metal-organic compounds Acta Crystallographica Section C

framework solids, in particular as covalent bipyrazolate bridges (Pettinari et al., 2012), self-complementary hydrogenbond donors and acceptors (Boldog et al., 2001), and cationic bipyrazolium tectons, which act as multiple hydrogen-bond donors (Boldog et al., 2009; Domasevitch, 2012). For each of these cases, the NH site of the pyrazole ring is a key functional

Structural Chemistry ISSN 2053-2296

Cobalt(II) chloride complexes with 1,10 -dimethyl-4,40 -bipyrazole featuring first- and second-sphere coordination of the ligand Konstantin V. Domasevitch Inorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, Kyiv 01601, Ukraine Correspondence e-mail: [email protected] Received 27 November 2013 Accepted 29 January 2014

In catena-poly[[dichloridocobalt(II)]--(1,10 -dimethyl-4,40 -bi0 pyrazole-2N2:N2 )], [CoCl2(C8H10N4)]n, (1), two independent bipyrazole ligands (Me2bpz) are situated across centres of inversion and in tetraaquabis(1,10 -dimethyl-4,40 -bipyrazoleN2)cobalt(II) dichloride–1,10 -dimethyl-4,40 -bipyrazole–water (1/2/2), [Co(C8H10N4)2(H2O)4]Cl22C8H10N42H2O, (2), the Co2+ cation lies on an inversion centre and two noncoordinated Me2bpz molecules are also situated across centres of inversion. The compounds are the first complexes involving N,N0 -disubstituted 4,40 -bipyrazole tectons. They reveal a relatively poor coordination ability of the ligand, resulting in a Co–pyrazole coordination ratio of only 1:2. Compound (1) adopts a zigzag chain structure with bitopic Me2bpz links between tetrahedral CoII ions. Interchain interactions occur by means of very weak C—H  Cl hydrogen bonding. Complex (2) comprises discrete octahedral trans-[Co(Me2bpz)2(H2O)4]2+ cations formed by monodentate Me2bpz ligands. Two equivalents of additional noncoordinated Me2bpz tectons are important as ‘second-sphere ligands’ connecting the cations by means of relatively strong O—H  N hydrogen bonding with generation of doubly interpenetrated pcu (-Po) frameworks. Noncoordinated chloride anions and solvent water molecules afford hydrogen-bonded [(Cl)2(H2O)2] rhombs, which establish topological links between the above frameworks, producing a rare eight-coordinated uninodal net of {424.5.63} (ilc) topology. Keywords: crystal structure; cobalt(II) chloride complexes; hydrogen bonding; 1,10 -dimethyl-4,40 -bipyrazole; ilc net; second-sphere coordination.

1. Introduction The multipurpose applications of 4,40 -bipyrazoles for supramolecular synthesis concern their diverse chemical behaviour and a range of structural roles for sustaining structures of

272

# 2014 International Union of Crystallography

prerequisite. Considering bipyrazoles as simple bitopic coordination links between metal ions (Boldog et al., 2002; Taˆbaˆcaru et al., 2012), the NH sites are also important. They commonly provide a peculiar hydrogen bonding with anionic co-ligands (Nazarenko et al., 2013; Ponomarova et al., 2013), thus appreciably contributing to the overall structure. Therefore, the substitution at the N1 atom of the pyrazole ring could be of primary significance for fine-tuning the properties of the ligands in view of their ability to bridge metal ions and sustain secondary interactions. The resulting N-substituted bipyrazoles combine such features as structural simplicity and chemical accessibility, being readily available either by alkylation of the pyrazole ring or by heterocyclization of a dialdehyde precursor when reacted with substituted hydrazines (Timmermans et al., 1972). The steric effect of the N-substituent could mitigate against coordination of many pyrazole rings, which may be important for control over the formation of second-sphere hydrogen-bonded complexes rather than the assembly of more common coordination polymers, similar to the versatile 4,7-phenanthroline systems developed by Beauchamp & Loeb (2002). However, the coordination behaviour of N-substituted bipyrazoles and their utility as potentially suitable tectons for the generation of supramolecular architectures does not appear to have been considered. In this context, we have examined the prototypical bitopic ligand 1,10 -

doi:10.1107/S2053229614002046

Acta Cryst. (2014). C70, 272–276

metal-organic compounds Table 1 Experimental details. (1)

(2)

[CoCl2(C8H10N4)] 292.03 Monoclinic, P21/n 223 8.8762 (8), 14.2372 (14), 9.5878 (9) 90, 104.964 (2), 90 1170.54 (19) 4 Mo K 1.89 0.14  0.12  0.09

[Co(C8H10N4)2(H2O)4]Cl22C8H10N42H2O 886.73 Triclinic, P1 223 9.2087 (8), 11.1415 (10), 12.2523 (10) 63.071 (2), 83.665 (3), 72.592 (2) 1068.96 (16) 1 Mo K 0.59 0.17  0.14  0.12

Siemens SMART CCD area-detector diffractometer Multi-scan (using intensity measurements) (SADABS; Sheldrick, 1996) 0.785, 0.857 7256, 2763, 2061

Siemens SMART CCD area-detector diffractometer Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) 0.934, 0.961 10321, 4907, 4058

0.028 0.658

0.036 0.654

Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters H-atom treatment

0.032, 0.084, 0.96 2763 138 H-atom parameters constrained

˚ 3)  max,  min (e A

0.48, 0.50

0.040, 0.104, 0.99 4907 287 H atoms treated by a mixture of independent and constrained refinement 0.57, 0.71

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A , ,  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin / )max (A

Computer programs: SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

dimethyl-4,40 -bipyrazole (Me2bpz) and in the present contribution we report two coordination compounds of cobalt(II) chloride, namely catena-poly[[dichloridocobalt(II)]--(1,10 0 dimethyl-4,40 -bipyrazole-2N2:N2 )], (1), and tetraaquabis(1,10 2 0 dimethyl-4,4 -bipyrazole-N )cobalt(II) dichloride–1,10 -dimethyl-4,40 -bipyrazole–water (1/2/2), (2).

