1.23 3 1021c

0.125 6 0.099 0.0598 6 0.0374 0.128 6 0.099

2.12 3 1021c

0.086 0.0443 6 0.0222 0.0489 6 0.0233 0.0285 6 0.0105

5:0531022c

0.574 0.530 6 0.608 0.498 6 0.479 0.232 6 0.309

1.15 3 1021c

0.246 0.112 6 0.083 0.106 6 0.033 0.0373 6 0.0185

4:6531023c

0.228 0.134 6 0.144 0.124 6 0.082 0.0696 6 0.0311

1.64 3 1021c

0.0533 6 0.0254 0.0327 6 0.0132

2:5631022g

0.571 6 0.433 0.282 6 0.452

8:6031023g

0.125 6 0.067 0.0586 6 0.0383

7:2431023g

0.139 6 0.100 0.0876 6 0.078

5.01 3 1022g

0.046 6 0.0239 0.0306 6 0.0077

2:0031021g

0.482 6 0.492 0.194 6 0.129

1.57 3 1021g

0.0954 6 0.0659 0.0762 6 0.0541

7.53 3 1021g

0.121 6 0.100 0.0836 6 0.035

7.05 3 1021g

0.0503 6 0.0242 0.0314 6 0.0134

1:6931022g

0.548 6 0.513 0.232 6 0.277

1:4431022g

0.120 6 0.064 0.0472 6 0.0274

7:1331024g

0.142 6 0.106 0.0672 6 0.0281

2:6831022g

0.0451 6 0.0230 0.0270 6 0.0030

1:3431021g

0.469 6 0.471 0.101 6 0.018

8:4631023g

0.0973 6 0.0649 0.0487 6 0.0218

1.57 3 1021g

0.120 6 0.095 0.0620 6 0.0265

2.11 3 1021g

0.0450 6 0.0221 0.0185 6 0.0007

2:4631022g

0.413 6 0.460 0.589 6 0.572

4.98 3 1021g

0.0974 6 0.0625 0.0235 6 0.0021

5.54 3 1022g

0.120 6 0.093 0.0365 6 0.0106

3:6931022g

0.0430 6 0.0166 0.0277 6 0.0155 0.0549 6 0.0287 0.0185 6 0.0007

5:5431022c

0.561 6 0.573 0.204 6 0.232 0.251 6 0.163 0.589 6 0.572

4.69 3 1021c

0.104 6 0.056 0.0607 6 0.0503 0.100 6 0.078 0.0235 6 0.0021

1.78 3 1021c

0.112 6 0.095 0.112 6 0.099 0.135 6 0.097 0.0365 6 0.0106

1.87 3 1021c

b

Macroscopic configuration Type 1 13 Type 2 5 Type 3 8 d,e Histological grades G1 1 G2 6 G3 11 G4 8 Vascular involvementf Negative 13 Positive 13 e Growth pattern Expansive 21 Infiltrative 5 Tumor necrosis Negative 16 Positive 10 Renal pelvic invasion Negative 23 Positive 3 Distant metastasis Negative 24 Positive 2 h Pathological TNM stage Stage I 13 Stage II 3 Stage III 8 Stage IV 2

FHIT Clinicopathological Number of parameters Tumors

KIFAP3

Expressiona

P

CPEB1

Expressiona

Expressiona

P

TEX264 P

Expressiona

P

0.155 6 0.111 0.142 6 0.104 0.143 6 0.086

9.22 3 1021c

b

Macroscopic configuration Type 1 13 Type 2 5 Type 3 8 d,e Histological grades G1 1 G2 6 G3 11 G4 8 Vascular involvementf Negative 13 Positive 13 e Growth pattern Expansive 21 Infiltrative 5 Tumor necrosis Negative 16 Positive 10 Renal pelvic invasion Negative 23 Positive 3 Distant metastasis Negative 24 Positive 2 h Pathological TNM stage Stage I 13 Stage II 3 Stage III 8 Stage IV 2

