Accepted Manuscript Title: Chemotaxis during neural crest migration Author: Adam Shellard Roberto Mayor PII: DOI: Reference:

S1084-9521(16)30031-3 http://dx.doi.org/doi:10.1016/j.semcdb.2016.01.031 YSCDB 1942

To appear in:

Seminars in Cell & Developmental Biology

Received date: Accepted date:

21-12-2015 22-1-2016

Please cite this article as: Shellard Adam, Mayor Roberto.Chemotaxis during neural crest migration.Seminars in Cell and Developmental Biology http://dx.doi.org/10.1016/j.semcdb.2016.01.031 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Chemotaxis during neural crest migration  Running title: Chemotaxis in neural crest  Adam Shellard, Roberto Mayor* [email protected]  Department of Cell and Developmental Biology, University College London, Gower Street,  London WC1E 6BT, UK.  *

Corresponding author. 

 

 

Abstract  Chemotaxis refers to the directional migration of cells towards external, soluble factors  along their gradients. It is a process that is used by many different cell types during  development for tissue organisation and the formation of embryonic structures, as well as  disease like cancer metastasis. The neural crest (NC) is a multipotent, highly migratory cell  population that contribute to a range of tissues. It has been hypothesised that NC migration,  at least in part, is reliant on chemotactic signals. This review will explore the current  evidence for proposed chemoattractants of NC cells, and outline mechanisms for the  chemotactic response of the NC to them.    Keywords: chemotaxis; neural crest; collective migration; SDF1/CXCL12; VEGF; C3/C3aR   

 

1.  Chemotaxis  1.1  Definition  Cell migration is fundamental to many processes in development and disease, including  embryonic morphogenesis, wound healing and the immune response [1]. This often involves  cells responding to specific signals that guide their movement, either from mechanical  stimuli, molecules bound to the extracellular matrix or soluble external factors [2‐8]. Cell  migration in response to gradients of the latter, called chemotaxis, has been widely studied  and it is a well‐established mechanism that provides directionality and persistence to  migrating cells [7, 9, 10]. The chemotactic response of cells, in part, involves the  polymerisation of actin at the leading edge and the accompanying formation of protrusions,  and myosin‐II‐mediated contraction at the rear [11].  1.2  Criteria to define a chemoattractant  The first description of chemotaxis was made by Engelmann and Pfeffer in bacteria over a  century ago [12, 13]. Since then, repulsive [14, 15] and attractive cues have been found for a  variety of processes [1, 9]. However, most factors are multifunctional on cell behaviour,  which makes definitive demonstration of chemoattractant behaviour in vivo difficult.  Nevertheless, some attributes of chemoattractants may be summarised as follows.  Chemoattractants are generally transcribed, translated and secreted by the target tissue  itself to where the responsive cells are migrating. These responding cells are required to  express a receptor for the chemoattractant when temporally appropriate. Loss of the  chemoattractant or its receptor should lead to failure of cells reaching the target region;  instead, non‐directional migration can be expected. In vitro, localised chemoattractants  should cause chemotaxis and in vivo, cells should be diverted from their normal path by  ectopic, localised sources of chemoattractant. Chemotaxis should be rescued by an  exogenous ligand when the endogenous chemoattractant is lost, if placed into the region  the cells would normal migrate toward. Chemotaxis requires that cells migrate up a  concentration gradient of a soluble factor, so sufficient and consistent changes in the  chemoattractant’s concentration should be found to give rise to a detectable gradient. This  last point is perhaps the most difficult to demonstrate due to technical limitations and that  in some cases the gradient is generated in situ by the migrating cell [16]. Nonetheless, a  fulfilment of these criteria is important to show that not only are the cells capable of being 

chemotactic towards the factor, but also that chemotaxis is actually happening in vivo.  Altered migration in response to the external factor would otherwise demonstrate  chemokinesis, the process by which factors simply promote or support migration, rather  than providing directionality to the movement as in the case of chemotaxis, as seen in  various cell types in physiology and throughout development [9, 11].  2.  The neural crest  2.1  Neural crest formation  The neural crest (NC) is a transient cell population exclusively found in vertebrates. It is  initially induced at the neural plate border as a result of the interaction between the  ectodermal neural plate and the epidermis [17]. Changes in the structure of the neural plate  cells cause fusion of the neural folds, resulting in the formation of a closed neural tube and  of NC on its dorsolateral aspect on each side [17, 18]. Both the prospective neural plate and  the prospective epidermis contribute to the NC [19, 20]. After induction, NC cells undergo  an epithelial‐to‐mesenchymal transition (EMT) [21], in which cells acquire motility, epithelial  polarity is lost and there is a switch from more adhesive to weaker cadherin expression.  These and the accompanying cytoskeletal changes mean that the NC cells leave the  neuroepithelium of the dorsal neural tube and become highly migratory [18].  2.2  Neural crest derivatives  The NC are multipotent stem cells, able to differentiate into many cell types and extensively  contribute numerous tissues (Fig. 1A) [22]. NC cells receive inductive signals from the neural  tube, paraxial mesoderm and the overlying ectoderm as they migrate [23]. Their  specification is a multistep process; their fate is based on these paracrine signals, as well as  the time at which they migrate, their origin and the stream in which they are found [23‐27].  The cranial NC contributes to the craniofacial mesenchyme, which includes cartilage, bone,  teeth, cranial neurons, glia and connective tissue. Cardiac NC contributes to the  cardiovascular system, developing into melanocytes, cartilage, connective tissue and  pharyngeal arch neurons. Trunk NC gives rise to melanocytes, glia and neurons of the  peripheral nervous system and epinephrine‐producing cells of the adrenal gland. The vagal  and sacral NC develops into the ganglia of the enteric nervous system and sympathetic  ganglia. 

3.  Neural crest migration  3.1  Neural crest streams  After undergoing EMT, the NC becomes a highly migratory cell population, often likened to  invasive cancers [18, 28, 29]. NC cell migration has been studied in a variety of vertebrate  animal models, including Xenopus, zebrafish, chick, mouse [30] and even non‐classical  model organisms such as lamprey [31], hagfish [32] and turtle [33, 34]. The NC migrate  ventrally down the embryo, initially as a continuous wave away from the neural tube, but  quickly splitting into discrete streams along stereotypical pathways to various sites (Fig. 1A).  The cranial NC migrates along dorsolateral routes between the ectoderm and underlying  paraxial mesoderm [35, 36]. In chick and mouse, early trunk NC migrates ventrolaterally  through the anterior sclerotome [37‐40]. Trunk NC migrating later, which will become  melanocytes, follow the dorsolateral path between the dermomyotome and dorsal  ectoderm, with their migration affected by the structure of the somites [41]. However in  zebrafish and Xenopus, melanocytes use both ventromedial and dorsolateral pathways [42,  43].  The cranial NC divide into three streams that invade the segmented branchial arches (BAs),  due to, at least in part, the repulsive signals of ephrins and class 3 semaphorins (Fig. 1B).  Eph/ephrin signalling prevents NC cells from invading non‐NC tissue and the caudal half of  somites, thereby restricting them to the rostral half of somites in chick embryos [44, 45].  Likewise, class 3 semaphorins contribute to NC segregation in the head, trunk and caudal  regions of the sclerotome [46‐51] by acting through plexin‐neuropilin complexes expressed  by the NC [47‐49, 51]. The mixing of NC from different streams is also prohibited because  NC belonging to different streams express complementary Eph receptors and ephrin ligands  [35].  3.2  Collective migration  NC displays a range of migratory behaviours depending on species and location within the  embryo. Some exhibit a more individual migratory behaviour [52], whereas most of NC cells  migrate together, either as chains, groups or even single sheets, in spite of the fact that NC  go through EMT [1, 29, 53‐55]. For example, cephalic NC maintain short and long‐range cell‐ cell interactions during migration both in vitro [56] and in vivo [57‐59]. This kind of 