2. Experimental

molar ratios of the components were varied between 1:1 and 1:4, the resulting crystalline materials were mixtures of both (1) and (2). Elemental analysis calculated for (1): C 32.90, H 3.45, N 19.19%; found: C 32.73, H 3.49, N 19.08%. Elemental analysis calculated for (2): C 43.34, H 5.91, N 25.28%; found: C 43.47, H 5.82, N 25.40%. 2.2. Refinement

2.1. Synthesis and crystallization

1,10 -Dimethyl-4,40 -bipyrazole (Me2bpz) was synthesized according to the method of Timmermans et al. (1972). The title coordination compounds were prepared by slow evaporation of methanol solutions (4 ml) of the components. In this way, reaction of CoCl26H2O (26.2 mg, 0.110 mmol) and Me2bpz (16.2 mg, 0.100 mmol) gives elongated blue prisms of (1) in 80% yield (23 mg) and reaction of CoCl26H2O (11.9 mg, 0.050 mmol) and Me2bpz (35.6 mg, 0.220 mmol) provides light-pink blocks of (2) in 90% yield (39 mg). When the initial

Crystal data, data collection and structure refinement details are summarized in Table 1. All C—H hydrogens were located from difference maps and then refined as riding, with the angles constrained, C—H distances constrained to 0.94 ˚ (methyl), and Uiso(H) = 1.5Ueq(C) for (pyrazole) or 0.97 A methyl H atoms and 1.2Ueq(C) otherwise. For (2), all water H atoms were found in intermediate difference Fourier maps and were refined fully with isotropic displacement parameters ˚ ]. [O—H = 0.77 (3)–0.91 (3) A

3. Results and discussion

Table 2 ˚ ,  ) for (1). Selected geometric parameters (A Co1—N1 Co1—N3

2.0143 (19) 2.053 (2)

Co1—Cl2 Co1—Cl1

2.2300 (8) 2.2416 (7)

N1—Co1—N3 N1—Co1—Cl2 N3—Co1—Cl2

106.40 (8) 107.48 (6) 108.24 (6)

N1—Co1—Cl1 N3—Co1—Cl1 Cl2—Co1—Cl1

110.82 (6) 107.86 (6) 115.64 (3)

Acta Cryst. (2014). C70, 272–276

In the structure of complex (1) (Fig. 1), two independent 1,10 dimethyl-4,40 -bipyrazole (Me2bpz) ligands reside across centres of inversion. Distorted coordination tetrahedra of CoII ions comprise two chloride ligands and two N atoms of bipyrazole ligands (Table 2). Such geometry is also known for the dichloridocobalt(II) complex with 1,2-bis(pyridin-4-yl)Konstantin V. Domasevitch



[CoCl2(C8H10N4)] and an analogue

273

metal-organic compounds Table 3 ˚ ,  ) for (2). Selected geometric parameters (A Co1—O2 Co1—O1

2.0395 (11) 2.1095 (12)

Co1—N2

2.2145 (13)

O2—Co1—O1i O2—Co1—O1 O2—Co1—N2i

91.24 (5) 88.76 (5) 88.93 (5)

O1—Co1—N2i O2—Co1—N2 O1—Co1—N2

90.84 (5) 91.07 (5) 89.16 (5)

Symmetry code: (i) x þ 1; y þ 1; z þ 1.

Figure 1

Table 4

The structure of (1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. N and Cl atoms are shaded grey and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (vi) x + 1, y + 1, z; (ix) x + 1, y, z + 1.]

D—H  A

D—H

H  A

D  A

D—H  A

O1—H1W  O3 O1—H2W  N8 O2—H3W  N4iv O2—H4W  N6 O3—H5W  Cl1v O3—H6W  Cl1 C6—H6  Cl1 C8—H8  Cl1x C10—H10  Cl1vi C12—H12  Cl1xi C14—H14  Cl1iii C16—H16  Cl1

0.86 (3) 0.91 (3) 0.89 (2) 0.86 (3) 0.78 (3) 0.77 (3) 0.94 0.94 0.94 0.94 0.94 0.94

1.84 (3) 1.96 (3) 1.84 (2) 1.94 (3) 2.40 (3) 2.33 (3) 2.76 2.65 2.69 2.77 2.59 2.83

2.6939 (18) 2.839 (2) 2.7356 (18) 2.755 (2) 3.1576 (17) 3.0997 (17) 3.6126 (19) 3.5814 (18) 3.617 (2) 3.6911 (18) 3.5153 (19) 3.738 (2)

177 (2) 163 (2) 179 (2) 159 (3) 162 (3) 174 (3) 151 172 168 167 170 163

˚ ,  ) for (2). Hydrogen-bond geometry (A

Symmetry codes: (iii) x þ 2; y þ 1; z; (iv) x; y þ 1; z; (v) x þ 2; y; z þ 1; (vi) x þ 1; y þ 1; z; (x) x  1; y; z; (xi) x  1; y þ 1; z.

relatively low actual Co–pyrazole coordination ratio of only 1:2, similar to complex (1). This is contrary to unsubstituted 4,40 -bipyrazole (H2bpz), which typically forms two-dimensional square-grid polymers {[Co(H2bpz)2Cl2]Guest}n (Boldog et al., 2002). The relatively poor coordination ability of Me2bpz is unlikely influenced by the steric effect of the methyl group only; elimination of stabilizing hydrogen-bond Figure 2 A projection of the structure of (1) on the ab plane, showing the zigzag coordination chains of [CoCl2(Me2bpz)]n and a set of interchain interactions by weak C—H  Cl hydrogen bonding. [Symmetry code: (viii) x + 12, y + 12, z + 12.]

ethane (Wang, 2008). The resulting one-dimensional polymeric chains run along [011] and [011] (Fig. 2). They afford very weak C—H  Cl hydrogen bonds [C2  Cl1viii = ˚ and C2—H2  Cl1viii = 162 ; symmetry code: (viii) 3.588 (2) A 1 x + 2, y + 12, z + 12]. The structure of (2) is ionic and comprises complex [Co(Me2bpz)2(H2O)4]2+ dications, two independent noncoordinated Me2bpz molecules (all three entitites are situated across centres of inversion), solvent water molecules and noncoordinated chloride anions (Table 3 and Fig. 3). The latter constitute centrosymmetric discrete dichloride/diaqua ensembles, with typical O—H  Cl hydrogen-bond distances (Table 4). The metal ions have a trans-octahedral [CoN2O4] environment comprising two monodentate Me2bpz ligands, ˚ ] are longer than the and the Co1—N2 bonds [2.2145 (13) A Co1—O bonds involving the aqua ligands [2.0395 (11) and ˚ ]. Thus, even under a significant excess of the 2.1095 (12) A organic ligand in the reaction mixture, the product manifests a

274

Konstantin V. Domasevitch



[CoCl2(C8H10N4)] and an analogue

Figure 3 The structure of (2), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level, N and O atoms are shaded grey and C-linked H atoms have been omitted for clarity. Hydrogen bonding is indicated by dashed lines. [Symmetry codes: (i) x + 1, y + 1, z + 1; (ii) x, y + 2, z; (iii) x + 2, y + 1, z; (v) x + 2, y, z + 1.] Acta Cryst. (2014). C70, 272–276

metal-organic compounds

Figure 4 A fragment of the structure of (2), showing the mode of hydrogen bonding between [Co(Me2bpz)2(H2O)4]2+ cations with the generation of linear chains along the b direction. [Symmetry codes: (i) x + 1, y + 1, z + 1; (iv) x, y + 1, z; (v) x + 2, y, z + 1.]

interactions between coordinated pyrazole and anionic coligands (which are typical for complexes of N-unsubstituted bipyrazoles) (Ponomarova et al., 2013) could also be important. At first glance, this precludes organization of extended frameworks based upon Me2bpz.

