Antonie van Leeuwenhoek DOI 10.1007/s10482-015-0487-2

REVIEW PAPER

Anticancer compounds from cyanobacterium Lyngbya species: a review Shasank S. Swain . Rabindra N. Padhy . Pawan K. Singh

Received: 15 February 2015 / Accepted: 19 May 2015 Ó Springer International Publishing Switzerland 2015

Abstract The use of synthetic anticancer drugs and other methods followed in cancer therapy have several side effects; and ineffective methods or drugs give a way to the emergence of drug resistant cancer cells, with the intrinsic metastasis as the aftermath. Anticancer efficacy of many cyanobacterial compounds has been claimed in literature. This review considers 144 compounds isolated and characterized from seven species of the non-nitrogen fixing filamentous cyanobacterium Lyngbya, as the source of antineoplastic agents, which have been screened primarily with cancer cell lines. Structure and information of Lyngbya compounds were retrieved from databases, PubChem, ChemSpider and ChEBI. Information and clinical status of Lyngbya compounds are summarized, and those might be the future anticancer drugs for drug-resistant cancer cells even, as complementary/adduct drugs, if pursued thoroughly in pharmacology and pharmaceutics.

S. S. Swain  R. N. Padhy (&) Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India e-mail: [email protected] P. K. Singh Department of Botany, Banaras Hindu University (BHU), Varanasi 221005, UP, India e-mail: [email protected]

Keywords Cyanobacterium Lyngbya  Cyanocompounds  Anticancer drugs  Clinical status

Introduction For the many known human cancer types, there has been a great increase in synthetic drug treatments, as chemotherapy is the most preferable treatment option. Intrinsically, the development of resistance of multiplying cancer cells to applied drug(s), over the time, renders the treatment regimen ineffective. For example, imatinib and dasatinib are the most preferred synthetic drugs among many, against chronic myeloid leukemia (CML) and colorectal cancer. However, in the accelerated phase of CML and the advanced stage of colorectal cancer, the emerged drug-resistant cancer cells predominate, with eventual metastatic invasion of cancer to internal tissue, resulting in the transfer of patients to hospice (Hochhaus et al. 2007; Gromicho et al. 2011). Moreover, drug-resistant cancer cells need be addressed suitably to overcome the impasse in treatment; most established anticancer drugs cannot be replaced ordinarily, due to sporadic developments of resistant cancer stem cells. Curcumin from the plant Curcuma longa had been shown to control dasatinib resistant cancer stem cells in vitro (Nautiyal et al. 2011); but, synergistic/adduct uses of dasatinib and curcumin or any other natural compound in vivo have not been reported, yet. From this perspective,

123

Antonie van Leeuwenhoek

additional antineoplastic agents from other natural sources need to be located and formulated, for the possible use as synergistic/complementary/supplementary/adduct drugs for the several types of cancer. Cyanobacteria have been known to have antineoplastic activity in several preliminary screening attempts, as reviewed (Dixit and Suseela 2013). Cyanobacteria are oxygen evolving photosynthetic prokaryotes with ubiquitous distribution ranging from moist soil to inland fresh water bodies (Dash et al. 2015) and ocean (Kulasooriya 2011). This group has diverse forms, unicellular and branched/un-branched filaments/trichomes; sometimes the latter are with/ without heterocysts (Galhano et al. 2011), and can survive throughout the biosphere, ranging from Antarctic ice fields to thermal springs. In addition, cyanobacteria possess unique secondary metabolites (Dobretsov et al. 2011), and those of several bloomforming species growing in stagnant fresh waters are most often toxic to biota, helping domination on other cyanobacteria, algae and hydrophytes (Jaiswal et al. 2005, 2008; Rodrı´guez-Meizoso et al. 2008; Cheung et al. 2013). Furthermore, cyanobacterial secondary metabolites of bloom-forming species in extracellular secretions eliminate zooplankton and aquatic fauna, during bloom formation. Among bloom-forming taxa, Lyngbya sp. (family Oscillatoriaceae) is noteworthy. It is a non-nitrogen fixing, un-branched filamentous cyanobacterium related to the common marine species, Lyngbya majuscula that causes skin irritation, the ‘seaweed dermatitis’ in man. Information on 144 compounds of 7 well-known species of Lyngbya, isolated, characterized and tested for anticancer activities to date, are presented here. Details on chemical structures of many secondary metabolites of several cyanobacteria, including those of Lyngbya sp. are available in literature. Further, a considerable amount of work has been published on the screening of cyanobacterial compounds to fit into the drug development cascades, as antidiabetic, antimicrobial, antifungal, antiviral, anti-inflammatory, antiulcerative and anticancer aids (Gerwick et al. 1994; Martins et al. 2008; Medina et al. 2008; Mondal et al. 2012; Dixit and Suseela 2013; Natarajan et al. 2013). In the search for suitable anticancer agents, available information on 144 Lyngbya-compounds, retrieved from chemicalstructure databases, PubChem (http://www.ncbi.nlm. nih.gov/pccompound), ChemSpider (http://www. chemspider.com/) and ChEBI (http://www.ebi.ac.uk/