movement has been called collective cell migration, which can be defined as the  coordinated migration of cells as tight clusters or loose groups (as in the case of NC), where  cooperation between cells contributes to their overall directionality [18, 53, 60‐63]. Overall  directionality during collective cell migration is higher than during single cell migration,  indicating that intercellular interactions promote the directionality of migrating NC [57‐59].  Unlike epithelial cells, which move slowly and have tightly formed intercellular adhesions,  the collective mass of the mesenchymal NC is a cohesive unit linked by transient contacts,  such as N‐Cadherin adhesions [64‐67]. N‐Cadherin dynamics is regulated by  lysophosphatidic acid receptor 2, prompting N‐cadherin endocytosis which leads to an  increase in tissue plasticity [68]. This plasticity allows NC to migrate under physical  constrains without abolishing cell cooperation [68]. Moreover, semaphorin and ephrin  inhibitory signals ensure NC remain in streams (see Section 3.1), and short‐range  chemotaxis (see Section 5.2) promotes collectiveness of the group.  3.3  Directional migration  The importance of directional migration for the NC lies with the fact that they must reach  and populate specific target regions. Directional migration requires cell polarisation, in order  to specify a front that has localised actin polymerisation and a rear that is able to contract  [11, 69]. Contact inhibition of locomotion (CIL), the process by which contacting cells  collapse their protrusions at the site of contact and change their direction of migration [70,  71], is a mechanism that is able to polarize cells in a contact‐dependent manner [70, 71]. NC  exhibits CIL in vitro and in vivo [72]. The Rho GTPases, Rac, Cdc42 and Rho, are important for  cell polarisation and cell migration [73]. Non‐canonical (PCP) Wnt signalling is necessary for  CIL in NC, by activating RhoA at sites of intercellular contact, which in turn suppresses the  generation and maintenance of lamellipodia through its target ROCK [72, 74]. The  proteoglycan syndecan‐4, expressed by NC, cooperates with non‐canonical Wnt and N‐ Cadherin signalling to inhibit Rac activity at the cell‐cell contact [74‐76]. Together, mutually  exclusive zones of Rac1 and RhoA activity are generated in NC cells, meaning that  protrusions are formed only at sites where there is no NC‐NC contact. Most NC cells  migrating in vivo maintain close proximity and move in compact groups. Therefore, the  polarity required for directional migration is established because at the free edge of the cell  cluster, due to the lack of NC‐NC contact, cells become polarized and generate protrusions 

away from the group [77] (Fig. 1B, purple protrusions). Hence, directional migration is an  emergent property of NC cells that depends on cell‐cell interactions [78‐80]. Importantly, it  has been shown that the pre‐established polarisation of NC arising from cell‐cell contacts  allows NC cells to respond to external chemoattractants more efficiently as a collective than  as individual cells [81]. Consequently, NC chemotaxis becomes more efficient as cell density  increases [81]. This collective interpretation of a chemotactic gradient is referred to as  collective chemotaxis, and it has been supported by mathematical modelling of collective  cell migration [82]. However, CIL alone is not sufficient to explain directional migration, as it  would promote cell dispersion on its own. Significant evidence supports the presence and  requirement of chemoattractants for NC migration in vitro and in vivo.  4 Neural crest long‐range chemoattractants  Various chemoattractants have been proposed for the NC, including SDF‐1/CXCL12 [81, 83‐ 85], FGF [86‐88], VEGF [89‐92], PDGF [93‐95], SCF [96], NT‐3 [97], GDNF [98‐100], NRG1  [101] and TGFβ [102]. However, whether chemotaxis mediates the long‐range directional  migration of NC in vivo has not been conclusively demonstrated. Chemoattractants do not  seem necessary for directional migration in vitro and in silico, where it has been suggested  to be a self‐organising property of the NC [81, 82, 103] as discussed in Section 3.3.  Furthermore, many NC cells begin migration prior to full development of the target tissue  and it is unclear how different NC subpopulations would be able to share common  migratory routes and invade different target regions using a limited number of  chemoattractants. Conversely, some factors fill many of the criteria discussed in Section 1.2,  including appropriate expression patterns and chemotactic behaviour of NC toward them.  Here we will examine the current evidence of the four most studied potential  chemoattractants, which have the most convincing data.  4.1 Stromal cell‐derived factor 1 (SDF‐1)  SDF‐1 (also named CXCL12) regulates many directional migration events during embryonic  development, including migration of the zebrafish posterior lateral line primordium (PLLp),  primordial germ cells and various NC‐derived cells [84, 104‐108]. In many model organisms,  SDF‐1 is expressed along the path taken by NC cells [83, 84, 101, 109‐111] that express the  corresponding receptor, CXCR4 [83, 84, 111‐114]. In some of these cases, chemotactic 

activity of the NC to SDF‐1 has not been properly tested, and how chemotaxis would be  achieved in chick, where SDF‐1 is not found as a gradient, is unclear [109, 110]. But there  are some examples of chemotaxis to SDF‐1 that are supported by experimental evidence.  For example, CXCR4‐expressing NC are chemotactic to SDF‐1 in vitro [84, 115] and SDF‐1  misexpression diverts these NC cells away from their normal path, causing major defects  such as cardiovascular abnormalities in many organisms [109, 111, 112, 115‐120], although  mice NC behave rather differently in that SDF‐1 and CXCR4 mutants display only mild  abnormalities [121, 122]. Perturbed SDF‐1/CXCR4 signalling disrupts NC cell migration [83,  85, 111, 112], and some of the downstream components of this pathway have been  identified. For example, the GEF Ric‐8A is required for NC chemotaxis to SDF‐1 in vitro [123],  but its mechanism of action is unclear. The regulation of the CXCR4 receptor has also been  shown to be important for NC migration, as the transcription factor HIF‐1α controls  chemotaxis to SDF‐1 by regulating CXCR4 expression [124].  In Xenopus, cell‐cell interactions are essential for the collective chemotaxis of NC cells  toward placodal‐produced SDF‐1 [81]. SDF‐1 is only able to stabilize cell polarity in cells  already polarized by cell‐cell contacts, and therefore cannot attract non‐polarized individual  NC cells [81]. Mathematical modelling has shown that cell contact enhances the  chemotactic response [125], consistent with the experimental evidence that SDF‐1 stabilises  and amplifies cell protrusions promoted by cell contact [81], similar to the chemotactic  response of Drosophila border cells to EGFR and PVR [126].  One major long‐standing question is how NC segregates into different regions to colonize  and differentiate into distinct tissues and organs. It has been proposed that different NC  subpopulations express different receptors [127]. Indeed, it has been shown that  differential response to SDF‐1 and neuregulin by distinct NC subpopulations determines  whether these cells will migrate into the sympathetic ganglia or the dorsal root ganglia [101,  111].  4.2 Vascular endothelial growth factor (VEGF)  By the onset of NC migration, VEGF is expressed in the head ectoderm of avian embryos,  specifically overlaying the dorsolateral migratory path of the rhombomeric 4 (r4) cranial NC,  which expresses its canonical receptor, VEGFR2, and co‐receptor, neuropilin‐1 [89, 128, 