The Me2bpz tectons, either monodentate or noncoordinated, are crucial for sustaining the present complex structure rather as ligands of a second coordination sphere (Beauchamp & Loeb, 2002). Every pyrazole group is a hydrogen-bond acceptor and establishes a relatively short and directional O— H  N hydrogen bond with the coordinated H2O donors (Table 4). In this way, topological linkage of the metal ions (the framework nodes) is based upon hydrogen-bonded Co— OH2  Me2bpz  H2O—Co bridges or combined coordination and hydrogen-bonded Co—Me2bpz  H2O—Co bridges. Such behaviour has few precedents in the chemistry of 4,40 bipyridine, rarely acting as a double hydrogen-bond acceptor towards metal–aqua cations (Carlucci et al., 1997) or as a monodentate ligand and acceptor of one M—OH2  N hydrogen bond (Dong et al., 2000; Abu-Shandi et al., 2001). It is worth noting that the second-sphere coordination of heterocyclic nitrogen bases, when combined with metal–aqua cations, has received growing interest with respect to developing systems for molecular recognition (Maldonado et al., 2012). Double bridges of the Co—Me2bpz  H2O—Co type lead to pair-wise association of the [Co(Me2bpz)2(H2O)4]2+ cations, giving rise to linear one-dimensional chains along the b ˚ direction, with a Co  Co separation of 11.1415 (10) A (parameter b of the unit cell) (Fig. 4). Both noncoordinated Me2bpz molecules are acceptors of two O—H  N hydrogen bonds and connect tetraaquacobalt fragments in the ac plane ˚ ]. The resulting [Co  Co = 14.1037 (10) and 14.4921 (10) A cationic three-dimensional framework has the composition {[Co(Me2bpz)2(H2O)4]2(Me2bpz)}n2n+. It possesses a primitive

Figure 5 A projection of the structure of (2) on the ac plane, showing two interpenetrated hydrogen-bonded {[Co(Me2bpz)2(H2O)4]2(Me2bpz)}2n+ n frameworks (indicated with bold and open lines, and two additional topological links of the frameworks are orthogonal to the drawing plane) and how they are linked by hydrogen bonding to [(Cl)2(H2O)2] assemblies. [Symmetry codes: (ii) x, y + 2, z; (iii) x + 2, y + 1, z; (v) x + 2, y, z + 1.] Acta Cryst. (2014). C70, 272–276

Figure 6 The hydrogen-bonded environment of the noncoordinated chloride anions in the structure of (2) (N and O atoms are shaded grey). Note the ‘chelate-like’ function of Me2bpz molecules, as multiple C—H  Cl hydrogen-bond donors. [Symmetry codes: (iii) x + 2, y + 1, z; (v) x + 2, y, z + 1; (vi) x + 1, y + 1, z; (vii) x + 1, y  1, z.] Konstantin V. Domasevitch



[CoCl2(C8H10N4)] and an analogue

275

metal-organic compounds cubic net topology with a point symbol of {412.63} (-Po; threeletter notation ‘pcu’) and two identical nets, related by a single translation vector, are interpenetrated (class Ia interpenetration, Z = 2) (Blatov et al., 2004). This connectivity employs six out of eight available O—H donors at the tetraaquacobalt node and the remaining two O—H donors generate additional internodal links through ˚; strong O—H  OH2 hydrogen bonding [O  O = 2.6939 (18) A  Table 4] to the above-mentioned [(Cl )2(H2O)2] assemblies (Fig. 4). These bridges unite the independent nets described above. When these links are also considered for the entire topology, the interpenetration disappears and a single uninodal eight-connected net is found, with a point symbol {424.5.63} (Fig. 5). This net is identified by an ‘ilc’ notation in the Reticular Chemistry Structure Resource database (Blatov & Shevchenko, 1999) and it has only one precedent in crystal structures. It is notable that this topology was initially rationalized in terms of the interlinking of two interpenetrated pcu frameworks (Wang et al., 2005), and therefore the present case is illustrative for the close relation of the pcu and ilc nets. Weaker interactions in the structure comprise extensive hydrogen bonding of polarized pyrazole C—H groups and sterically accessible chloride anions of [(Cl)2(H2O)2]. In addition to two O—H  Cl hydrogen bonds, the chloride accepts in total six directional C—H  Cl hydrogen bonds ˚ ; Table 4]. This kind of weak [C  Cl = 3.5153 (19)–3.738 (2) A hydrogen bonding is greatly favoured by the bipyrazole structure, which provides multiple C—H donor sites for sustaining the ‘chelate-like’ pattern (Fig. 6). In summary, our study introduces a new tecton for supramolecular synthesis. In spite of the relative simplicity of coordination patterns adopted by Me2bpz, it could find special and peculiar applications as a ‘second-sphere ligand’ for the bridging of metal–aqua cations {[M(H2O)]+}n by hydrogen bonding. This complements and expands the structural potential of unsubstituted bipyrazole tectons, a common type of bitopic N-donor coordination linkers.

276

Konstantin V. Domasevitch



[CoCl2(C8H10N4)] and an analogue

We acknowledge support from the State Fund for fundamental researches of Ukraine (DFFD) (grant 09DF037-03). Supporting information for this paper is available from the IUCr electronic archives (Reference: OV3046).