123

chebi/) are presented here; and it is anticipated that the information will be useful in pharmacology for anticancer-drug development programmes.

Cyanobacterial compounds and their chemical classification Several classes of peptides, cyclic depsipeptide (CD), cyclic dodecapeptide (CDO), depsipeptide (DP), linear depsipeptide (LD), lipopeptide (LP) and polyketide-peptide (PP) have been isolated and other classes, fatty acid amines (FA), macrolactone (MA) or glicomacrolide (GL), and macrolide glycoside (MG) of Lyngbya sp. have also been screened as anticancer activities (Table 1). (Teruya et al. 2009a; Costa et al. 2012). Cyclic peptides are ring structures formed by linking one end of a peptide chain for formation of an amide bond between amino and carboxyl termini of two compounds, as well as, other chemically stable bonds such as, with lactone, ether, thioether, disulfide, etc., are formed during the cyclization (Joo 2012). Cyanobacterial cyclic peptides have been documented to have anticancer activity (Moore 1996; Costa et al. 2012). Indeed, cyclic peptides, alotamides, antanapeptins, apratoxins, aurilides, dolastatins, largamides, lyngbyabellins, obyanamides and a few more are found in most cyanobacteria. For example from Lyngbya sp., dolastatin 10, a peptide isolated with anticancer activity has entered into phase I clinical trials for cancer drug development. Similarly, desmethoxy-majusculamide C (DMMC), a peptide isolated from L. majuscula also has been included in preclinical trials. Peptides can be isolated from cyanobacteria or can be prepared synthetically (Joo 2012). For example, the drug soblidotin is a synthetic analogue of dolastatin 10, and drugs cematodin and tasidotin are synthetic analogues of dolastatin 15; these 3 drugs are in phase III clinical trials as anticancer agents (Newman and Cragg 2004; Bhatnagar and Kim 2010). Other subclasses of cyanobacterial peptides, CDO, LD, LP and PP with addition(s) of several groups of polypeptide chains too have anticancer properties (Costa et al. 2012). For example from L. majuscula, wewakazole, a CDO was isolated with an anticancer activity (Nogle and Gerwick 2003). Isolated from cyanobacteria fatty acid amides, isomalyngamides and malyngamides have anticancer

L. bouillonii

Species

5. Dolastatin 13 (CD) MF: C46H63N7O12 Avg. mass: 906.0321 Da ChemSpider ID: 10279681

3. Apratoxin E (CD) MF: C43H65N5O7S MW: 796.0705 (g/mol) PubChem ID: 24897176

1. Alotamide (CD) MF: C32H49N3O5S Avg. mass: 587.813599 Da ChemSpider ID: 27024257

Chemical structure and other details

Table 1 Anticancerous cyano-compounds of the cyanobacterium Lyngbya

6. E-dehydroapratoxin A (CD) MF: C45H67N5O7S MW: 822.10778 (g/mol) PubChem ID: 44585957

4. Apratoxin F (CD) MF: C44H69N5O8S MW: 828.11236 (g/mol) PubChem ID: 70696073

2. Apratoxin A (CD) MF: C45H69N5O8S MW: 840.12306 (g/mol) PubChem ID: 6326668

Tidgewell et al. (2010)