129]. VEGF expression later extends to the second branchial arch (BA2), and seems to be  reduced in the on‐route ectoderm [89]. During the initial stages of migration, VEGF is  uniformly expressed in the overlying ectoderm, rather than as a gradient [89]. Nonetheless,  both VEGFR2 and neuropilin‐1 receptors are required for VEGF‐mediated migration to BA2  [90, 92]. In vitro, cranial NC are attracted to BA2 and VEGF [89] and in vivo, r4 NC can be  diverted from their normal path by ectopic VEGF [89, 91]. Perturbed  VEGF/VEGFR2/neuropilin‐1 signalling does not affect directional migration toward the BA2  entrance, but prevents invasion of BA2 at later stages [89, 92, 129].  It is not clear how VEGF can control directional NC migration, as no VEGF gradient has been  demonstrated so far. A mathematical model of NC migration has proposed that the VEGF  signal is diluted through the proliferation of NC cells which self‐generate a VEGF gradient by  the endocytosis of the ligand (Fig. 2A) [130]. This model posits that only leader cells respond  to VEGF, whereas trailing cells respond to a second, unknown signal produced by leader  cells [130]. However, a recent publication suggests that trailing cells can indeed respond to  VEGF [91]. Moreover, there are key assumptions that are still awaiting experimental  evidence: the consumption of VEGFA, the short‐range signals transmitted from leader to  follower cells, and the exclusive response of leader cells to VEGFA. It is unlikely that the NC  self‐generate a gradient in mice, because murine NC express VEGFA themselves [131].  4.3 Fibroblast growth factor (FGF)  FGF8 is expressed in the pharyngeal arch ectoderm and endoderm during NC migration  through the arches [132, 133] and it is not expressed by the NC [134]. Its expression is partly  dependent on Notch in mouse, and on the presence of the NC cells themselves in chick [86,  135, 136]. Migration of different NC populations to their targets is dependent on FGF8 [133‐ 135, 137‐139]. However, there is varying evidence of chemotaxis between different NC  subpopulations and species. In some cases, the NC have been shown to express FGF8’s  cognate receptors, FGFR1 and FGFR3, and there is evidence that NC can be diverted from  their usual paths by ectopic FGF8 beads [86, 87]. For other cases, there is only evidence that  FGF8 is important for NC migration, but not for chemotaxis [137‐139]. Species differences in  NC migration can be illustrated in cardiac development, where NC chemotaxis to FGF8 is  critical for heart development in chick and mouse [133, 140, 141], unlike in zebrafish where  FGF signalling is redundant for NC contribution to the heart [139]. 

FGF2 has also been proposed as a chemoattractant for NC. FGF2 is locally expressed and  under the control of FGF8 in the mandibular mesenchyme [88]. Mesencephalic mouse NC  cells express FGFR1 and FGFR3, but although these NC are chemotactic to FGF in vitro, there  are no functional studies of FGF2 chemotaxis in vivo [88].  4.4 Platelet‐derived growth factor (PDGF)  PDGFRα is expressed in the migrating NC of many species [33, 94, 142‐145] and in non‐ neuronal derivatives of the cranial NC [140, 144, 146]. PDGFRα protein also localises to NC,  although its expression is not exclusive to NC and NC‐derived tissues [95]. Patch  heterozygotes, in which PDGFRα is deleted, have defects in pigment cells derived from NC  [147]. Patch homozygotes have abnormalities suggestive of defective cardiac NC [148, 149]  and PDGFRα mutants exhibit cleft palate, which results from failed NC development [145,  148, 150]. PDGFRα’s cognate ligands, PDGFA and PDGFC, are found in the ectoderm, otic  vesicle and pharyngeal endoderm [94, 143, 146, 151, 152], which are NC targets. In mouse,  both PDGFRα and PDGFRβ are required for the normal migration of cardiac NC [153].  Although some NC derivatives are capable of chemotaxis to PDGFA in vitro [146], which  ligand is required for signalling through PDGFRβ, and whether it acts chemotactically on NC  cells in vivo, is unknown. Exogenously implanted PDGF‐AA is able to attract PDGFRα‐ expressing NC in vivo [93‐95]. In zebrafish, it appears that PDGF‐AA pre‐localised to where  the PDGFRα‐expressing NC cells migrate [94]. Interestingly, the expression pattern of a  PDGFRα negative regulator, Mirn140, is identical to PDGFRα, and it has been proposed that  this mechanism of PDGFR signalling modulation mediates the chemotaxis of cranial NC to  the oral ectoderm, since overexpression of Mirn140 phenocopies PDGFRα mutants [94].  In conclusion, although there is some evidence that suggest that SDF‐1, VEGF, PDGF and FGF  could work as NC chemoattractants, none of these molecules have been shown to be  present in a gradient along the NC migratory pathways. Instead of precluding these  molecules to be classified as NC chemoattractant, the mechanism to sense a  chemoattractant could be more complex than simply reading a long range gradient.     

5 Neural crest short‐range chemoattractants  5.1 Chase and run  Many examples of paracrine chemotaxis, to enhance migration and for cell guidance have  been described in development and cancer [54, 56, 105]. Xenopus and zebrafish NC cells,  which express CXCR4, also undergo paracrine chemotaxis in response to SDF‐1 secreted by  placodal cells in vitro [154]. Cranial placodes are thickened regions of ectoderm that  contribute to the development of cranial sensory structures [155]. Reciprocal interactions  between the NC and placodal cells are required for normal morphogenesis of both  populations [155]. Mechanistically, contact inhibition of locomotion (CIL) generates  polarised NC [72] whose protrusions are stabilised by SDF‐1/CXCR4 which enhances and  maintains the polarity [81]. Upon contact with NC cells a transient but functional N‐ Cadherin‐based adhesion complex is formed between NC and placodal cells [154]. Migratory  NC explants normally generate traction forces around the edge [156], but at the point of N‐ Cadherin engagement focal adhesions and protrusions are downregulated as CIL is induced  [154]. Consequently, NC repolarise and separate from the placodal cells, whilst loss of focal  adhesions and collapse of protrusions in the rear of the placode cluster causes the placodal  cells to move away from the NC. This process has been termed ‘chase and run’ in which NC  chase placodal cells by short‐range chemotaxis, whereas the placode runs away from NC by  CIL (Fig. 2B). The bidirectional interactions between NC and placodal cells coordinate highly  efficient directional migration of both populations towards lateral and ventral regions.  5.2 Co‐attraction  Short‐range chemotaxis may also maintain the cohesion of groups of cells during migration,  as suggested in cancer [157, 158] and demonstrated in Dictyostelium [11]. Despite having  weak cell adhesion complexes, most NC cells migrate collectively rather than as individuals  [29, 54, 58]. Short‐range chemotaxis is used to maintain collectiveness in NC groups during  directional migration. NC cells produce the complement factor C3a, and express its receptor,  C3aR [159]. Therefore, high levels of C3a are found where NC cells are abundant, and cells  that lose contact with their neighbours are able to migrate back to the group, following this  chemotactic gradient. Mechanistically, C3a signalling leads to Rac1 activation which is  sufficient to polarise escaping NC back to the group (Fig. 2C) [159]. This mechanism of short‐

