MOLECULAR AND CELLULAR BIOLOGY, June 1991, p. 3395-3398

Vol. 11, No. 6

0270-7306/91/063395-04$02.00/0 Copyright © 1991, American Society for Microbiology

Cloning by Differential Screening of a Xenopus cDNA That Encodes a Kinesin-Related Protein RENE LE GUELLEC, JEANNIE PARIS,t ANNE COUTURIER, CHRISTIAN ROGHI, AND MICHEL PHILIPPE* Laboratoire de Biologie et Genetique du Developpement, Centre National de la Recherche Scientifique, URA 256, Campus de Beaulieu, Universite de Rennes 1, 35042 Rennes Cedex, France Received 17 December 1990/Accepted 26 March 1991

By differential screening of a Xenopus egg cDNA library, we selected nine clones (Egl to Eg9) corresponding are deadenylated and released from polysomes soon after fertilization. The sequence of one of these clones (Eg5) revealed that the corresponding protein has the characteristic features of a kinesin-related protein. More specifically, Eg5 was found to be nearly 30% identical to a kinesin-related protein encoded by bimc, a gene involved in nuclear division in Aspergillus nidulans. to mRNAs which

For most animals, the developmental period following fertilization is characterized by a state of very rapid cellular proliferation (6). In the case of xenopus, the first cleavage takes place 1.5 h after fertilization and is followed by 11 almost synchronous cell divisions which occur every 30 min (23). The onset of transcription is clearly detected only after cleavage 12 at a stage called the midblastula transition (23). In the presence of dactinomycin, embryos develop up to the midblastula transition, whereas this development is blocked by puromycin or cycloheximide (3, 20). Similar results have been obtained for maturation, which is independent of new transcription but requires de novo translation (15). Qualitative analysis of the proteins synthesized in oocytes (stage VI), in unfertilized eggs, and in embryos has shown that during maturation and after fertilization, new proteins appear but others are no longer synthesized (5, 19, 29). This suggests that the synthesis of specific gene products necessary for maturation, for the metaphase block in unfertilized eggs, and then for rapid proliferation is regulated at the translational level from the bulk of maternal mRNA. By differential screening of a cDNA library prepared with poly(A)+ RNA from unfertilized eggs, we isolated 11 nonoverlapping sequences which undergo either adenylation or deadenylation after fertilization (26). Nine of them which constitute the Eg family correspond to RNAs which are specifically deadenylated (24-26) and released from polysomes after fertilization (24, 26). In a previous work, we have shown that Egl has very high homology to p34cdc2 but is clearly functionally different from the kinase subunit of the maturation-promoting factor (24). In the present report, we describe the characteristics of EgS, which clearly belongs to the kinesine-related protein family. Kinesin was first discovered during studies of organelle transport in giant squid axons (1, 30). Subsequently, kinesin has been found in a variety of organisms and cell types, including avian and mammalian neuronal tissues (4, 30), sea urchin eggs (28), cultured cells (22), and Drosophila melanogaster (27). Biochemical studies of kinesin protein revealed that it is a tetramer consisting of two heavy and two light chains (2, 14). The gene that codes for the drosophila heavy chain has been cloned and characterized (33, 34). *

More recently, genes that encode kinesin-related proteins were identified by genetic criteria in D. melanogaster (7, 35) or by molecular genetic critera in Saccharomyces cerevisiae (18), Aspergillus nidulans (8), D. melanogaster (16), and Schizosaccharomyces pombe (11). The KAR3 mutant of S. cerevisiae is defective in karyogamy (18). Mutations in the bimc gene of Aspergillus nidulans prevent spindle pole body separation and nuclear division (8). In S. pombe, cut7+ is referred as a gene involved in spindle formation (11). The product of the drosophila claret gene is clearly implicated in chromosome segregation and is active in meiosis (7). The nod gene is required for distributive segregation of nonexchange chromosomes during meiosis in D. melanogaster (35). The sequencing strategy, the nucleotide sequence, and the predicted amino acid sequence of Eg5 are shown in Fig. 1A and B. The cloned EgS cDNA is 3,651 nucleotides long and contains 193 nucleotides of 5'-flanking sequence, an open reading frame of 3,180 nucleotides, and a 3'-untranslated region of 278 nucleotides which contains a potential polyadenylation signal (AAUAAA) at nucleotide position 3614 to 3619. The open reading frame codes for a predicted polypeptide 1,060 amino acids long with a relative molecular mass of 119,332 Da. The secondary structure predicted (10, 32) for EgS protein is shown in Fig. 1C. The predicted EgS protein has two globular domains separated by an a-helical region, which is a characteristic of all known kinesin and kinesinrelated proteins. Like all of these proteins, EgS also possesses a putative motor domain, which is shown in Fig. 2 (from amino acids 1 to 358). Figure 2 also shows the similarities of the motor domain encoded by EgS (defined as amino acids 1 to 358, corresponding to the end of Kar3) to the proteins encoded by bimc (8), the drosophila kinesin heavy chain gene (34), cut7+ (11), claret (7), and KAR3 (18), which are, respectively, 53.3, 49.7, 38.9, 29.9, and 28.6%. At amino acid positions 92 to 107, Eg5 possesses a putative ATP-binding site (IFAYGQTXXGKTXTM) which is conserved in all five sequences. As in the drosophila and squid kinesin heavy chains (13, 34) and the nod (35)-, bimc (8)-, and cut7+ (11)-encoded proteins, the proposed motor domain of Eg5 is located at the amino terminus. In contrast, in the KAR3 (17)- and claret (7, 33)-encoded proteins the mechanochemical domain is situated in the carboxy-terminal region. The sizes of the proteins encoded by EgS, bimc, cut7+, and the drosophila heavychain gene are in the same range, at 1,060, 1,211, 1,073, and