Costa et al. (2012) Matthew et al. (2008)

Soria-Mercado et al. (2009)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123

9. Lyngbyapeptin A (LP) MF: C37H55N5O6S Ave. mass: 697.92749 Da ChemSpider ID: 10478301

7. Lyngbyabellin B (CD) MF: C28H40Cl2N4O7S2 MW: 679.6758 (g/mol) PubChem ID: 44558912

Chemical structure and other details

10. Lyngbyapeptin B (LP) MF: C38H51N5O7S Avg. mass: 721.905823 Da ChemSpider ID: 10479163

8. Lyngbyabellin J (CD) MF: C37H51Cl2N3O12S MW: 864.84974 (g/mol) PubChem ID: 46939789 Luesch et al. (2000)

Klein et al. (1999) Luesch et al. (2000)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

13. 2-Epi-Lyngbyaloside (GL) MF: C31H49BrO10 MW: 661.61876 (g/mol) PubChem ID: 46939688

11. Lyngbyapeptin D (LP) MF: C36H53N5O6S Avg. mass: 683.900879 Da ChemSpider ID: 27025083

Chemical structure and other details

14. 18E-Lyngbyaloside C (GL) MF: C30H49BrO10 MW: 649.60806 (g/mol) PubChem ID: 46939689

12. Lyngbyaloside (GL) MF: C31H49BrO10 MW: 661.61876 (g/mol) PubChem ID: 49865665 Luesch et al. (2000)

Luesch et al. (2000)

References

Antonie van Leeuwenhoek

123

123

L. confervoides

Species

Table 1 continued

1. Obyanamide (CD) MF: C30H41N5O6S MW: 599.74144 (g/mol) PubChem ID: 636989

15. 18Z-Lyngbyaloside C (GL) MF: C30H49BrO10 MW: 649.60806 (g/mol) PubChem ID: 46939690

Chemical structure and other details

2. Grassystatin A (LD) MF: C58H95N9O1 MW: 1174.4256 (g/mol) PubChem ID: 44255320

16. 27-deoxylyngbyabellin A (CD) MF: C29H40Cl2N4O6S2 Avg. mass: 675.687073 Da ChemSpider ID: 25050782

Williams et al. (2002)

Luesch et al. (2000)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

5. Grassystatin B (LD) MF: C59H97N9O16 MW: 1188.45218 (g/mol) PubChem ID: 44253976

3. Grassypeptolide C (CD) MF: C56H79N9O10S2 MW: 1102.41076 (g/mol) PubChem ID: 50907342

Chemical structure and other details

6. Grassystatin C (LD) MF: C50H82N8O12 Avg. mass: 987.232483 Da ChemSpider ID: 24632269

4. Grassystatin A (LD) MF: C58H95N9O16 Avg. mass: 1174.425659 Da ChemSpider ID: 24631671

Matthew et al. (2008, 2009a)

Kwan et al. (2009)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 9. Largamide C (CD) MF: C47H63N7O13 MW: 934.04222 (g/mol) PubChem ID: 44246699

7. Largamide A (CD) MF: C41H59N7O12 MW: 841.94686 (g/mol) PubChem ID: 51360487

Chemical structure and other details

10. Lissoclinamide 7 (CD) MF: C38H45N7O5S2 MW: 743.9378 (g/mol) PubChem ID: 390558

8. Largamide B (CD) MF: C46H61N7O13 MW: 920.01564 (g/mol) PubChem ID: 51360488 Matthew et al. (2009a)

Matthew et al. (2009a)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

13. Lyngbyastatin 6 (CD) MF: C54H69N8NaO18S Avg. mass: 1173.223145 Da ChemSpider ID: 27023114

11. Lyngbyastatin 4 (CD) MF: C53H68N8O18S MW: 1137.21482 (g/mol) PubChem ID: 16104920

Chemical structure and other details

14. Pompanopeptin A (CD) MF: C46H73BrN10O12S Avg. mass: 1070.1 Da ChemSpider ID: 27023335

12. Lyngbyastatin 5 (CD) MF: C53H68N8O15 Avg. mass: 1057.151611 Da PubChem ID: 44246696 Matthew et al. (2008)

Matthew et al. (2007)