range chemotaxis is termed co‐attraction. Co‐attraction counterbalances CIL, which is  required for directional migration but promotes cell dispersion [72, 159]. Accordingly,  inhibition of C3 or its receptor reduces collectiveness, as cells are forced apart by CIL [159].  C3a and C3aR have also been found in cephalic NC cells in mouse (Lambris and Mayor,  unpublished) and chick (Bronner and Mayor, unpublished), and in the mesoderm of Xenopus  embryos [160]. NC cell migration in zebrafish and avian embryos also suggest a co‐attractive  behaviour, although the molecular mechanisms have not yet been described. The  importance of short‐range chemotaxis to hold groups of cells together is supported by  mathematical models, where co‐attraction and CIL are necessary and sufficient for  generating directional migration of groups in confined streams [82, 159].  6 Concluding remarks  Various molecules have been proposed as chemoattractants for the NC, some of which have  very strong evidence, such as SDF‐1 and VEGF [81, 89]. However, some aspects of the  criteria required to unequivocally demonstrate chemoattractant activity are still lacking. For  example, convincing graded expression patterns have not been shown for any factors, and  there is not enough experimental evidence for various aspects of the proposed model of  self‐generated chemotactic gradients. Nonetheless, novel concepts have emerged from  studies of NC chemotaxis, including collectiveness maintained by chemotaxis (co‐attraction)  [159], directional migration of distinct cell populations based on short‐range chemotaxis  (‘chase and run’) [154], collective chemotaxis [81], and explanations of how differential  response to chemotactic cues may achieve tissue organisation during development [101,  111]. Thanks to improved in vivo imaging techniques and the development of genetic  models, the future holds better prospects of further assessing NC cell chemotaxis and  dissecting the molecular mechanisms involved [161, 162].    Acknowledgements  We thank Isabel Bahm and Andras Szabo for comments on the manuscript. Work in R.M. lab  is supported by grants from MRC (M010465 and J000655), BBSRC (M008517) and Wellcome  Trust. A.S. is a recipient of a Wellcome Trust PhD fellowship.   

 

References  1.  2.  3.  4.  5.  6.  7.  8.  9.  10. 

11.  12.  13.  14. 

15.  16.  17. 

18. 

19.  20.  21.  22. 

Friedl, P. and D. Gilmour, Collective cell migration in morphogenesis, regeneration and  cancer. Nature Reviews Molecular Cell Biology, 2009. 10(7): p. 445‐457.  Ricoult, S.G., T.E. Kennedy, and D. Juncker, Substrate‐bound protein gradients to study  haptotaxis. Frontiers in bioengineering and biotechnology, 2015. 3: p. 40‐40.  Cai, D., et al., Mechanical Feedback through E‐Cadherin Promotes Direction Sensing during  Collective Cell Migration. Cell, 2014. 157(5): p. 1146‐1159.  Das, T., et al., A molecular mechanotransduction pathway regulates collective migration of  epithelial cells. Nature Cell Biology, 2015. 17(3): p. 276‐+.  Gardel, M.L., et al., Mechanical Integration of Actin and Adhesion Dynamics in Cell  Migration. Annual Review of Cell and Developmental Biology, Vol 26, 2010. 26: p. 315‐333.  Riahi, R., et al., Notch1‐Dll4 signalling and mechanical force regulate leader cell formation  during collective cell migration. Nature Communications, 2015. 6.  Roca‐Cusachs, P., R. Sunyer, and X. Trepat, Mechanical guidance of cell migration: lessons  from chemotaxis. Current Opinion in Cell Biology, 2013. 25(5): p. 543‐549.  Charras, G. and E. Sahai, Physical influences of the extracellular environment on cell  migration. Nature Reviews Molecular Cell Biology, 2014. 15(12): p. 813‐824.  Roussos, E.T., J.S. Condeelis, and A. Patsialou, Chemotaxis in cancer. Nature Reviews Cancer,  2011. 11(8): p. 573‐587.  Swaney, K.F., C.‐H. Huang, and P.N. Devreotes, Eukaryotic Chemotaxis: A Network of  Signaling Pathways Controls Motility, Directional Sensing, and Polarity. Annual Review of  Biophysics, Vol 39, 2010. 39: p. 265‐289.  Kay, R.R., et al., Changing directions in the study of chemotaxis. Nature Reviews Molecular  Cell Biology, 2008. 9(6): p. 455‐463.  Pfeffer, W., Locomotorische Richtungsbewegungen durch chemische Reize. 1884, Untersuch.  Bot. Inst. Tübingen. p. 363–482.  Engelmann, W., Ueber Assimilation von Haematococcus. 1882, Botanische Zeitung. p. 419– 426.  Yang, X.S., et al., Cell movement patterns during gastrulation in the chick are controlled by  chemotaxis mediated by positive and negative FGF4 and FGF8. Developmental Cell, 2002.  3(3): p. 425‐437.  Butler, S.J. and J. Dodd, A role for BMP heterodimers in roof plate‐mediated repulsion of  commissural axons. Neuron, 2003. 38(3): p. 389‐401.  Cai, D. and D.J. Montell, Diverse and dynamic sources and sinks in gradient formation and  directed migration. Current Opinion in Cell Biology, 2014. 30: p. 91‐98.  Duband, J.‐L., A. Dady, and V. Fleury, Resolving time and space constraints during neural  crest formation and delamination. Current topics in developmental biology, 2015. 111: p. 27‐ 67.  Theveneau, E. and R. Mayor, Neural crest delamination and migration: From epithelium‐to‐ mesenchyme transition to collective cell migration. Developmental Biology, 2012. 366(1): p.  34‐54.  Mancilla, A. and R. Mayor, Neural crest formation in Xenopus laevis: Mechanisms of Xs1ug  induction. Developmental Biology, 1996. 177(2): p. 580‐589.  Selleck, M.A.J. and M. Bronner‐Fraser, Origins of the avian neural crest ‐ the role of enural  plate‐epidermal interactions. Development, 1995. 121(2): p. 525‐538.  Angela Nieto, M., Epithelial Plasticity: A Common Theme in Embryonic and Cancer Cells.  Science, 2013. 342(6159): p. 708‐+.  Dupin, E., S. Creuzet, and N.M. Le Douarin, The contribution of the neural crest to the  vertebrate body. Neural Crest Induction and Differentiation, 2006. 589: p. 96‐119. 

23.  24. 

25.  26.  27.  28.  29.  30.  31. 

32.  33. 

34.  35.  36.  37.  38. 

39.  40. 

41.  42. 

43.  44. 