References Abu-Shandi, K., Janiak, C. & Kersting, B. (2001). Acta Cryst. C57, 1261–1264. Beauchamp, D. A. & Loeb, S. J. (2002). Chem. Eur. J. 8, 5084–5088. Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 378–395. Blatov, V. A. & Shevchenko, A. P. (1999). TOPOS 4.0. Samara State University, Russia. Boldog, I., Daran, J.-C., Chernega, A. N., Rusanov, E. B., Krautscheid, H. & Domasevitch, K. V. (2009). Cryst. Growth Des. 9, 2895–2905. Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Angew. Chem. Int. Ed. 40, 3435–3440. Boldog, I., Sieler, J., Chernega, A. N. & Domasevitch, K. V. (2002). Inorg. Chim. Acta, 338, 69–77. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Carlucci, L., Ciani, G., Proserpio, D. M. & Sironi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1801–1803. Domasevitch, K. V. (2012). Acta Cryst. C68, m169–m172. Dong, Y.-B., Smith, M. D., Layland, R. C. & zur Loye, H.-C. (2000). J. Chem. Soc. Dalton Trans. pp. 775–780. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Maldonado, C. R., Quiro´s, M. & Salas, J. M. (2012). Dalton Trans. 41, 10390– 10395. Nazarenko, O. M., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2013). Acta Cryst. C69, 232–236. Pettinari, C., Taˆbaˆcaru, A., Boldog, I., Domasevitch, K. V., Galli, S. & Masciocchi, N. (2012). Inorg. Chem. 51, 5235–5245. Ponomarova, V. V., Komarchuk, V. V., Boldog, I., Krautscheid, H. & Domasevitch, K. V. (2013). CrystEngComm, 15, 8280–8287. Sheldrick, G. M. (1996). SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Taˆbaˆcaru, A., Pettinari, C., Marchetti, F., Di Nicola, C., Domasevitch, K. V., Galli, S., Masciocchi, N., Scuri, S., Grappasonni, I. & Cocchioni, M. (2012). Inorg. Chem. 51, 9775–9788. Timmermans, P. B. M. W. M., Uijttewaal, A. P. & Habraken, C. L. (1972). J. Heterocycl. Chem. 9, 1373–1378. Wang, Z.-M. (2008). Acta Cryst. E64, m544. Wang, X.-L., Qin, C., Wang, E.-B., Su, Z.-M., Xua, L. & Batten, S. R. (2005). Chem. Commun. pp. 4789–4791.

Acta Cryst. (2014). C70, 272–276

supplementary materials

supplementary materials Acta Cryst. (2014). C70, 272-276

[doi:10.1107/S2053229614002046]

Cobalt(II) chloride complexes with 1,1′-dimethyl-4,4′-bipyrazole featuring firstand second-sphere coordination of the ligand Konstantin V. Domasevitch Computing details For both compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012). (1) catena-Poly[[dichloridocobalt(II)]-µ-(1,1′-dimethyl-4,4′-bipyrazole-κ2N2:N2′)] Crystal data [CoCl2(C8H10N4)] Mr = 292.03 Monoclinic, P21/n a = 8.8762 (8) Å b = 14.2372 (14) Å c = 9.5878 (9) Å β = 104.964 (2)° V = 1170.54 (19) Å3 Z=4

F(000) = 588 Dx = 1.657 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 7256 reflections θ = 2.6–27.9° µ = 1.89 mm−1 T = 223 K Prism, blue 0.14 × 0.12 × 0.09 mm

Data collection Siemens SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) Tmin = 0.785, Tmax = 0.857

7256 measured reflections 2763 independent reflections 2061 reflections with I > 2σ(I) Rint = 0.028 θmax = 27.9°, θmin = 2.6° h = −11→7 k = −18→18 l = −12→12

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.032 wR(F2) = 0.084 S = 0.96 2763 reflections 138 parameters 0 restraints

Acta Cryst. (2014). C70, 272-276

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

sup-1

supplementary materials w = 1/[σ2(Fo2) + (0.0511P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

Δρmax = 0.48 e Å−3 Δρmin = −0.50 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Co1 Cl1 Cl2 N1 N2 N3 N4 C1 H1A H1B H1C C2 H2 C3 C4 H4 C5 H5A H5B H5C C6 H6 C7 C8 H8

x

y

z

Uiso*/Ueq

0.25365 (4) 0.03672 (8) 0.22386 (8) 0.3503 (2) 0.3658 (2) 0.4134 (2) 0.5304 (3) 0.3155 (3) 0.3788 0.2069 0.3274 0.4355 (3) 0.4604 0.4646 (3) 0.4096 (3) 0.4138 0.6047 (4) 0.6626 0.5256 0.6754 0.5804 (3) 0.6604 0.4942 (3) 0.3922 (3) 0.3180

0.21493 (2) 0.22325 (5) 0.15352 (6) 0.34291 (13) 0.41178 (14) 0.13497 (14) 0.08313 (15) 0.3991 (2) 0.3510 0.3801 0.4577 0.48681 (16) 0.5426 0.46860 (16) 0.37736 (16) 0.3446 0.1093 (2) 0.1672 0.1184 0.0598 0.01861 (18) −0.0253 0.02779 (16) 0.10152 (17) 0.1248

0.11357 (3) 0.19158 (8) −0.10586 (7) 0.1133 (2) 0.2134 (2) 0.2583 (2) 0.2309 (2) 0.3455 (3) 0.4045 0.3211 0.3987 0.1747 (3) 0.2282 0.0428 (2) 0.0101 (3) −0.0739 0.1180 (3) 0.1446 0.0280 0.1060 0.3343 (3) 0.3379 0.4347 (2) 0.3821 (3) 0.4278

0.02595 (11) 0.04536 (18) 0.0524 (2) 0.0328 (5) 0.0326 (4) 0.0366 (5) 0.0395 (5) 0.0450 (7) 0.068* 0.068* 0.068* 0.0340 (5) 0.041* 0.0312 (5) 0.0331 (5) 0.040* 0.0557 (8) 0.084* 0.084* 0.084* 0.0384 (6) 0.046* 0.0327 (5) 0.0345 (5) 0.041*

Atomic displacement parameters (Å2)

Co1 Cl1 Cl2 N1 N2

U11

U22

U33

U12

U13

U23

0.02900 (18) 0.0422 (4) 0.0480 (4) 0.0398 (12) 0.0363 (11)

0.02089 (16) 0.0449 (4) 0.0623 (5) 0.0261 (10) 0.0310 (10)

0.02955 (17) 0.0548 (4) 0.0464 (4) 0.0349 (11) 0.0330 (11)

−0.00168 (13) −0.0005 (3) −0.0050 (3) −0.0013 (9) 0.0005 (9)

0.01042 (13) 0.0230 (3) 0.0110 (3) 0.0140 (9) 0.0133 (9)

0.00677 (12) 0.0103 (3) −0.0124 (3) 0.0029 (8) 0.0014 (8)

Acta Cryst. (2014). C70, 272-276

sup-2

supplementary materials N3 N4 C1 C2 C3 C4 C5 C6 C7 C8

0.0362 (12) 0.0352 (12) 0.0551 (17) 0.0373 (14) 0.0323 (13) 0.0399 (14) 0.0460 (17) 0.0324 (14) 0.0310 (13) 0.0367 (14)