References

Antonie van Leeuwenhoek

123

123

L. majuscula

Species

Table 1 continued

1. Antanapeptin A (CD) MF: C41H60N4O8 Avg. mass: 736.937073 Da ChemSpider ID: 9942494

15. Tiglicamides A (CD) MF: C45H59N7O13 Avg. mass: 905.989075 Da ChemSpider ID: 27024665

Chemical structure and other details

2. Antanapeptin B (CD) MF: C41H62N4O8 Avg. mass: 738.953003 Da ChemSpider ID: 9051639

16. Tiglicamides B (CD) MF: C44H57N7O12 Avg. mass: 875.963 Da ChemSpider ID: 27024666 Nogle and Gerwick (2002)

Matthew et al. (2009b)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

5. Antanapeptin C (CD) MF: C41H64N4O8 Avg. mass: 740.968872 Da ChemSpider ID: 9051646

3. Antillatoxin A (LP) MW: 503.674 (g/mol) MF: C28H45N3O5 PubChem ID: 10051827

Chemical structure and other details

6. Aplysiatoxin (LP) MF: C32H47BrO10 MW: 671.61358 (g/mol) PubChem ID: 40465

4. Antillatoxin B (LP) MF: C33H47N3O5 Avg. mass: 565.743408 Da ChemSpider ID: 8160989 Montaser et al. (2011) Mynderse et al. (1977)

Cao et al. (2010) Nogle et al. (2001)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 9. Aurilide B (CD) MF: C44H75N5O10 MW: 834.0938 (g/mol) PubChem ID: 15939634

7. Apratoxin A (CD) MF:C45H69N5O8S MW:840.12306 (g/mol) PubChem ID: 6326668

Chemical structure and other details

10. Aurilide C (CD) MF: C43H73N5O10 Avg. mass: 820.1 Da ChEBI ID: 354961

8. Apratoxin D (CD) MF:C48H75N5O8S Avg. mass: 882.203 Da ChemSpider ID: 24707726 McPhail et al. (2007)

Luesch et al. (2001) Gutie´rrez et al. (2008)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

13. Caylobolide A (MA) MF: C42H80O11 MW: 761.078 (g/mol) PubChem ID: 49866296

11. Carmabin A (LP) MF: C40H57N5O6 MW: 703.91048 (g/mol) PubChem ID: 16757536

Chemical structure and other details

14. Cocosamide A (CD) MF: C42H57N5O7 Avg. mass: 743.931274 Da ChemSpider ID: 26344046

12. Carmabin B (LP) MF: C40H59N5O7 MW: 721.92576 (g/mol) PubChem ID: 44566391 Luesch et al. (2000, 2001) MacMillan and Molinski (2002)

Han et al. (2006)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 17. Curacin A (LP) MF: C23H35NOS MW: 373.5951 (g/mol) PubChem ID: 5281967

15. Cocosamide B (CD) MF: C42H55N5O7 Avg. mass: 741.915405 Da ChemSpider ID: 26343717

Chemical structure and other details

18. Debromoaplysiatoxin (LP) MF: C32H48O10 MW: 592.71752 (g/mol) PubChem ID: 2967

16. Cocosamides B (LP) MF: C42H55N5O7 MW: 741.9154 PubChem ID: 52952543 Catassi et al. (2006)

Gunasekera et al. (2011)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

21. Dragonamide (LP) MF: C36H57N5O5 MW: 639.86828 (g/mol) PubChem ID: 44559994

19. Dolastatin 16 (CD) MF: C47H70N6O10 Avg. mass: 879.09290 Da ChEBI ID: 67337

Chemical structure and other details

22. Hantupeptin A (CD) MF: C41H60N4O8 MW: 736.9371 (g/mol) PubChem ID: 25210138

20. Dragomabin (LP) MF: C37H51N5O6 MW: 661.83074 (g/mol) PubChem ID: 16737469 Jime´nez and Scheuer (2001) Tripathi et al. (2009a)

Montaser et al. (2011)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 25. Hectochlorin (CD) MF: C27H34Cl2N2O9S2 MW: 665.60286 (g/mol) PubChem ID: 636718