Rogers, C.D., et al., Neural crest specification: tissues, signals, and transcription factors.  Wiley Interdisciplinary Reviews‐Developmental Biology, 2012. 1(1): p. 52‐68.  Le Douarin, N.M. and M.A.M. Teillet, Experimental analysis of migration and differentiation  of neuroblasts of autonomic nervous‐system and of neurectodermal mesenchymal  derivatives, using a biological cell marking technique. Developmental Biology, 1974. 41(1): p.  162‐184.  Stemple, D.L. and D.J. Anderson, Lineage diversification of the neural crest ‐ in‐vitro  investigations. Developmental Biology, 1993. 159(1): p. 12‐23.  Le Douarin, N.M., C. Ziller, and G.F. Couly, Patterning of neural crest derivatives in the avian  embryo ‐ in‐vivo and in‐vitro studies. Developmental Biology, 1993. 159(1): p. 24‐49.  Le Douarin, N.M., The avian embryo as a model to study the development of the neural crest:  a long and still ongoing story. Mechanisms of Development, 2004. 121(9): p. 1089‐1102.  Kulesa, P.M., J.A. Morrison, and C.M. Bailey, The Neural Crest and Cancer: A Developmental  Spin on Melanoma. Cells Tissues Organs, 2013. 198(1): p. 12‐21.  Theveneau, E. and R. Mayor, Can mesenchymal cells undergo collective cell migration? The  case of the neural crest. Cell Adhesion & Migration, 2011. 5(6): p. 490‐498.  Barriga, E.H., et al., Animal models for studying neural crest development: is the mouse  different? Development, 2015. 142(9): p. 1555‐1560.  Nikitina, N., T. Sauka‐Spengler, and M. Bronner‐Fraser, Dissecting early regulatory  relationships in the lamprey neural crest gene network. Proceedings of the National  Academy of Sciences of the United States of America, 2008. 105(51): p. 20083‐20088.  Ota, K.G., S. Kuraku, and S. Kuratani, Hagfish embryology with reference to the evolution of  the neural crest. Nature, 2007. 446(7136): p. 672‐675.  Cebra‐Thomas, J.A., et al., Late‐Emigrating Trunk Neural Crest Cells in Turtle Embryos  Generate an Osteogenic Ectomesenchyme in the Plastron. Developmental Dynamics, 2013.  242(11): p. 1223‐1235.  Gilbert, S.F., et al., The contribution of neural crest cells to the nuchal bone and plastron of  the turtle shell. Integrative and Comparative Biology, 2007. 47(3): p. 401‐408.  Kuo, B.R. and C.A. Erickson, Regional differences in neural crest morphogenesis. Cell  Adhesion & Migration, 2010. 4(4): p. 567‐585.  Tosney, K.W., The segregation and early migration of cranial neural crest cells in the avian  embryo. Developmental Biology, 1982. 89(1): p. 13‐24.  Bronner‐Fraser, M., Analysis of the early stages of trunk neural crest migration in avian  embryos using monoclonal‐antibody HNK‐1. Developmental Biology, 1986. 115(1): p. 44‐55.  Rickmann, M., J.W. Fawcett, and R.J. Keynes, The migration of neural crest cells and the  growth of motor axons through the rostral half of the chick somite. Journal of Embryology  and Experimental Morphology, 1985. 90: p. 437‐455.  Loring, J.F. and C.A. Erickson, Neural crest cell migratory pathways in the trunk of the chick‐ embryo. Developmental Biology, 1987. 121(1): p. 220‐236.  Teillet, M.A., C. Kalcheim, and N.M. Ledouarin, Formation of the dorsal‐root ganglia in the  avian embryo ‐ segmenteal origin and migratory behavior of neural crest progenitor cells.  Developmental Biology, 1987. 120(2): p. 329‐347.  Rawles, M.E., Origin of melanophores and their role in development of color patterns in  vetebrates. Physiological Reviews, 1948. 28(4): p. 383‐408.  Collazo, A., M. Bronnerfraser, and S.E. Fraser, Vital dye labeling of Xenopus‐laevis trunk  neural crest reveals multipotency and novel pathways of migration. Development, 1993.  118(2): p. 363‐376.  Kelsh, R.N., et al., Stripes and belly‐spots‐A review of pigment cell morphogenesis in  vertebrates. Seminars in Cell & Developmental Biology, 2009. 20(1): p. 90‐104.  Kuriyama, S. and R. Mayor, Molecular analysis of neural crest migration. Philosophical  Transactions of the Royal Society B‐Biological Sciences, 2008. 363(1495): p. 1349‐1362. 

45.  46.  47. 

48.  49. 

50.  51.  52. 

53.  54.  55.  56.  57. 

58. 

59.  60.  61. 

62.  63.  64. 

65.  66. 

Gammill, L.S. and J. Roffers‐Agarwal, Division of labor during trunk neural crest development.  Developmental Biology, 2010. 344(2): p. 555‐565.  Eickholt, B.J., et al., Evidence for collapsin‐1 functioning in the control of neural crest  migration in both trunk and hindbrain regions. Development, 1999. 126(10): p. 2181‐2189.  Gammill, L.S., C. Gonzalez, and M. Bronner‐Fraser, Neuropilin 2/semaphorin 3F signaling is  essential for cranial neural crest migration and trigeminal ganglion condensation.  Developmental Neurobiology, 2007. 67(1): p. 47‐56.  Gammill, L.S., et al., Guidance of trunk neural crest migration requires neuropilin  2/semaphorin 3F signaling. Development, 2006. 133(1): p. 99‐106.  Osborne, N.J., et al., Semaphorin/neuropilin signaling influences the positioning of migratory  neural crest cells within the hindbrain region of the chick. Developmental Dynamics, 2005.  232(4): p. 939‐949.  Toyofuku, T., et al., Repulsive and attractive semaphorins cooperate to direct the navigation  of cardiac neural crest cells. Developmental Biology, 2008. 321(1): p. 251‐262.  Yu, H.H. and C.B. Moens, Semaphorin signaling guides cranial neural crest cell migration in  zebrafish. Developmental Biology, 2005. 280(2): p. 373‐385.  Kulesa, P., D.L. Ellies, and P.A. Trainor, Comparative analysis of neural crest cell death,  migration, and function during vertebrate embryogenesis. Developmental Dynamics, 2004.  229(1): p. 14‐29.  Rorth, P., Collective Cell Migration. Annual Review of Cell and Developmental Biology, 2009.  25: p. 407‐429.  Kulesa, P.M., et al., Cranial neural crest migration: New rules for an old road. Developmental  Biology, 2010. 344(2): p. 543‐554.  Thiery, J.P., et al., Epithelial‐Mesenchymal Transitions in Development and Disease. Cell,  2009. 139(5): p. 871‐890.  Erickson, C.A., Control of neural crest cell dispersion in the trunk of the avian embryos.  Developmental Biology, 1985. 111(1): p. 138‐157.  Kulesa, P.M. and S.E. Fraser, Neural crest cell dynamics revealed by time‐lapse video  microscopy of whole embryo chick explant cultures. Developmental Biology, 1998. 204(2): p.  327‐344.  Kulesa, P.M. and S.E. Fraser, In ovo time‐lapse analysis of chick hindbrain neural crest cell  migration shows cell interactions during migration to the branchial arches. Development,  2000. 127(6): p. 1161‐1172.  Teddy, J.M. and P.M. Kulesa, In vivo evidence for short‐ and long‐range cell communication  in cranial neural crest cells. Development, 2004. 131(24): p. 6141‐6151.  Friedl, P., et al., New dimensions in cell migration. Nature Reviews Molecular Cell Biology,  2012. 13(11): p. 743‐747.  Revenu, C., et al., Quantitative cell polarity imaging defines leader‐to‐follower transitions  during collective migration and the key role of microtubule‐dependent adherens junction  formation. Development, 2014. 141(6): p. 1282‐U195.  Etienne‐Manneville, S., Neighborly relations during collective migration. Current Opinion in  Cell Biology, 2014. 30: p. 51‐59.  Theveneau, E. and R. Mayor, Cadherins in collective cell migration of mesenchymal cells.  Current Opinion in Cell Biology, 2012. 24(5): p. 677‐684.  Nakagawa, S. and M. Takeichi, Neural crest cell‐cell adhesion controlled by sequential and  subpopulation‐specific expression of novel cadherins. Development, 1995. 121(5): p. 1321‐ 1332.  Pla, P., et al., Cadherins in neural crest cell development and transformation. Journal of  Cellular Physiology, 2001. 189(2): p. 121‐132.  Taneyhill, L.A., To adhere or not to adhere The role of Cadherins in neural crest development.  Cell Adhesion & Migration, 2008. 2(4): p. 223‐230. 