Corresponding author.

t Present address: Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545. 3395

3396

NOTES

A

MOL. CELL. BIOL.

E

_

i_ 0

*6

o

0

*

>

~ 500 bp

B

gottggctgtggctgtcggaagcgcgattttcaaatgtgtctgctgcgaggag3agccgt 60

gcttgcggaacgattttaacgcttggctgtagg4agtgggatcttcgcgctctggttact

120

tcaactgtctctgctcggggaagggaatcgtgactgcttattggagataactatgtcttc 180 ccaaaattcttttATGGCCAGCAAGAAGGAGGACAAAGGGAAAAACATCCAGGTTGTGGT 240 M

A

S

K

K

E

D

K

G

K

N

I

0

V

V

v16

CCGATGCCGGCCCTTCAATCAGTTGGAACGCAAGGCGAGCTCTCACTCTGTGTTGGAATG 300 N

C

R

P

F

N

Q

L

E

R

K

A

S

S

S

H

V

L

E

C 36

TGATTCTCAGAGGAAAGAAGTCTATGTTCGGACCGGAGAAGTAAACGACAAACTGGGAAA 360 0

S

D

R

K

E

V

Y

V

R

G

T

E

V

D

N

K

L

G

K

SN

GAAAACCTATACGTTTGACATGGTGTTTGGGCCTGCAGCCAAGCAAATTGAGGTGTACAG T

K

Y

T

F

0

N

V

F

G

P

L

A

G

A

A

K

0

R

I

E

V

Y

420 R 7N

0

1 136

E

L

I S56 720 0176

I

S196

AAGTGTTGTGTGCCCCATCTTGGATGAAGTTATTATOGGATATAACTGCACAATCTTTGC 480 S V V C P I L D E V I N G Y N C T I F A 96 GTATGGGCAGACTGGCACAGGCAAGACCTTTACTATGGAAGGGGAAAGATCATCAGATGA 540 Y K 0 T G T G K T F T M E G E R S S 0 EK 16 AGAGTTTACCTGGGAACAGGACCCTCTGGCAGGAATTATTCCTCGAACGCTGCATCAGAT 600 F

E

T

0

I

P

L

H

L

S

E

N

G

T

E

F

S

v

K

V

S

1

1

E

L

F

D

L

L

S

P

S

P

D

V

G

E

W

E

D

P

I

T

ATTTGAGAAGCTCTCTGAGAACGGCACAGAGTTTTCGGTGAAAGTCTCTCTCCTGGAAAT 660 F

E

6

N

E

CTACAACGAAGAACTCTTTGATCTGTTAAGCCCATCTCCCGATGTTTGGGAAAGGCTGCA Y

6

AATGTTCGATGATCCTCGGAACAAAAGAGGAGTCATTATCAAAGGGCTGGAGGAGATATC 780 F

H

0

D

P

R

N

K

R

G

V

I

I

K

G

L

E

E

TGTGCATAACAAGGATAGGWTGTACCATATATTGGAGAGAGGTGCAGCCAGGAGGAAAAC 840

V 6 N K D E V Y N I L E R G A A R R K T 216 TGCTTCTACTCTGATGAATGCATATTCCAGTCGATCCCATTCCGTGTTCTCGGTCACCAT 900 A S T L 6 N A Y S S R S N S V F S V T I 236

TCACATGAAAGAAACTACTGTTGATGGAGAAGAGCTTGTGAAGATCGGGAAGCTGAACTT 960 H

K

M

E T

E

V

L

V

K

I

G

K

L

N

L 256

GGTGGATCTGGCGGGAAGTGAAAATATTGGTCGTTCTGGAGCTGTGGACAAAAGAGCACG V D L A G S E N I G R S G A V 0 K R A R CGAGGCTGGAAATATCAACCAATCCCTGCTCACCTTGGGCAGGGTAATAACTGCTCTGGT E A G N I N 0 L L T L G R V I T7 A V GGAGAGAACTCCTCATATTCCATACAGAGAATCCAAACTCACAAGGATCCTGCAGGATTC E R T P H I P Y R E S K L T R I L 0 D S TCTTGGAGGCAGGACAAAAACCTCTATCATTGCAACAGTGTCACCTGCATCCATTAATCT L