0.0352 (11) 0.0428 (12) 0.0470 (16) 0.0245 (11) 0.0260 (11) 0.0279 (12) 0.077 (2) 0.0405 (14) 0.0294 (12) 0.0316 (12)

0.0401 (12) 0.0428 (12) 0.0393 (15) 0.0417 (14) 0.0364 (13) 0.0344 (13) 0.0506 (17) 0.0410 (14) 0.0355 (13) 0.0362 (13)

0.0019 (9) 0.0031 (10) −0.0045 (13) 0.0006 (10) 0.0035 (10) −0.0007 (10) 0.0083 (16) 0.0049 (11) −0.0041 (10) −0.0009 (11)

0.0128 (10) 0.0143 (10) 0.0234 (13) 0.0128 (11) 0.0111 (10) 0.0151 (11) 0.0233 (14) 0.0073 (11) 0.0046 (11) 0.0111 (11)

0.0069 (9) 0.0089 (10) 0.0032 (12) 0.0026 (10) 0.0060 (10) 0.0032 (10) 0.0181 (16) 0.0081 (12) 0.0017 (10) 0.0053 (10)

Geometric parameters (Å, º) Co1—N1 Co1—N3 Co1—Cl2 Co1—Cl1 N1—C4 N1—N2 N2—C2 N2—C1 N3—C8 N3—N4 N4—C6 N4—C5 C1—H1A C1—H1B

2.0143 (19) 2.053 (2) 2.2300 (8) 2.2416 (7) 1.329 (3) 1.354 (3) 1.334 (3) 1.459 (3) 1.337 (3) 1.354 (3) 1.340 (3) 1.454 (3) 0.9700 0.9700

C1—H1C C2—C3 C2—H2 C3—C4 C3—C3i C4—H4 C5—H5A C5—H5B C5—H5C C6—C7 C6—H6 C7—C8 C7—C7ii C8—H8

0.9700 1.379 (3) 0.9400 1.395 (3) 1.460 (4) 0.9400 0.9700 0.9700 0.9700 1.382 (3) 0.9400 1.393 (3) 1.462 (4) 0.9400

N1—Co1—N3 N1—Co1—Cl2 N3—Co1—Cl2 N1—Co1—Cl1 N3—Co1—Cl1 Cl2—Co1—Cl1 C4—N1—N2 C4—N1—Co1 N2—N1—Co1 C2—N2—N1 C2—N2—C1 N1—N2—C1 C8—N3—N4 C8—N3—Co1 N4—N3—Co1 C6—N4—N3 C6—N4—C5 N3—N4—C5 N2—C1—H1A N2—C1—H1B H1A—C1—H1B N2—C1—H1C

106.40 (8) 107.48 (6) 108.24 (6) 110.82 (6) 107.86 (6) 115.64 (3) 105.86 (18) 125.83 (16) 128.30 (15) 110.64 (19) 127.5 (2) 121.8 (2) 105.6 (2) 124.51 (17) 127.01 (15) 110.8 (2) 126.8 (2) 121.5 (2) 109.5 109.5 109.5 109.5

N2—C2—C3 N2—C2—H2 C3—C2—H2 C2—C3—C4 C2—C3—C3i C4—C3—C3i N1—C4—C3 N1—C4—H4 C3—C4—H4 N4—C5—H5A N4—C5—H5B H5A—C5—H5B N4—C5—H5C H5A—C5—H5C H5B—C5—H5C N4—C6—C7 N4—C6—H6 C7—C6—H6 C6—C7—C8 C6—C7—C7ii C8—C7—C7ii N3—C8—C7

108.3 (2) 125.8 125.8 104.1 (2) 127.6 (3) 128.3 (3) 111.1 (2) 124.5 124.5 109.5 109.5 109.5 109.5 109.5 109.5 108.3 (2) 125.9 125.9 104.1 (2) 128.0 (3) 127.8 (3) 111.2 (2)

Acta Cryst. (2014). C70, 272-276

sup-3

supplementary materials H1A—C1—H1C H1B—C1—H1C

109.5 109.5

N3—C8—H8 C7—C8—H8

124.4 124.4

N3—Co1—N1—C4 Cl2—Co1—N1—C4 Cl1—Co1—N1—C4 N3—Co1—N1—N2 Cl2—Co1—N1—N2 Cl1—Co1—N1—N2 C4—N1—N2—C2 Co1—N1—N2—C2 C4—N1—N2—C1 Co1—N1—N2—C1 N1—Co1—N3—C8 Cl2—Co1—N3—C8 Cl1—Co1—N3—C8 N1—Co1—N3—N4 Cl2—Co1—N3—N4 Cl1—Co1—N3—N4 C8—N3—N4—C6 Co1—N3—N4—C6

105.3 (2) −10.4 (2) −137.67 (19) −76.3 (2) 167.92 (18) 40.7 (2) −1.0 (3) −179.65 (16) −179.0 (2) 2.4 (3) 114.0 (2) −130.80 (19) −5.0 (2) −88.1 (2) 27.2 (2) 152.95 (18) 0.4 (3) −160.86 (17)

C8—N3—N4—C5 Co1—N3—N4—C5 N1—N2—C2—C3 C1—N2—C2—C3 N2—C2—C3—C4 N2—C2—C3—C3i N2—N1—C4—C3 Co1—N1—C4—C3 C2—C3—C4—N1 C3i—C3—C4—N1 N3—N4—C6—C7 C5—N4—C6—C7 N4—C6—C7—C8 N4—C6—C7—C7ii N4—N3—C8—C7 Co1—N3—C8—C7 C6—C7—C8—N3 C7ii—C7—C8—N3

−169.3 (2) 29.4 (3) 1.4 (3) 179.1 (2) −1.1 (3) 178.3 (3) 0.3 (3) 178.98 (16) 0.5 (3) −178.9 (3) −0.2 (3) 168.8 (3) 0.0 (3) 179.3 (3) −0.4 (3) 161.45 (17) 0.3 (3) −179.0 (3)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z+1.