67.  68.  69. 

70.  71.  72.  73.  74.  75.  76. 

77.  78.  79. 

80. 

81.  82.  83. 

84.  85.  86. 

87.  88. 

Kulesa, P.M. and R. McLennan, Neural crest migration: trailblazing ahead. F1000prime  reports, 2015. 7: p. 02‐02.  Kuriyama, S., et al., In vivo collective cell migration requires an LPAR2‐dependent increase in  tissue fluidity. Journal of Cell Biology, 2014. 206(1): p. 113‐127.  Krause, M. and A. Gautreau, Steering cell migration: lamellipodium dynamics and the  regulation of directional persistence. Nature Reviews Molecular Cell Biology, 2014. 15(9): p.  577‐590.  Mayor, R. and C. Carmona‐Fontaine, Keeping in touch with contact inhibition of locomotion.  Trends in Cell Biology, 2010. 20(6): p. 319‐328.  Roycroft, A. and R. Mayor, Molecular basis of contact inhibition of locomotion. 2015: Cellular  and Molecular Life Sciences. p. 1‐12.  Carmona‐Fontaine, C., et al., Contact inhibition of locomotion in vivo controls neural crest  directional migration. Nature, 2008. 456(7224): p. 957‐961.  Ridley, A.J., et al., Cell migration: Integrating signals from front to back. Science, 2003.  302(5651): p. 1704‐1709.  Carmona‐Fontaine, C., H. Matthews, and R. Mayor, Directional cell migration in vivo Wnt at  the crest. Cell Adhesion & Migration, 2008. 2(4): p. 240‐242.  De Calisto, J., et al., Essential role of non‐canonical Wnt signalling in neural crest migration.  Development, 2005. 132(11): p. 2587‐2597.  Matthews, H.K., et al., Directional migration of neural crest cells in vivo is regulated by  Syndecan‐4/Rac1 and non‐canonical Wnt signaling/RhoA. Development, 2008. 135(10): p.  1771‐1780.  Petrie, R.J., A.D. Doyle, and K.M. Yamada, Random versus directionally persistent cell  migration. Nature Reviews Molecular Cell Biology, 2009. 10(8): p. 538‐549.  Groeger, G. and C.D. Nobes, Co‐operative Cdc42 and Rho signalling mediates ephrinB‐ triggered endothelial cell retraction. Biochemical Journal, 2007. 404: p. 23‐29.  Astin, J.W., et al., Competition amongst Eph receptors regulates contact inhibition of  locomotion and invasiveness in prostate cancer cells. Nature Cell Biology, 2010. 12(12): p.  1194‐U175.  Dumortier, J.G., et al., Collective mesendoderm migration relies on an intrinsic directionality  signal transmitted through cell contacts. Proceedings of the National Academy of Sciences of  the United States of America, 2012. 109(42): p. 16945‐16950.  Theveneau, E., et al., Collective Chemotaxis Requires Contact‐Dependent Cell Polarity.  Developmental Cell, 2010. 19(1): p. 39‐53.  Woods, M.L., et al., Directional Collective Cell Migration Emerges as a Property of Cell  Interactions. Plos One, 2014. 9(9).  Killian, E.C.O., D.A. Birkholz, and K.B. Artinger, A role for chemokine signaling in neural crest  cell migration and craniofacial development. Developmental Biology, 2009. 333(1): p. 161‐ 172.  Belmadani, A., et al., The chemokine stromal cell‐derived factor‐1 regulates the migration of  sensory neuron progenitors. Journal of Neuroscience, 2005. 25(16): p. 3995‐4003.  Rezzoug, F., et al., Chemokine‐mediated migration of mesencephalic neural crest cells.  Cytokine, 2011. 56(3): p. 760‐768.  Creuzet, S., et al., Reciprocal relationships between Fgf8 and neural crest cells in facial and  forebrain development. Proceedings of the National Academy of Sciences of the United  States of America, 2004. 101(14): p. 4843‐4847.  Sato, A., et al., FGF8 signaling is chemotactic for cardiac neural crest cells. Developmental  Biology, 2011. 354(1): p. 18‐30.  Kubota, Y. and K. Ito, Chemotactic migration of mesencephalic neural crest cells in the  mouse. Developmental Dynamics, 2000. 217(2): p. 170‐179. 

89.  90. 

91.  92. 

93.  94.  95.  96. 

97. 

98.  99.  100.  101.  102.  103.  104. 

105.  106.  107.  108. 

109. 

110. 

McLennan, R., et al., Vascular endothelial growth factor (VEGF) regulates cranial neural crest  migration in vivo. Developmental Biology, 2010. 339(1): p. 114‐125.  Bron, R., et al., Functional knockdown of neuropilin‐1 in the developing chick nervous system  by siRNA hairpins phenocopies genetic ablation in the mouse. Developmental Dynamics,  2004. 230(2): p. 299‐308.  McLennan, R., et al., VEGF signals induce trailblazer cell identity that drives neural crest  migration. 2015, Developmental Biology. p. 12‐25.  McLennan, R. and P.M. Kulesa, Neuropilin‐1 Interacts With the Second Branchial Arch  Microenvironment to Mediate Chick Neural Crest Cell Dynamics. Developmental Dynamics,  2010. 239(6): p. 1664‐1673.  Tallquist, M.D. and P. Soriano, Cell autonomous requirement for PDGFR alpha in populations  of cranial and cardiac neural crest cells. Development, 2003. 130(3): p. 507‐518.  Eberhart, J.K., et al., MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis.  Nature Genetics, 2008. 40(3): p. 290‐298.  Kawakami, M., et al., Novel migrating mouse neural crest cell assay system utilizing P0‐ Cre/EGFP fluorescent time‐lapse imaging. Bmc Developmental Biology, 2011. 11.  Rovasio, R.A., L. Faas, and N.L. Battiato, Insights into Stem Cell Factor chemotactic guidance  of neural crest cells revealed by a real‐time directionality‐based assay. European Journal of  Cell Biology, 2012. 91(5): p. 375‐390.  Zanin, J.P., N. Laura Battiato, and R.A. Rovasio, Neurotrophic factor NT‐3 displays a non‐ canonical cell guidance signaling function for cephalic neural crest cells. European Journal of  Cell Biology, 2013. 92(8‐9): p. 264‐279.  Mwizerwa, O., et al., Gdnf Is Mitogenic, Neurotrophic, and Chemoattractive to Enteric Neural  Crest Cells in the Embryonic Colon. Developmental Dynamics, 2011. 240(6): p. 1402‐1411.  Young, H.M., et al., GDNF is a chemoattractant for enteric neural cells. Developmental  Biology, 2001. 229(2): p. 503‐516.  Goto, A., et al., GDNF and Endothelin 3 Regulate Migration of Enteric Neural Crest‐Derived  Cells via Protein Kinase A and Rac1. Journal of Neuroscience, 2013. 33(11): p. 4901‐4912.  Saito, D., et al., The Dorsal Aorta Initiates a Molecular Cascade That Instructs Sympatho‐ Adrenal Specification. Science, 2012. 336(6088): p. 1578‐1581.  Saika, S., et al., TGF beta 2 in corneal morphogenesis during mouse embryonic development.  Developmental Biology, 2001. 240(2): p. 419‐432.  Alfandari, D., et al., Integrin alpha 5 beta 1 supports the migration of Xenopus cranial neural  crest on fibronectin. Developmental Biology, 2003. 260(2): p. 449‐464.  David, N.B., et al., Molecular basis of cell migration in the fish lateral line: Role of the  chemokine receptor CXCR4 and of its ligand, SDF1. Proceedings of the National Academy of  Sciences of the United States of America, 2002. 99(25): p. 16297‐16302.  Boldajipour, B., et al., Control of chemokine‐guided cell migration by ligand sequestration.  Cell, 2008. 132(3): p. 463‐473.  Ding, X., et al., Expression patterns of CXCR4 in different colon tissue segments of patients  with Hirschsprung's disease. Experimental and Molecular Pathology, 2013. 95(1): p. 111‐116.  Haas, P. and D. Gilmour, Chemokine signaling mediates self‐organizing tissue migration in  the zebrafish lateral line. Developmental Cell, 2006. 10(5): p. 673‐680.  Valentin, G., P. Haas, and D. Gilmour, The chemokine SDF1a coordinates tissue migration  through the spatially restricted activation of Cxcr7 and Cxcr4b. Current Biology, 2007. 17(12):  p. 1026‐1031.  Escot, S., et al., Misregulation of SDF1‐CXCR4 Signaling Impairs Early Cardiac Neural Crest  Cell Migration Leading to Conotruncal Defects. Circulation Research, 2013. 113(5): p. 505‐ 516.  Rehim, R., et al., Stromal‐derived factor‐1 (SDF‐1) expression during early chick development.  International Journal of Developmental Biology, 2008. 52(1): p. 87‐92. 