G

G

R

T

K

T

S

I

I

A

T

V

S

P

A

S

I

N

N

K

L

GGAGGAAACTGTGAGCACTTTGOACTATGCCAACAGAGCAAAGAGTATTATGAATAAGCC E

T

E

V

S

T

L

0

Y

A

R

N

A

K

I

S

M

P

AGAGGTTAACCAGAAACTTACAAAGAAGGCACTCATCAAGGAGTACACCGAAGAGATTGA E

V

N

0

K

L

T

6

K

A

I

L

K

E

T

Y

E

1020 276

1080 296 1140 316 1200 336 1260 356 1320

E

I

E 376

V

GCGACTTAAGAGGGAACTTGCTGCAGCCAGAGAGAAGAATGGAGTTTATTTATCCAGTGA 1380 R L K R E L A A A R E K N G V Y L S S E 395 GAACTATGAACAATTACAGGGAAAAGTTCTGTCTCAAGAGGAGATGATTACGGAGTACAC 1440 N Y E 0 L 0 G K V L S 0 E E M I T E Y T 416 TGAGAAAATAACTGCCATGGAGGAGGAACTGAAAAGCATCAGTGAGCTGTTTGCTGACAA 1500 E K I T A M E E E L K S I S E L F A D N436 TAAGAAGGAGCTGGAGGAGTGCACCACCATCCTTCAGTGCAAGGAGAAGGAACTGGAGGA 1560 K K E L E E C T T I L 0 C K E K E L E E 456 AACACAGAACCACCTGCAAGAATCAAAGGAACAGTTGGCTCAGGAATCATTTGTGTGTC 1020 T 0 N N L 0 E S K E 0 L A 0 E S F V V S 476 TGCCTTTGAGACTACAGAAAAGAAGCTTCACGGCACAGCAAACAAGTTATTGAGCACAGT 1680 A F E T T E K K L N G T A N K L L S T V A96 GAGGGAGACAACAAGAGATGTGTCGGGTCTCCATGAGAAATTGGACAGAAAAAAAGCTGT 1740 R

E

T

T

R

D

V

S

G

L

H

E

K

L

D

R

K

K

A

0

0

H

N

F

0

V

N

E

N

F

A

E

0

M

D

R

R

F

0

R

V

D

0

0

G

6

L

D

F

AGACCAGCACAACTTTCAGGSTCATGAGAACTTTGCGGAACAAATGGATAGACGCTTCAG

SIG

1800 S 536

TGTGATTCAGCGAACTGTGGATGATTACAGTGTGAAGCAGCAAGGCATGCTGGATTTCTA 1660 I

V

T

0

Y

S

V

K

Y SSG

TACAAACTCCATCGACGACCTTCTGGGCGCCAGTTCCTCTCGACTGAGTGCAACTGCCTC T

N

S

I

0

D

L

L

G

A

S

S

S

A

L

S

A

T

A

1920 S 576

TGCTGTTGCCAAGTCCTTTGCCTCGGTGCAGGAAACTGTAACAAAGCAAGTGTCGCACAG 1980 V

A

A

K

S

F

A

S

V

0

E

T

V

T

0

K

V

S

H

S 596

TGTTGAGGAGATACTGAAGCAGGAAACCTTGTCTTCCCAAGCTAAAGGTGATCTGCAGCA 2040 V E I L K 0 E T L S S 0 A K G D L 0 0616

GCTTATGGCTGCGCATCGCACAGGACTGGAAGAGGCACTAAGGTCCGATTTGCTTCCAGT 2100 L

A

A4

H

R

T

G

L

E

E6

L

R

D

S

L

L

P

V636

TGTGACTGCTGTTTTGGACCTAAATTCTCATTTGAGTCATTGCTTGCAGAACTTCCTAAT 2160 V

N

0 N F L I 656 TGTGGCCGACAAGATTGATTCTCATAAAGAAGATATGAATTCCTTCTTCACCGAACATTC 2220 V A 0 K I 0 5 H K E 0 M N S F F T E H S 676 TAGATCGTTGCACAAACTTCGGCTGGATTCTAGTTCTGCCTTGTCCAGTATTCAGTCAGA 2280 R S L 0 K L R L 0 S S S A L S S I 0 S E 696 ATATGAAAGCCTAAAAGAGGACATTGCSACAGCTCAGTCCATGCATTCAGAGGGGGTGAA 2340 Y E S L K E 0 I A T A 0 S M H S E G V N 716 TAATCTTATCAGTTCGCTACAAAACCAGCTGAACTTGCTTGGCATGGAGACCCAACAACA 2400 N L I S S L 0 N 0 L N L L G M E T 0 0 0 736 ATTTTCTGGATTTCTGTCCAAAGGAGGAAAGCTGCAGAAGTCTGTGGGGAGTCTGCAGCA 2460 F S G F L S K G G K L 0 K S V G S L 0 0 756 AGATCTGGACTTGGTTTCCTCGGAAGCCATAGAATGTATCTCTTCCCATCACAAOGAAGCT 2520 D L D L V S S E A I E C I S S 0 14 K K L 776 T