(2) Tetraaquabis(1,1′-dimethyl-4,4′-bipyrazole-κN2)cobalt(II) dichloride–1,1′-dimethyl-4,4′-bipyrazole–water (1/2/2) Crystal data [Co(C8H10N4)2(H2O)4]Cl2·2C8H10N4·2H2O Mr = 886.73 Triclinic, P1 a = 9.2087 (8) Å b = 11.1415 (10) Å c = 12.2523 (10) Å α = 63.071 (2)° β = 83.665 (3)° γ = 72.592 (2)° V = 1068.96 (16) Å3

Z=1 F(000) = 465 Dx = 1.377 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 10321 reflections θ = 2.3–27.7° µ = 0.59 mm−1 T = 223 K Block, pink 0.17 × 0.14 × 0.12 mm

Data collection Siemens SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) Tmin = 0.934, Tmax = 0.961

Acta Cryst. (2014). C70, 272-276

10321 measured reflections 4907 independent reflections 4058 reflections with I > 2σ(I) Rint = 0.036 θmax = 27.7°, θmin = 2.3° h = −11→11 k = −14→14 l = −15→15

sup-4

supplementary materials Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.104 S = 0.99 4907 reflections 287 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0747P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.57 e Å−3 Δρmin = −0.71 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Co1 Cl1 O1 O2 O3 N1 N2 N3 N4 N5 N6 N7 N8 C1 H1A H1B H1C C2 H2 C3 C4 H4 C5 H5A H5B

x

y

z

Uiso*/Ueq

0.5000 1.04023 (5) 0.71129 (14) 0.42174 (15) 0.91236 (19) 0.28883 (17) 0.42554 (16) 0.68212 (17) 0.54352 (17) 0.2576 (2) 0.27595 (19) 0.75182 (19) 0.7612 (2) 0.1502 (2) 0.0623 0.1519 0.1441 0.3029 (2) 0.2233 0.4523 (2) 0.52392 (19) 0.6287 0.8178 (2) 0.7933 0.8952

0.5000 0.09005 (4) 0.47606 (12) 0.69169 (11) 0.22023 (15) 0.40193 (15) 0.39689 (13) −0.08771 (15) −0.09277 (14) 0.75536 (17) 0.77693 (17) 0.69516 (16) 0.57498 (17) 0.5117 (2) 0.4837 0.5982 0.5260 0.29851 (19) 0.2818 0.22210 (16) 0.28633 (16) 0.2562 −0.1930 (2) −0.2803 −0.2078

0.5000 0.30692 (4) 0.41437 (12) 0.35511 (11) 0.48620 (16) 0.37109 (14) 0.40732 (13) 0.32178 (15) 0.30204 (14) 0.04117 (16) 0.13677 (15) 0.05682 (15) 0.15928 (15) 0.3641 (2) 0.3582 0.2923 0.4370 0.33874 (19) 0.3109 0.35323 (15) 0.39638 (16) 0.4157 0.3178 (2) 0.3418 0.3738

0.02044 (10) 0.03318 (12) 0.0283 (3) 0.0298 (3) 0.0443 (4) 0.0310 (3) 0.0260 (3) 0.0318 (3) 0.0316 (3) 0.0409 (4) 0.0378 (4) 0.0364 (4) 0.0429 (4) 0.0389 (4) 0.058* 0.058* 0.058* 0.0359 (4) 0.043* 0.0274 (3) 0.0277 (3) 0.033* 0.0426 (5) 0.064* 0.064*

Acta Cryst. (2014). C70, 272-276

sup-5

supplementary materials H5C C6 H6 C7 C8 H8 C9 H9A H9B H9C C10 H10 C11 C12 H12 C13 H13A H13B H13C C14 H14 C15 C16 H16 H1W H2W H3W H4W H5W H6W

0.8556 0.6731 (2) 0.7553 0.52119 (19) 0.4461 (2) 0.3398 0.3637 (3) 0.4491 0.4004 0.3117 0.1360 (2) 0.1036 0.0679 (2) 0.1604 (2) 0.1435 0.6411 (3) 0.5860 0.5701 0.6933 0.8551 (2) 0.8691 0.9370 (2) 0.8737 (2) 0.9063 0.773 (3) 0.706 (3) 0.463 (2) 0.390 (3) 0.907 (3) 0.949 (4)

−0.1615 0.02356 (19) 0.0474 0.09595 (16) 0.01877 (17) 0.0424 0.6371 (3) 0.5953 0.6702 0.5675 0.8506 (2) 0.8553 0.93976 (18) 0.88967 (18) 0.9299 0.8260 (2) 0.8111 0.8578 0.8964 0.67443 (19) 0.7430 0.53470 (19) 0.4786 (2) 0.3839 0.393 (3) 0.512 (3) 0.761 (2) 0.697 (3) 0.151 (3) 0.191 (3)

0.2353 0.34198 (19) 0.3582 0.33442 (16) 0.30994 (17) 0.3002 0.0250 (3) 0.0828 −0.0578 0.0395 −0.03049 (19) −0.1028 0.02133 (16) 0.12550 (17) 0.1803 0.0424 (2) 0.1176 −0.0244 0.0246 −0.02418 (17) −0.1022 0.02742 (16) 0.14113 (19) 0.1986 0.437 (2) 0.332 (2) 0.3386 (17) 0.289 (3) 0.544 (3) 0.440 (3)

0.064* 0.0354 (4) 0.042* 0.0274 (3) 0.0312 (4) 0.037* 0.0612 (7) 0.092* 0.092* 0.092* 0.0403 (4) 0.048* 0.0321 (4) 0.0337 (4) 0.040* 0.0488 (5) 0.073* 0.073* 0.073* 0.0370 (4) 0.044* 0.0339 (4) 0.0426 (5) 0.051* 0.051 (7)* 0.051 (7)* 0.026 (5)* 0.067 (8)* 0.056 (8)* 0.072 (9)*

Atomic displacement parameters (Å2)

Co1 Cl1 O1 O2 O3 N1 N2 N3 N4 N5 N6 N7 N8 C1 C2 C3

U11

U22

U33

U12

U13

U23

0.02779 (17) 0.0366 (2) 0.0324 (6) 0.0459 (7) 0.0567 (10) 0.0309 (8) 0.0273 (7) 0.0302 (7) 0.0381 (8) 0.0440 (9) 0.0428 (9) 0.0412 (9) 0.0506 (10) 0.0331 (9) 0.0359 (10) 0.0349 (9)

0.01031 (14) 0.0279 (2) 0.0178 (5) 0.0152 (5) 0.0249 (7) 0.0247 (7) 0.0209 (6) 0.0242 (7) 0.0232 (7) 0.0345 (8) 0.0330 (8) 0.0268 (7) 0.0305 (8) 0.0317 (9) 0.0313 (9) 0.0183 (7)

0.02518 (16) 0.0352 (2) 0.0348 (7) 0.0293 (6) 0.0402 (8) 0.0452 (9) 0.0340 (7) 0.0492 (9) 0.0436 (8) 0.0466 (10) 0.0361 (8) 0.0353 (8) 0.0367 (9) 0.0574 (12) 0.0556 (12) 0.0341 (9)