111.  112.  113.  114.  115.  116.  117.  118.  119.  120.  121.  122.  123. 

124.  125.  126.  127.  128.  129.  130.  131. 

132.  133.  134. 

Kasemeier‐Kulesa, J.C., et al., CXCR4 Controls Ventral Migration of Sympathetic Precursor  Cells. Journal of Neuroscience, 2010. 30(39): p. 13078‐13088.  Belmadani, A., et al., The chemokine SDF‐1/CXCL12 regulates the migration of melanocyte  progenitors in mouse hair follicles. Differentiation, 2009. 77(4): p. 395‐411.  Chong, S.‐W., et al., The chemokine Sdf‐I and its receptor Cxcr4 are required for formation of  muscle in zebrafish. Bmc Developmental Biology, 2007. 7.  Chong, S.W., et al., Expression pattern of two zebrafish genes, cxcr4a and cxcr4b.  Mechanisms of Development, 2001. 109(2): p. 347‐354.  Braun, M., et al., Xenopus laevis stromal cell‐derived factor 1: Conservation of structure and  function during vertebrate development. Journal of Immunology, 2002. 168(5): p. 2340‐2347.  Knaut, H., et al., A zebrafish homologue of the chemokine receptor Cxcr4 is a germ‐cell  guidance receptor. Nature, 2003. 421(6920): p. 279‐282.  Svetic, V., et al., Sdf1a patterns zebrafish melanophores and links the somite and  melanophore pattern defects in choker mutants. Development, 2007. 134(5): p. 1011‐1022.  George, L., et al., Nociceptive sensory neurons derive from contralaterally migrating, fate‐ restricted neural crest cells. Nature Neuroscience, 2007. 10(10): p. 1287‐1293.  Dona, E., et al., Directional tissue migration through a self‐generated chemokine gradient.  Nature, 2013. 503(7475): p. 285‐+.  Venkiteswaran, G., et al., Generation and Dynamics of an Endogenous, Self‐Generated  Signaling Gradient across a Migrating Tissue. Cell, 2013. 155(3): p. 674‐687.  Tachibana, K., et al., The chemokine receptor CXCR4 is essential for vascularization of the  gastrointestinal tract. Nature, 1998. 393(6685): p. 591‐594.  Nagasawa, T., et al., Defects of B‐cell lymphopoiesis and bone‐marrow myelopoiesis in mice  lacking the CXC chemokine PBSF/SDF‐1. Nature, 1996. 382(6592): p. 635‐638.  Fuentealba, J., et al., Ric‐8A, a guanine nucleotide exchange factor for heterotrimeric G  proteins, is critical for cranial neural crest cell migration. Developmental Biology, 2013.  378(2): p. 74‐82.  Barriga, E.H., et al., The hypoxia factor Hif‐1 alpha controls neural crest chemotaxis and  epithelial to mesenchymal transition. Journal of Cell Biology, 2013. 201(5): p. 759‐776.  Coburn, L., et al., Tactile interactions lead to coherent motion and enhanced chemotaxis of  migrating cells. Physical Biology, 2013. 10(4).  Prasad, M. and D.J. Montell, Cellular and molecular mechanisms of border cell migration  analyzed using time‐lapse live‐cell Imaging. Developmental Cell, 2007. 12(6): p. 997‐1005.  Lumb, R., et al., Neuropilins define distinct populations of neural crest cells. Neural  Development, 2014. 9.  Anderson‐Berry, A., et al., Vasculogenesis drives pulmonary vascular growth in the  developing chick embryo. Developmental Dynamics, 2005. 233(1): p. 145‐153.  McLennan, R. and P.M. Kulesa, In vivo analysis reveals a critical role for neuropilin‐1 in  cranial neural crest cell migration in chick. Developmental Biology, 2007. 301(1): p. 227‐239.  McLennan, R., et al., Multiscale mechanisms of cell migration during development: theory  and experiment. Development, 2012. 139(16): p. 2935‐2944.  Wiszniak, S., et al., Neural crest cell‐derived VEGF promotes embryonic jaw extension.  Proceedings of the National Academy of Sciences of the United States of America, 2015.  112(19): p. 6086‐6091.  Walshe, J. and I. Mason, Unique and combinatorial functions of Fgf3 and Fgf8 during  zebrafish forebrain development. Development, 2003. 130(18): p. 4337‐4349.  Abu‐Issa, R., et al., Fgf8 is required for pharyngeal arch and cardiovascular development in  the mouse. Development, 2002. 129(19): p. 4613‐4625.  Frank, D.U., et al., An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome.  Development, 2002. 129(19): p. 4591‐4603. 

135. 

136.  137.  138. 

139. 

140.  141. 

142. 

143. 

144. 

145.  146.  147. 

148.  149.  150. 

151.  152.  153.  154. 