V

A

L

D

L

N

S

L

S

H

C

L

CGCTGAGCAGTCTCAGGACGTGGCTGTGGAGATCAGGCAGCTGGCAGGCTCTAATATGAG 2580 0

E

A

S

0

0

V

L

V

E

I

R

0

L

A

G

S

N

M5 796 2640 I S 61

CACCTTGGAGGAGTCCAGCAAACAGTGTGAGAAGCTCACCAGCAGTATCAATACCATCTC T

E

L

E

5

S

K

0

C

E

K

L

T

S

I

S

N

T

TCAGGAAAGCCAGCAGTGGTGTGAAAGTGCCGGCCAGAAGATTGACTCTGTTTTAGAGGA 2700 Q E S 0 0 W C E S A G 0 K I 0 S V L K E 636

GCAAGTGTGTTACCTGCATTCCAGCAAAAAGCATCTCCAGAACTTACACAAGGGTGTAGA 2760

0 V C Y L H S S K K H L 0 N L H K G V E 656 AGATAGCTGTGGATCATCGGTOGTAGAAATTACCGACCGTGTGAACGCACAGCGCCAGGC 2620 D S C G S S V V E I T D R V N A 0 R 0 A 876 TGAGGAGAAGGCATTAACCAGTTTGGTGGAA TCAGGGATGACCAGGAGATGGTTGG 2880 E

E

K

A

L

T

S

L

V

E

0

V

0

V

R

0

0

D

E

M

v

H

S

G

196

AGAACAGCGCtTGGAACTCCAAGAACAAGTACAGAGCGGCCTGAACAAAGTACATAGCTA 2940 0

E

R

L

E

L

0

E

0

S

G

L

K

N

V

Y 916

CCTCAAGGAGAACTCAGGAATGATGTCCCAACAGGTACAACGCCCCAGAGGAGGGATTA 3000 L K E E L R N 0 V P T G T T P 0 R R 0 Y936

CGCGTACCCATCTTTGCTTGTTAAAACAAAACCCAGGGATGTGCTGTTGGAGCAGTTTAG A Y P S L L V K T K P R D V L L E 0 F R GCAACAGCAGCAAGAATATCTGGAATCCATATCCAGCGTGATCTCTGAGGCTGTGGAACC 0 0 0 0 E Y L E S I S S V I S E A V E P GCCAGTGGAGCAGGATTCTCTAGAAGATGAGCCACCGGTTGCAGTTAATGACAGCGTCAT P V E 0 D S L E D E P P V A V N D S V 1 CAGTGAGAGATCCTGCATTGATCTCAGTATGACTTGTCAGGAGAAAGGAGGAATTCGATT S E R S C I D L S H T C 0 E K G G I R F CTTCCAGCAAAAGAAAGCACTTCGGAAGGAAAAGGAAAACCGGGGAAATACAACACTTTT F 0 0 K K A L R K E K E N R G N T T L L GGAGAGATCTAAAATCATGGACGAGGTGGACCAAGCTCTTACGAAATCTAAACTTCCCCT E R 5 K I H 0 E V 0 0 A L T K S K L P L GCGAATGCAGAACtga agcacttgcttaacccScatgatgatgtgcggctttgtctOtct 6 0

R

N

3060

956 3120 976

3180

996 3240 1016 3300 1036 3360

05S

3420 1060

gtgcagaaa,lttga.tacatttttaactgtttstgStatccgggtgttgcgtatgSagaa

3460

aattttattcatcaataaatattcccttttctataaaaaoaaaaaaaaaa

3651

ettttacttatcttggttatatatatgtgtgtctatcgtcacttgtatgtcaaatattaa 3540 aaatactttctaaagtagaacttctcaggctttacgagttagttatggaaaagtStattt 3600