−0.00510 (11) −0.01064 (17) −0.0041 (5) −0.0127 (5) 0.0017 (6) −0.0057 (6) −0.0076 (5) −0.0083 (6) −0.0142 (6) −0.0013 (7) −0.0056 (7) −0.0079 (6) −0.0082 (7) −0.0023 (7) −0.0121 (7) −0.0100 (6)

−0.00202 (11) 0.00161 (17) 0.0025 (5) −0.0096 (5) 0.0007 (7) −0.0046 (6) −0.0035 (6) 0.0007 (6) 0.0015 (6) −0.0109 (7) −0.0112 (7) 0.0083 (7) 0.0100 (7) −0.0064 (8) −0.0019 (8) −0.0001 (7)

−0.00906 (11) −0.01334 (17) −0.0138 (5) −0.0059 (4) −0.0130 (6) −0.0222 (6) −0.0142 (5) −0.0226 (6) −0.0199 (6) −0.0234 (7) −0.0145 (7) −0.0114 (6) −0.0096 (7) −0.0269 (9) −0.0294 (9) −0.0141 (6)

Acta Cryst. (2014). C70, 272-276

sup-6

supplementary materials C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

0.0295 (8) 0.0371 (10) 0.0356 (10) 0.0330 (9) 0.0274 (8) 0.0606 (15) 0.0414 (11) 0.0385 (10) 0.0392 (10) 0.0564 (13) 0.0456 (11) 0.0382 (10) 0.0515 (12)

0.0215 (7) 0.0321 (10) 0.0295 (9) 0.0205 (7) 0.0241 (8) 0.0462 (13) 0.0399 (10) 0.0262 (8) 0.0280 (8) 0.0317 (10) 0.0309 (9) 0.0324 (9) 0.0304 (9)

0.0358 (9) 0.0663 (14) 0.0555 (12) 0.0359 (9) 0.0495 (10) 0.0838 (18) 0.0404 (10) 0.0297 (8) 0.0334 (9) 0.0492 (12) 0.0313 (9) 0.0325 (9) 0.0374 (10)

−0.0057 (6) −0.0053 (8) −0.0151 (7) −0.0118 (6) −0.0082 (6) 0.0099 (11) −0.0025 (8) −0.0099 (7) −0.0063 (7) −0.0052 (9) −0.0130 (8) −0.0130 (8) −0.0091 (8)

−0.0047 (7) 0.0001 (9) 0.0017 (8) 0.0045 (7) −0.0053 (7) −0.0179 (13) −0.0121 (8) −0.0062 (7) −0.0081 (7) 0.0114 (10) 0.0107 (8) 0.0049 (7) 0.0092 (9)

−0.0154 (7) −0.0307 (10) −0.0273 (8) −0.0168 (7) −0.0207 (7) −0.0456 (13) −0.0210 (8) −0.0088 (7) −0.0132 (7) −0.0168 (9) −0.0119 (7) −0.0145 (7) −0.0111 (8)

Geometric parameters (Å, º) Co1—O2i Co1—O2 Co1—O1i Co1—O1 Co1—N2i Co1—N2 O1—H1W O1—H2W O2—H3W O2—H4W O3—H5W O3—H6W N1—C2 N1—N2 N1—C1 N2—C4 N3—N4 N3—C6 N3—C5 N4—C8 N5—N6 N5—C10 N5—C9 N6—C12 N7—N8 N7—C14 N7—C13 N8—C16 C1—H1A C1—H1B

2.0395 (11) 2.0395 (11) 2.1095 (12) 2.1095 (12) 2.2145 (13) 2.2145 (13) 0.86 (3) 0.91 (3) 0.89 (2) 0.86 (3) 0.78 (3) 0.77 (3) 1.3471 (19) 1.3578 (19) 1.459 (2) 1.3457 (19) 1.347 (2) 1.348 (2) 1.449 (2) 1.335 (2) 1.335 (2) 1.346 (2) 1.467 (2) 1.343 (2) 1.345 (2) 1.346 (2) 1.453 (2) 1.333 (2) 0.9700 0.9700

C1—H1C C2—C3 C2—H2 C3—C4 C3—C7 C4—H4 C5—H5A C5—H5B C5—H5C C6—C7 C6—H6 C7—C8 C8—H8 C9—H9A C9—H9B C9—H9C C10—C11 C10—H10 C11—C12 C11—C11ii C12—H12 C13—H13A C13—H13B C13—H13C C14—C15 C14—H14 C15—C16 C15—C15iii C16—H16

0.9700 1.366 (3) 0.9400 1.389 (2) 1.469 (2) 0.9400 0.9700 0.9700 0.9700 1.379 (2) 0.9400 1.394 (2) 0.9400 0.9700 0.9700 0.9700 1.376 (3) 0.9400 1.406 (2) 1.464 (3) 0.9400 0.9700 0.9700 0.9700 1.379 (3) 0.9400 1.386 (3) 1.469 (3) 0.9400

O2i—Co1—O2 O2i—Co1—O1i O2—Co1—O1i

180 88.76 (5) 91.24 (5)

C2—C3—C7 C4—C3—C7 N2—C4—C3

128.21 (15) 127.50 (16) 111.98 (15)

Acta Cryst. (2014). C70, 272-276

sup-7

supplementary materials O2i—Co1—O1 O2—Co1—O1 O1i—Co1—O1 O2i—Co1—N2i O2—Co1—N2i O1i—Co1—N2i O1—Co1—N2i O2i—Co1—N2 O2—Co1—N2 O1i—Co1—N2 O1—Co1—N2 N2i—Co1—N2 Co1—O1—H1W Co1—O1—H2W H1W—O1—H2W Co1—O2—H3W Co1—O2—H4W H3W—O2—H4W H5W—O3—H6W C2—N1—N2 C2—N1—C1 N2—N1—C1 C4—N2—N1 C4—N2—Co1 N1—N2—Co1 N4—N3—C6 N4—N3—C5 C6—N3—C5 C8—N4—N3 N6—N5—C10 N6—N5—C9 C10—N5—C9 N5—N6—C12 N8—N7—C14 N8—N7—C13 C14—N7—C13 C16—N8—N7 N1—C1—H1A N1—C1—H1B H1A—C1—H1B N1—C1—H1C H1A—C1—H1C H1B—C1—H1C N1—C2—C3 N1—C2—H2 C3—C2—H2 C2—C3—C4

91.24 (5) 88.76 (5) 180 91.07 (5) 88.93 (5) 89.16 (5) 90.84 (5) 88.93 (5) 91.07 (5) 90.84 (5) 89.16 (5) 180 118.9 (16) 115.6 (16) 104 (2) 121.0 (13) 119.8 (19) 111 (2) 101 (3) 110.98 (14) 126.63 (15) 122.32 (13) 104.34 (12) 119.94 (11) 134.76 (10) 111.68 (14) 120.34 (13) 127.97 (16) 104.97 (12) 112.35 (15) 119.95 (17) 127.69 (17) 104.81 (15) 111.01 (15) 121.53 (16) 127.47 (16) 105.23 (15) 109.5 109.5 109.5 109.5 109.5 109.5 108.50 (15) 125.8 125.8 104.20 (13)