High, F.A., et al., Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8  expression and tissue‐tissue interactions during outflow tract development. Journal of  Clinical Investigation, 2009. 119(7): p. 1986‐1996.  Creuzet, S., et al., Negative effect of Hox gene expression on the development of the neural  crest‐derived facial skeleton. Development, 2002. 129(18): p. 4301‐4313.  Trokovic, N., et al., Fgfr1 regulates patterning of the pharyngeal region. Genes &  Development, 2003. 17(1): p. 141‐153.  Trokovic, N., R. Trokovic, and J. Partanen, Fibroblast growth factor signalling and regional  specification of the pharyngeal ectoderm. International Journal of Developmental Biology,  2005. 49(7): p. 797‐805.  Cavanaugh, A.M., J. Huang, and J.‐N. Chen, Two developmentally distinct populations of  neural crest cells contribute to the zebrafish heart. Developmental Biology, 2015. 404(2): p.  103‐112.  Kirby, M.L., T.F. Gale, and D.E. Stewart, Neural crest cells contribute to normal  aorticopulmonary septation. Science, 1983. 220(4601): p. 1059‐1061.  Macatee, T.L., et al., Ablation of specific expression domains reveals discrete functions of  ectoderm‐ and endoderm‐derived FGF8 during cardiovascular and pharyngeal development.  Development, 2003. 130(25): p. 6361‐6374.  Takakura, N., et al., PDGFR alpha expression during mouse embryogenesis:  Immunolocalization analyzed by whole‐mount immunohistostaining using the monoclonal  anti‐mouse PDGFR alpha antibody APA5. Journal of Histochemistry & Cytochemistry, 1997.  45(6): p. 883‐893.  Ho, L., et al., Localization of PDGF‐A and PDGFR‐alpha messenger‐RNA in Xenopus embryos  suggests signaling from neural ectoderm and pharyngeal endoderm to neural crest cells.  Mechanisms of Development, 1994. 48(3): p. 165‐174.  Orrurtreger, A., et al., Developmental expression of the alpha receptor for platelet‐derived  growth‐factor, which is deleted in the embryonic lethal patch mutation. Development, 1992.  115(1): p. 289‐303.  Schatteman, G.C., et al., Regulation and role of PDGF receptor alpha‐subunit expression  during embryogenesis. Development, 1992. 115(1): p. 123‐131.  He, F. and P. Soriano, A Critical Role for PDGFR alpha Signaling in Medial Nasal Process  Development. Plos Genetics, 2013. 9(9).  Morrison‐Graham, K., et al., A PDGF receptor mutation in the mouse (Patch) perturbs the  development ofa nonneuronal subset of neural crest‐derived cells. Development, 1992.  115(1): p. 133‐142.  Soriano, P., The PDGF alpha receptor is required for neural crest cell development and for  normal patterning of the somites. Development, 1997. 124(14): p. 2691‐2700.  Kirby, M.L. and M.R. Hutson, Factors controlling cardiac neural crest cell migration. Cell  Adhesion & Migration, 2010. 4(4): p. 609‐621.  Robbins, J.R., et al., Diminished matrix metalloproteinase 2 (MMP‐2) in ectomesenchyme‐ derived tissues of the Patch mutant mouse: Regulation of MMP‐2 by PDGF and effects on  mesenchymal cell migration. Developmental Biology, 1999. 212(2): p. 255‐263.  Tallquist, M.D., et al., Early myotome specification regulates PDGFA expression and axial  skeleton development. Development, 2000. 127(23): p. 5059‐5070.  Ding, H., et al., The mouse Pdgfc gene: dynamic expression in embryonic tissues during  organogenesis. Mechanisms of Development, 2000. 96(2): p. 209‐213.  Richarte, A.M., H.B. Mead, and M.D. Tallquist, Cooperation between the PDGF receptors in  cardiac neural crest cell migration. Developmental Biology, 2007. 306(2): p. 785‐796.  Theveneau, E., et al., Chase‐and‐run between adjacent cell populations promotes directional  collective migration. Nature Cell Biology, 2013. 15(7): p. 763‐+. 

155.  156.  157. 

158.  159.  160. 

161. 

162. 

 

Steventon, B., R. Mayor, and A. Streit, Neural crest and placode interaction during the  development of the cranial sensory system. Developmental Biology, 2014. 389(1): p. 28‐38.  Scarpa, E., et al., Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition  of Locomotion via Repolarization of Forces. Developmental Cell, 2015. 34(4): p. 421‐434.  Hoelzinger, D.B., T. Demuth, and M.E. Berens, Autocrine factors that sustain glioma invasion  and paracrine biology in the brain microenvironment. Journal of the National Cancer  Institute, 2007. 99(21): p. 1583‐1593.  Jechlinger, M., et al., Autocrine PDGFR signaling promotes mammary cancer metastasis.  Journal of Clinical Investigation, 2006. 116(6): p. 1561‐1570.  Carmona‐Fontaine, C., et al., Complement Fragment C3a Controls Mutual Cell Attraction  during Collective Cell Migration. Developmental Cell, 2011. 21(6): p. 1026‐1037.  McLin, V.A., et al., Expression of complement components coincides with early patterning  and organogenesis in Xenopus laevis. International Journal of Developmental Biology, 2008.  52(8): p. 1123‐1133.  He, F. and P. Soriano, Sox10ER(T2) CreER(T2) mice enable tracing of distinct neural crest cell  populations. Developmental dynamics : an official publication of the American Association of  Anatomists, 2015. 244(11): p. 1394‐403.  Miwa, H.E., T., Generation and characterization of PDGFRα‐GFPCreERT2 knock‐In mouse line.  2015, Genesis. p. 329‐336. 

 

Figure Captions 

  Figure 1. (A) Migration routes of the NC (green) in a representative vertebrate embryo. D,  diencephalon; M, mesencephalon; R, rhombomere; OV, otic vesicle; BA, branchial arch; red  squares, somites. Below, examples of some of the cell types to which NC differentiate. (B)  Representation of NC migrating in a cephalic stream. NC cells migrate in distinct streams,  mostly as a collective. Lateral migration is restricted by inhibitory signals at the borders  (blue). Directional migration is an emergent property from CIL, whereby Rho (orange) is  upregulated at sites of N‐Cadherin‐based contact (red) between cells; only leaders can  generate Rac‐dependent protrusions (purple). This leads to a polarised group of NC cells.  Migration is inefficient by individual cells because polarity is not generated by CIL, a process  dependent on cell interactions.   

 

  Figure 2: Mechanisms of chemotaxis. (A) Proposed model for a NC self‐generated gradient  of VEGF (pink) from an initially uniform expression of VEGF in the overlying ectoderm. VEGF  is consumed by NC, potentially by its endocytosis when bound to VEGFR2/neuropilin‐1  (purple). Leaders are able to respond to unconsumed VEGF in front, relaying a signal to its  followers. (B) NC undergo short‐range chemotaxis to placodal cells (blue) via placodal‐ secreted SDF‐1 (yellow) which binds CXCR4 (olive) on NC. CIL through PCP signalling and a  transient N‐Cadherin adhesion mediates repulsion between NC and placodes, leading to the  placode moving away (run) from the NC, while the NC still follow (chase) the placode due to  chemotaxis.  This is referred to as ‘chase and run’. (C) NC co‐attraction. NC co‐expresses the  chemoattractant C3a and its cognate receptor C3aR. NC‐produced C3a binds to C3aR on NC  cells, causing activation of Rac. In this manner, C3a promotes cohesion of the NC cluster;  cells that move away by CIL return to the high concentration of C3a present in the cluster. 

Chemotaxis during neural crest migration.

Chemotaxis refers to the directional migration of cells towards external, soluble factors along their gradients. It is a process that is used by many ...
793KB Sizes 0 Downloads 16 Views