c

II§ 1 1 I J LW IJ IfI

GOR TURNS GO ALPHA

GOR

HELICES

i1 IL I I lil 1V]FIJI JII LLJ1F J1 Tl L

BETASHEETS

I

0

500

975 amino acids, respectively. There is no obvious similarity between the amino acid sequences of Eg5 and the drosophila heavy chain in the carboxy-terminal regions of the molecules. By contrast, as shown in Fig. 2B, significant similarity was found among the proteins encoded by Eg5, cut7+, and bimc. In particular, from amino acids 911 to 956, more than 35% of the Eg5- and bimc-encoded amino acids are identical and more than 50% are of the same family. The similarity extends beyond sequence comparisons; in particular, the structures of the central regions of the proteins encoded by Eg5, bimc and cut7+ are very closely related, which could suggest similar functions for these gene products. In a previous work (26), we have shown that Eg5 RNA translation is regulated during very early development. In eggs, the RNA is found in both the poly(A)+ fraction and polysomes. After fertilization, Eg5 RNA is deadenylated and concomitantly released from the polysomes. To know when Eg5 RNA appears and when it is adenylated during oogenesis, we performed Northern (RNA) analysis of total RNAs extracted from oocytes (stages I to VI), eggs, and premidblastula transition embryos by using a 32P-labeled Eg5 cDNA probe. Considering that a fixed quantity of total RNA (10 Rg) was used and that rRNA constitutes a progressively larger proportion of the total RNA during oogenesis (i.e., 25% in stage I oocytes versus 90% in stage VI oocytes), the decrease in the autoradiogram signals observed in Fig. 3A reflects the dilution of these transcripts in the pool of total RNA. Taking this into account, quantitation of autoradiograms from these Northern analyses confirmed that the number of these transcripts per oocyte or embryo was approximately constant from stage III of oogenesis to the midblastula transition (Fig. 3B). Closer examination of the data (Fig. 3A) shows that Eg5 transcripts appear to be larger in eggs than in either oocytes or embryos, suggesting that the RNA is adenylated only in eggs. When poly(A)+ and poly(A)- RNAs were separated from the total RNAs extracted from oocytes at different stages and analyzed by Northern blotting with Eg5 as the probe, we never found Eg5 in the poly(A)+ fraction (Fig. 3C). Moreover, in its 3'untranslated region (at nucleotide positions 3430 to 3436), Eg5 RNA possesses a sequence motif [UUUU(A)AU] similar to those shown to be necessary for maturation-specific adenylation of Xenopus mRNA (9, 17). This supports the hypothesis that during maturation Eg5 translation is regulated through adenylation, as recently reviewed (12, 31), and also suggests that the protein is present in eggs but not in oocytes. Antibodies against bovine kinesin reveal a pair of 120-kDa polypeptides in a crude Xenopus egg extract (28). After fertilization, Eg5 RNA is no longer detected in polysomes, suggesting that its further translation is not necessary for early development. This is in agreement with the notion that the 12 rapid cell divisions which follow fertilization

1000

FIG. 1. Nucleotide sequence of Egl cDNA and predicted amino acid sequence of the protein. (A) Restriction map and sequencing strategy. The arrows denote the extent and direction of sequence reading of each fragment. (B) Nucleotide and amino acid sequences. The nuclear polyadenylation signal is indicated by solid underlining (nucleotide positions 3614 to 3619). The putative cytoplasmic polyadenylation sequence specific for maturation is indicated by broken underlining (nucleotide positions 3430 to 3436). (C) Secondary structure prediction for Eg5 protein. The secondary structure of Eg5 protein predicted by the method of Garnier et al. (10) is shown. Regions predicted to be a turns (GOR turns), a helices (GOR alpha helices), or ,B sheets (GOR beta sheets) are indicated by the elevated segments.

VOL. 11, 1991 Eg5

.......

BINC

.

CUT7+

6KKKG

?

... (SO)DHALNDENE

L1INTVjLR

.(375)TLHNELQELR .... YTF

Eg5

BISC

IS

'AC '

E~VVLQTE....G%

IV5ETGEVN 51 KLSHGP 51

TSGAMGA LAI;SDPSSN P VAlF FP.... .1LQSID NR CTTY.. .DES;N4jEENCIS

ft

LE

53

T1FAYGQTGTG

107

YNCTIPAYOQTOTO Y IFAY PAY

107 100 106

LFEN

.

~

~

~

IIQNTAQVHEF

KAR3

Egs szwc CUT7+ DEINESIN

N

P..b D

IINC

CUT7+ DKINESIN CLARET

KAR3

LQNF&Ft

Y

Eg5

NDO

215 210 211 197 203

............................

.:tDPNHL4 .NVTSCKLESEENVRIILKEANK

S ......... QENLENQRELS.

NIGPSGA

RINV

QVBD

T_TSIIATVSPA P

SLOOGR 315 IPYRESELT 328 DS IPYRESKLT 300 IY KLELG 301 . .EQ I KL I E 1 317 PDST I _ 380 LSLE 375 I 37TLDY5TN LE

TKE IA 388 LV TL0 PA AKI3VIC KRDC ENTKAERNRYLN NSVAN SNNSONF 361 NFl I NVKy 355 FVN BLYSRK NGVY

.*ESICL435 RIISTS RNLEN A DLLC EVLDLNVKSSRE YV9SN 448

LKGKV(609)

365 363

EN.4

KE A>WTT NDTLAA TND

LQLX NSs

Q

L

*mG2Ktl DK

IMLR VSENEK &E EKRKK

493

TTvRrB

495 508 553

wRAS STEV SDVTKR;D~~~~~~~~~8~8AFQTRNAK E 555 ELQVHNFAEQMDRtRFS%1;QR DQ^ FTRK L 555 aimc L3V3gN I DE4 HC B~~~~~~I QY KEYIA EERNNE NNFI.KFNLLTHLRSFHGSFTDETNGYFTL4J 568

E

'S

DYSVKQQG

D

...ASVQETVTKQV* S#EILKQETLSSQA

DFYTI&DA ATSAVA ETTSVKVNFIATE IERTIOLSEYNR.DAACNNAAE A NNNVLEEIEDL 615 i4TI ISNTKITEHFCHF DEALQSARSSCAVPNSSLDLIVSELKDS 628

610

CUT7?