N2—C4—H4 C3—C4—H4 N3—C5—H5A N3—C5—H5B H5A—C5—H5B N3—C5—H5C H5A—C5—H5C H5B—C5—H5C N3—C6—C7 N3—C6—H6 C7—C6—H6 C6—C7—C8 C6—C7—C3 C8—C7—C3 N4—C8—C7 N4—C8—H8 C7—C8—H8 N5—C9—H9A N5—C9—H9B H9A—C9—H9B N5—C9—H9C H9A—C9—H9C H9B—C9—H9C N5—C10—C11 N5—C10—H10 C11—C10—H10 C10—C11—C12 C10—C11—C11ii C12—C11—C11ii N6—C12—C11 N6—C12—H12 C11—C12—H12 N7—C13—H13A N7—C13—H13B H13A—C13—H13B N7—C13—H13C H13A—C13—H13C H13B—C13—H13C N7—C14—C15 N7—C14—H14 C15—C14—H14 C14—C15—C16 C14—C15—C15iii C16—C15—C15iii N8—C16—C15 N8—C16—H16 C15—C16—H16

124.0 124.0 109.5 109.5 109.5 109.5 109.5 109.5 107.36 (15) 126.3 126.3 104.31 (14) 128.24 (15) 127.40 (16) 111.67 (15) 124.2 124.2 109.5 109.5 109.5 109.5 109.5 109.5 107.57 (16) 126.2 126.2 103.89 (16) 128.8 (2) 127.3 (2) 111.36 (16) 124.3 124.3 109.5 109.5 109.5 109.5 109.5 109.5 107.93 (16) 126.0 126.0 103.89 (16) 126.9 (2) 129.2 (2) 111.94 (17) 124.0 124.0

C2—N1—N2—C4

−0.2 (2)

N4—N3—C6—C7

−0.4 (2)

Acta Cryst. (2014). C70, 272-276

sup-8

supplementary materials C1—N1—N2—C4 C2—N1—N2—Co1 C1—N1—N2—Co1 O2i—Co1—N2—C4 O2—Co1—N2—C4 O1i—Co1—N2—C4 O1—Co1—N2—C4 O2i—Co1—N2—N1 O2—Co1—N2—N1 O1i—Co1—N2—N1 O1—Co1—N2—N1 C6—N3—N4—C8 C5—N3—N4—C8 C10—N5—N6—C12 C9—N5—N6—C12 C14—N7—N8—C16 C13—N7—N8—C16 N2—N1—C2—C3 C1—N1—C2—C3 N1—C2—C3—C4 N1—C2—C3—C7 N1—N2—C4—C3 Co1—N2—C4—C3 C2—C3—C4—N2 C7—C3—C4—N2

−177.33 (17) −168.43 (13) 14.4 (3) −51.45 (13) 128.55 (13) −140.20 (13) 39.80 (13) 115.38 (16) −64.62 (16) 26.64 (15) −153.36 (15) 0.2 (2) −178.92 (17) 0.5 (2) −178.9 (2) 0.5 (2) −179.6 (2) −0.1 (2) 176.90 (18) 0.3 (2) 177.22 (17) 0.40 (19) 170.79 (11) −0.5 (2) −177.38 (16)

C5—N3—C6—C7 N3—C6—C7—C8 N3—C6—C7—C3 C2—C3—C7—C6 C4—C3—C7—C6 C2—C3—C7—C8 C4—C3—C7—C8 N3—N4—C8—C7 C6—C7—C8—N4 C3—C7—C8—N4 N6—N5—C10—C11 C9—N5—C10—C11 N5—C10—C11—C12 N5—C10—C11—C11ii N5—N6—C12—C11 C10—C11—C12—N6 C11ii—C11—C12—N6 N8—N7—C14—C15 C13—N7—C14—C15 N7—C14—C15—C16 N7—C14—C15—C15iii N7—N8—C16—C15 C14—C15—C16—N8 C15iii—C15—C16—N8

178.60 (18) 0.4 (2) 177.95 (17) 175.8 (2) −8.0 (3) −7.3 (3) 168.92 (18) 0.1 (2) −0.4 (2) −177.89 (17) −0.9 (3) 178.5 (2) 0.8 (2) −179.8 (2) 0.0 (2) −0.5 (2) −179.9 (2) −0.5 (2) 179.7 (2) 0.2 (2) −179.1 (2) −0.4 (2) 0.2 (2) 179.4 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+2, −z; (iii) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

O1—H1W···O3 O1—H2W···N8 O2—H3W···N4iv O2—H4W···N6 O3—H5W···Cl1v O3—H6W···Cl1 C6—H6···Cl1 C8—H8···Cl1vi C10—H10···Cl1vii C12—H12···Cl1viii C14—H14···Cl1iii C16—H16···Cl1

0.86 (3) 0.91 (3) 0.89 (2) 0.86 (3) 0.78 (3) 0.77 (3) 0.94 0.94 0.94 0.94 0.94 0.94

1.84 (3) 1.96 (3) 1.84 (2) 1.94 (3) 2.40 (3) 2.33 (3) 2.76 2.65 2.69 2.77 2.59 2.83

2.6939 (18) 2.839 (2) 2.7356 (18) 2.755 (2) 3.1576 (17) 3.0997 (17) 3.6126 (19) 3.5814 (18) 3.617 (2) 3.6911 (18) 3.5153 (19) 3.738 (2)

177 (2) 163 (2) 179 (2) 159 (3) 162 (3) 174 (3) 151 172 168 167 170 163

Symmetry codes: (iii) −x+2, −y+1, −z; (iv) x, y+1, z; (v) −x+2, −y, −z+1; (vi) x−1, y, z; (vii) −x+1, −y+1, −z; (viii) x−1, y+1, z.

Acta Cryst. (2014). C70, 272-276

sup-9

Cobalt(II) chloride complexes with 1,1'-dimethyl-4,4'-bipyrazole featuring first- and second-sphere coordination of the ligand.

In catena-poly[[dichloridocobalt(II)]-μ-(1,1'-dimethyl-4,4'-bipyrazole-κ(2)N(2):N(2'))], [CoCl2(C8H10N4)]n, (1), two independent bipyrazole ligands (M...
1MB Sizes 2 Downloads 3 Views