0.0884 6 0.0432 3:8231022c 0.0362 6 0.0222 0.0675 6 0.0345

0.280 6:6231023c 0.211 6 0.172 0.130 6 0.044 0.0631 6 0.0308

0.118 1.18 3 1021c 0.004 4:2331022c 0.0862 6 0.0535 0.00383 6 0.00722 0.0718 6 0.0259 0.00173 6 0.00168 0.0556 6 0.0481 0.0123 6 0.0119

0.178 6 0.126 1:2031022g 0.0898 6 0.0503

0.0839 6 0.0384 5.68 3 1022g 0.00492 6 0.00742 1.00g 0.0599 6 0.0421 0.00615 6 0.00978

0.155 6 0.112 0.143 6 0.088

6.50 3 1021g

0.150 6 0.109 4:0931022g 0.0660 6 0.0410

0.0752 6 0.0446 5.69 3 1021g 0.00433 6 0.00664 1.05 3 1021g 0.0580 6 0.0207 0.0106 6 0.0139

0.158 6 0.104 0.112 6 0.066

3.40 3 1021g

0.174 6 0.114 5:5531024g 0.0699 6 0.0316

0.0820 6 0.0381 3:0931022g 0.0558 6 0.0431

Number of Tumors

Macroscopic configurationb Type 1 13

0.00275 6 0.00449 4:0831022g 0.0100 6 0.0115

0.148 9.75 3 1022c 0.233 6 0.154 0.142 6 0.068 0.0955 6 0.0427

0.183 6 0.110 6:0531023g 0.0943 6 0.0395

0.143 6 0.107 1.34 3 1021g 0.0763 6 0.0420 6.38 3 1022g 0.00461 6 0.00639 5.94 3 1021g 0.156 6 0.103 3.12 3 1021g 0.0643 6 0.0397 0.0380 6 0.0044 0.0127 6 0.0193 0.0922 6 0.0222 0.141 6 0.106 5.54 3 1022g 0.0755 6 0.0409 3:6931022g 0.0520 6 0.0014 0.0285 6 0.0078 0.161 6 0.124 1.40 3 1021c 0.0893 6 0.0302 0.127 6 0.090 0.0520 6 0.0014

FAM107A Clinicopathological parameters

0.00369 6 0.00572 3.31 3 1021c 0.0058 6 0.0102 0.0084 6 0.0113

0.177 6 0.125 4:7331022c 0.0782 6 0.0187 0.100 6 0.069

0.00458 6 0.00790 5.54 3 1022g 0.156 6 0.100 5.54 3 1022g 0.0170 6 0.0099 0.0638 6 0.0021

0.0730 6 0.0375 7.75 3 1022c 0.00300 6 0.00478 1.15 3 1021c 0.153 6 0.111 2.26 3 1021c 0.0400 6 0.0271 0.00100 6 0.00100 0.195 6 0.116 0.0930 6 0.0446 0.0085 6 0.0117 0.147 6 0.083 0.0285 6 0.0078 0.0170 6 0.0099 0.0638 6 0.0021

CDC16

CPSF3

ASAP2

Expressiona

P

Expressiona

P

Expressiona

P

Expressiona

P

0.312 6 0.184

5.51 3 1022c

0.113 6 0.054

1.35 3 1021c

0.0476 6 0.0255

2.78 3 1021c

0.0455 6 0.0346

1.85 3 1021c

Genes, Chromosomes & Cancer DOI 10.1002/gcc

1025

WHOLE TRANSCRIPTOME ANALYSIS IN RCCs

TABLE 4. (Continued) FAM107A Clinicopathological parameters

Number of Tumors

Type 2 Type 3 Histological gradesd,e G1 G2 G3 G4 Vascular involvementf Negative Positive Growth patterne Expansive Infiltrative Tumor necrosis Negative Positive Renal pelvic invasion Negative Positive Distant metastasis Negative Positive Pathological TNM stageh Stage I Stage II Stage III Stage IV