NDFNA&EE

EgS

NCLQ4IVADUIr B.. ."NLGKDL4; FCT 672 KNSEDALEHSLQDISNSSQEL0NGIGSSELI E :DES. .. YRQLVQELYNLQHT 685 FFTR DSRSL4.DSS1 IQSETES3 mAmNN ... LISSLQLN 727 W8QNIETTI SH IE91#%AEARREXLNSQIEA 730 HLSENEI NlEL R.

BINC CUT?7. Eg5 BINC

CUT7+ Bg5

"INC CUT7+

EgS

8INC CUT

+

EgS BINC

CUT7+ Eg 5

BIMC

CUT7.

Eg8S

BIMC CUT7+ Eg5 BINC BIMC

8

-

;:f

*

*

*

30 20

.

-

1010-

1

.

f-

11

0

V

IV

III

,.,

rt

SOt

-

+

4

UFE

VI

6

8

10

Lhc

c

KGD&QLMNAAHRFUE4RSDLLRVTAVL REEVKSKVGEG AkAI8ARISEEI GEOK

S 670

HEESQEELNYGMEDIDA. . LVKTCTTSLND'I LSDYISDQKSKFESKQQDLIASGK ON ISSHREQSQDVL DLDLVSS GPLSW . .GGKLQKS EVFKSBQ DVNASB RL WEES DGVRTEISAmLEQATTQHD I RANEINNNR FLRNAAS IVGANK ESLD ILHSHLNDT IVSNF

790 803

I NAGSNMS&ESC TISQESQQWCESAGQKIDSVE#YL1# rHETVRIVDVQVDDNGRQNEA DE lrKLQNDWEAFDQRNSTI PDFJKA"P

850

E*fJKTVENGSQLOS 19

. KKHLQN GV C NGRYRD AT IA SEDNTKEEQLL L

IHNSNS

T

-+

II1 + IV

T

V

-+

+

VI

T

-

UFE

743

784 844

FIG. 3. (A) Northern blot analysis of total RNAs extracted from eggs (UFE), and embryos 4, 6, 8, and 10 h after fertilization. Samples of RNA (10 ,ug) were separated on agarose gel containing 6% formaldehyde and blotted onto nylon membrane (Hybond [Amersham]). Purified inserts were 32P labeled with random primers to a specific activity of 5 x 108 cpm ,Lg-1. Hybridization was carried out in 50% formamide-1% sodium dodecyl sulfate-10 x Denhardt's solution-10% dextran sulfate-1% PPi-1 M NaCl-0.05 M Tris-HCl (pH 8) at 42°C overnight. Filters were extensively washed in 2x SSC (lx SSC is 0.15 M NaCl plus 0.015 M sodium citrate)-0.5% sodium dodecyl sulfate at 65°C. (B) Quantitative analysis of Eg5 RNA during oogenesis and very early embryogenesis. MBT, midblastula transition. (C) Total RNAs were extracted from oocytes (stages I and II, III and IV, and V and VI) and unfertilized eggs (UFE). Poly(A)+ was separated from poly(A)by oligo(dT) chromatography. Samples [10 pLg of total RNA, 10 ,ug of poly(A)- RNA, and 200 ng of poly(A)+ RNA] were analyzed by Northern blotting as described for panel A.

oocytes (stages I to VI), unfertilized

DHCLALAESQKQGVNLEVQ*JRLLQKVKEH 863

EITDRVNAQRQAEEEALTSLVEC6DDQEMVGORL4s DSYSSIEGRVEHLTGRNNQFQQEATNHHATLEIIA; 909 903

NNDNLIDSIETPHTELQK.ITDIeLKGTTSLANHTNFU 922 NRF1;*?FCPR*MLEQ. QQQ1 961

QS.VH*MLRE NTREE NRSMEYWG DLS S EL N"YSK} VPFS:SH*SR KETT ASWTRDSSLI GLGDE ETTIEDT E

+ 11

433

EENI

ES D @L 5pN

DK

Eg5

8INC

4

UFE

VI

28S

TKESEKVFID

CUT?. Eg5

V

* :f

KLTRILQDSLGGR 320

REAGNINRSLLTLGRV RAA LTLTGRVL .. AD0 SNILRS GL .. GB NQSLLTLGRV NIGRS OTY I KVSE ..DGNE

SP.KTS..

.PVDLAOSE LVDLAGSI 248 257 D

IV

*-

MBT 40

n

LEL............ IGRBAEKQEISV.

II1

.

i~~

t-

............ HSV LVDLAOSB1 263 EDGVSI 258 . RVLNLVDLAOSEI RTTEiSGERYVCP.

VL

BINC CUT7+

153

R IHL ............ SGSNAKTGAHS... TAS

Eg5

CLARET

KLKSKOVYCKFN

j

B

i.

SRSSV SRS

A

BINC

CUT7+ DKINESIN

N

II

109

KY

;;SRSN4; ST DONSLTINNNSDDLLRAIrDL GSE| 271 242 V.

DKINESIN CLARET

KAR3

FAY

A

-

I ' ........................

212

SRS

BINC CUT7*

KAR3 Eg5 BINC CUT?7 + DKINESIN CLARET

I..

VLESDNNNRHDPTSI0LKNEIRHDQ S

DEINESIN CLARET

QAL S

N IDSAT 0I.2 Q IHL4ENP LIYDNEKK0NNSTLV . YIKNAGDGL. WR.... L SEELRKPABVFIgF GN5 . PYVEE. ..I...SPE.8.EV.W... S 4)L& NLSVNED.. LNHT . A. A. NNKNDIYSNI LL AEKKD4

Eg

KAR3 ER5 BINC CUT7+

94jA

DIF.E

161 IIYE I IFTVEQOPOIIR 156 S7 LYE LGXLSDN.. IP 158 NS LYN IPs £. DOILSBO.. GL .Y.. . 148 i ...Y FIKYSY 152 .... ...BY.... VIN LGVEYEIKAT

CLARET KAR3

E95

S

DTNVDVFK

4

*

48

LKNLENSDI9INVNEFDDNSG.. .Q.SEV 50

40

40

-,,WI

47

YNCTIFAYNQIGTGKA NAS . ... r ;Fq,107Qt

L CUT7. LIA DKINESIN CLARETA

3397

A

#ARC vv 43.ECDSQR.

('70) RDI ERE1 NED

. SEREIPAE DKINESIN. .(336) CLARET KAR3

NOTES

...

4SIV1SEAVEPPVEQDS11EPPV

969 973

SERSCI DI.1TCQE9GI RFFQQKK 1021 1029 1024

THAPTVTNVNPSNTGLREVDANVAA VLFNPDQLSGPSSSPGGSSKGFVYN LDPKKFVRETYTSSNQTNWDVYDKPSNSSRTSLLRSSRl5YSKE1

ALRKEKENRGIf;LLERSEIMDEVDQALTKSELf.RNQN RPLVYSTGEKSE QDGSPVVSPDSATEAEGCNNU'SKRRRSNSVVADTKLPNE.LARRNA

1060

GHMEGRENVPPPGISNGRRLRGRPSP

1115

1089

FIG. 2. The predicted amino acid sequence of the motor domain of Eg5 is aligned with those encoded by Aspergillus bimc, S. pombe cut7+, the drosophila kinesin heavy-chain gene, saccharomyces KAR3, and drosophila claret. The numbers of the residues at which the bimc, cut7+, claret, and KAR3-encoded proteins extend in the amino-terminal direction and the drosophila heavy chain extends in the carboxy-terminal direction are in parentheses. Alignment of the carboxy-terminal parts of the Eg5-, bimc- and cut7+-encoded molecules is also shown. Identical residues are boxed. The central regions of the Eg5-encoded protein (from amino acids 366 to 535) and the bimc-encoded protein (and also the cut7+-encoded protein, to a lesser extent) show conserved amino acids (dots) spaced by six amino acids. Most of these conserved amino acids are leucines.

could only be under the translation control of cyclins, as suggested by in vitro experiments using egg extracts (21). Moreover, the fact that Eg5 RNA was not detected in adult tissues (26) suggests that it is involved in cell proliferation. Taking these points into account, and also the similarity among EgS, cut7+, and bimc, one can postulate that Eg5encoded protein is involved in nuclear division and may be the counterpart of bimc-encoded protein in xenopus. Nucleotide sequence accession number. The sequence described here has been assigned EMBL accession no. X 54002. We are grateful to Michel Kress and H. B. Osborne for very helpful discussions, to Chris Ford and Sharyn Endow for critical reading of the manuscript, and to F. de Sallier Dupin for preparing the manuscript. This work was supported by the Association pour la Recherche sur le Cancer, the Ministere de la Recherche et de la Technologie, la Ligue Departementale d'Ille et Vilaine de Recherche contre le Cancer, and la Fondation pour la Recherche Medicale.

3398

NOTES

REFERENCES 1. Allen, R. D., D. G. Weiss, J. H. Hayden, D. T. Brown, H. Fujiwake, and M. Simpson. 1985. Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J. Cell Biol. 100:1736. 2. Bloom, G. S., M. C. Wagner, K. K. Pfister, and S. T. Brady. 1988. Native structure and physical properties of bovine brain kinesin and identification of the ATP binding subunit polypeptide. Biochemistry 27:3409-3416. 3. Brachet, J., H. Denis, and F. Devitry. 1964. The effects of actinomycin D and puromycin on morphogenesis in amphibian eggs and Acetabularia mediterranea. Dev. Biol. 9:398-434. 4. Brady, S. T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature (London) 317:73-75. 5. Bravo, R., and J. Knowland. 1979. Classes of proteins synthesized in oocytes, eggs, embryos and differentiated tissues of Xenopus laevis. Differentiation 13:101-108. 6. Davidson, E. H. 1986. Gene activity in early development, 3rd ed. Academic Press, Inc., Orlando, Fla. 7. Endow, S. A., S. Henikoff, and L. Soler-Niedziela. 1990. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature (London)