Expressiona

CDC16 P

Expressiona

CPSF3 P

0.0584 6 0.0377 0.0926 6 0.0753

Expressiona

ASAP2 Expressiona

P

0.0260 6 0.0151 0.0465 6 0.0286

P

5 8

0.0986 6 0.0779 0.203 6 0.242

0.0218 6 0.0191 0.0250 6 0.0227

1 6 11 8

0.685 0.209 6 0.140 0.313 6 0.197 0.100 6 0.129

2:1431022c

0.172 0.113 6 0.083 0.116 6 0.049 0.0475 6 0.0206

1:2831022c

0.0613 0.0575 6 0.0335 0.0464 6 0.0236 0.0256 6 0.0118

1.30 3 1021c

0.112 0.0399 6 0.0320 0.0411 6 0.0252 0.0122 6 0.0068

1:9331022c

13 13

0.258 6 0.182 0.217 6 0.226

3.11 3 1021g

0.123 6 0.063 0.0696 6 0.0458

2:5631022g

0.0518 6 0.0271 0.0344 6 0.0214

1.13 3 1021g

0.0508 6 0.030 0.0185 6 0.0203

7:9531024g

21 5

0.255 6 0.211 0.166 6 0.159

4.47 3 1021g

0.0975 6 0.0608 0.0914 6 0.0662

8.01 3 1021g

0.0437 6 0.0263 0.0409 6 0.0246

9.00 3 1021g

0.0372 6 0.0316 0.0240 6 0.0211

4.09 3 1021g

16 10

0.317 6 0.205 0.110 6 0.117

2:2431023g

0.121 6 0.063 0.0567 6 0.0278

5:0231023g

0.0535 6 0.0266 0.0266 6 0.0115

1:4431022g

0.0475 6 0.0317 0.0142 6 0.0086

2:7731023g

23 3

0.259 6 0.205 0.0726 6 0.0602

7.85 3 1022g

0.100 6 0.063 0.0650 6 0.0128

3.52 3 1021g

0.0453 6 0.0263 0.0263 6 0.0073

3.95 3 1021g

0.0368 6 0.0313 0.0179 6 0.0058

4.42 3 1021g

24 2

0.256 6 0.199 0.0165 6 0.0030

5.54 3 1022g

0.102 6 0.059 0.0245 6 0.0007

2:4631022g

0.0457 6 0.0249 0.0125 6 0.0019

1:2331022g

0.0363 6 0.0307 0.0151 6 0.0005

3.94 3 1021g

13 3 8 2

0.246 6 0.152 0.209 6 0.167 0.290 6 0.284 0.0165 6 0.0030

2.72 3 1021c

0.109 6 0.053 0.0513 6 0.0307 0.110 6 0.071 0.0245 6 0.0007

4:5931022c

0.0445 6 0.0279 0.0324 6 0.0170 0.0526 6 0.0220 0.0125 6 0.0019

9.67 3 1022c

0.0404 6 0.0279 0.0103 6 0.0082 0.0394 6 0.0376 0.0151 6 0.0005

1.86 3 1021c

a

Average mRNA levels/GAPDH 6 standard deviation. Macroscopic configuration was evaluated on the basis of previously described criteria (Arai et al., 2006). c Kruskal–Wallis test. P values of < 0.05 are underlined. d All the tumors were graded on the basis of previously described criteria (Fuhrman et al., 1982). e If the tumor showed heterogeneity, the most aggressive features of the tumor were described. f The presence or absence of vascular involvement was examined microscopically on slides stained with hematoxylin-eosin and elastica van Gieson. g Mann–Whitney U test. P values of

Comprehensive exploration of novel chimeric transcripts in clear cell renal cell carcinomas using whole transcriptome analysis.

The aim of this study was to clarify the participation of expression of chimeric transcripts in renal carcinogenesis. Whole transcriptome analysis (RN...
369KB Sizes 1 Downloads 6 Views