345:81-83. 8. Enos, A. P., and N. R. Morris. 1990. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60:1019-1027. 9. Fox, C. A., M. D. Sheets, and M. P. Wickens. 1989. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 3:2151-2162. 10. Garnier, J., D. J. Osguthorpe, and B. Robson. 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120:97-120. 11. Hagan, I., and M. Yanagida. 1990. Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature (London) 347:563-566. 12. Jackson, R. J., and N. Standart. 1990. Do the poly(A) tail and 3' untranslated region control mRNA translation? Cell 62:15-24. 13. Kosika, K. S., L. D. Orecchio, B. Schnapp, H. Inouye, and R. L. Neve. 1990. The primary structure and analysis of the squid kinesin heavy chain. J. Biol. Chem. 265:3278-3283. 14. Kuznetsov, S. A., E. A. Vaisberg, N. A. Shanina, N. N. Magretova, V. Y. Chernyak, and V. I. Gelfand. 1988. The quaternary structure of bovine brain kinesin. EMBO J. 7:353-356. 15. Maller, J. L. 1985. Regulation of amphibian oocyte maturation. Cell Differ. 16:211-221. 16. McDonald, H. B., and L. S. B. Goldstein. 1990. Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61:991-1000. 17. McGrew, L. L., E. Dworkin-Rastl, M. B. Dworkin, and J. D. Richter. 1990. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 3:803-815. 18. Meluh, P. B., and M. D. Rose. 1990. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60:1029-1041.

MOL. CELL. BIOL.

19. Meuler, D. C., and G. M. Malacinski. 1984. Molecular aspects of early development. Plenum Publishing Corp., New York. 20. Miake-Lye, R., J. W. Newport, and M. Kirschner. 1983. Maturation promoting factor induces nuclear envelope breakdown in cycloheximide arrested embryos of Xenopus laevis. J. Cell Biol. 97:81-91. 21. Murray, R. W., and M. W. Kirschner. 1990. Dominoes and clocks: the union of two views of the cell cycle. Science 246:614-621. 22. Neighbors, B. W., R. C. Williams, Jr., and J. R. McIntosh. 1988. Localization of kinesin in cultured cells. J. Cell Biol. 106:11931204. 23. Newport, J., and M. Kirschner. 1982. A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675686. 24. Paris, J., R. Le Guellec, A. Couturier, K. Le Guellec, F. Omilli, J. Camonis, S. MacNeill, and M. Philippe. 1990. Cloning by differential screening of a Xenopus cDNA coding for a protein highly homologous to cdc2. Proc. Nati. Acad. Sci. USA 88: 1039-1043. 25. Paris, J., H. B. Osborne, A. Couturier, R. Le GuelHec, and M. Philippe. 1988. Changes in the polyadenylation of specific stable RNA during the early development of Xenopus laevis. Gene 72:169-176. 26. Paris, J., and M. Philippe. 1990. Poly(A) metabolism and polysomal recruitment of maternal mRNAs during early Xenopus development. Dev. Biol. 140:221-224. 27. Saxton, N. M., M. E. Porter, S. A. Cohn, J. M. Scholey, E. C. Raff, and J. R. McIntosh. 1988. Drosophila kinesin: characterization of microtubule motility and ATPase. Proc. Natl. Acad. Sci. USA 85:1109-1113. 28. Scholey, J. M., M. E. Porter, P. M. Grissom, and J. R. McIntosh. 1985. Identification of kinesin in sea urchin eggs and evidence for its localization in the mitotic spindle. Nature (London) 318:483-486. 29. Smith, R. C. 1986. Protein synthesis and messenger RNA levels along the animal-vegetal axis during early Xenopus development. J. Embryol. Exp. Morphol. 95:15-35. 30. Vale, R. D., T. S. Reese, and M. P. Sheetz. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39-50. 31. Wickens, M. 1990. In the beginning is the end: regulation of poly(A) addition and removal during early development. Trends Biol. Sci. 15:320-324. 32. Wolf, H., S. Modrow, M. Motz, B. A. Jameson, G. Hermann, and B. Foertsch. 1988. An integrated family of amino acid sequence analysis programs. Comput. Appl. Biosci. 4:187-192. 33. Yang, J. T., R. A. Laymon, and L. S. B. Goldstein. 1989. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56:879-889. 34. Yang, J. T., W. M. Saxton, and L. S. B. Goldstein. 1988. Isolation and characterization of the gene encoding the heavy chain of Drosophila kinesin. Proc. Natl. Acad. Sci. USA 85:1864-1868. 35. Zhang, P., B. A. Knowles, L. S. B. Goldstein, and R. S. Hawley. 1990. A kinesin-like protein required for distributive chromosome segregation in Drosophila. Cell 62:1053-1062.

Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein.

By differential screening of a Xenopus egg cDNA library, we selected nine clones (Eg1 to Eg9) corresponding to mRNAs which are deadenylated and releas...
978KB Sizes 0 Downloads 0 Views