23. Hantupeptin B (CD) MF: C41H62N4O8 Avg. mass:738.953003 Da ChemSpider ID: 27024581

Chemical structure and other details

26. Hermitamides A (LP) MF: C23H37NO2 MW: 359.54538 (g/mol) PubChem ID: 10473646

24. Hantupeptin C (CD) MF: C41H64N4O8 Avg. mass: 740.968872 Da ChemSpider ID: 27024582 Ramaswamy et al. (2007)

Tripathi et al. (2009b)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

29. Iejimalide A (MA) MF: C40H58N2O7 MW: 678.89772 (g/mol) PubChem ID: 6443363

27. Hermitamides B (LP) MF: C25H38N2O2 MW: 398.58142 (g/mol) PubChem ID: 10386173

Chemical structure and other details

30. Isomalyngamide A (FAAA) MF: C29H45ClN2O6 MW: 553.1304 (g/mol) PubChem ID: 10626553

28. Homodolastatin 16 (CD) MF: C48H72N6O10 Avg. mass: 893.119507 Da ChemSpider ID: 10258245

Chang et al. (2011)

Davies-Coleman et al. (2003)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 33. Jamaicamide B (PP) MW: 489.04668 (g/mol) MF: C27H37ClN2O4 PubChem ID: 49787032

31. Isomalyngamide A1 (FAAA) MF: C28H43ClN2O6 MW: 539.10382 (g/mol) PubChem ID: 54578266

Chemical structure and other details

34. Jamaicamide C (PP) MF: C27H39ClN2O4 MW: 491.06256 (g/mol) PubChem ID: 49787033

32. Jamaicamide A (PP) MF: C27H36BrClN2O4 MW: 567.94274 (g/mol) PubChem ID: 49787031 Edwards et al. (2004)

Edwards et al. (2004)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

37. Lagunamide A (CD) MF: C45H71N5O10 MW: 842.07274 (g/mol) PubChem ID: 50901239

35. Kalkitoxin V (LP) MF: C24H36O9 MW: 468.53724 (g/mol) PubChem ID: 44584060

Chemical structure and other details

38. Lagunamide B (CD) MF: C45H69N5O10 MW: 840.05686 (g/mol) PubChem ID: 50901240

36. Kulokekahilide-2 (DP) MF: C44H67N5O10 Avg. mass: 826.030273 Da ChemSpider ID: 27025932 Luesch et al. (2000) Tripathi et al. (2011)

LePage et al. (2005) White et al. (2004)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123

41. Lyngbyabellin B (CD) MF: C51H82N8O1 MW: 679.6758 (g/mol) PubChem ID:483840

39. Lagunamide C (CD) MF: C46H73N5O10 MW: Not available ChemSpider ID: 28289216

Chemical structure and other details

42. Lyngbyastatin 1 (CD) MF: C28H40Cl2N4O7S MW: 999.24318 (g/mol) PubChem ID: 154163

40. Lyngbyabellin A (CD) MF: C29H40Cl2N4O7S2 MW: 691.6865 (g/mol) PubChem ID: 10032587 Luesch et al. (2000)

Luesch et al. (2000)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

45. Malyngolide (FAA) MF: C16H30O3 MW: 270.4076 (g/mol) PubChem ID: 155655

43. Majusculamide C (CD) MF: C50H80N8O12 MW: 985.2166 (g/mol) PubChem ID: 21628817

Chemical structure and other details

46. Malyngamide B (FAA) MF: C28H45ClN2O6 MW: 541.1197 (g/mol) PubChem ID: 44246695

44. Malyngamide 3 (FAA) MF: C28H47ClN2O7 Avg. mass: 559.13501 Da ChemSpider ID: 26346930

Gross et al. (2010)

Pettit et al. (2008) Gunasekera et al. (2011)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 49. Malyngamide U (FAA) MF: C23H39NO5 MW: 409.55946 (g/mol) PubChem ID: 637170

47. Malyngamide C (FAA) MF: C24H38ClNO5 MW: 456.01522 (g/mol) PubChem ID: 20847479

Chemical structure and other details

50. Nhatrangin A (PP) MF: C21H32O8 Avg. mass: 412.474 Da ChemSpider ID: 27025353

48. Malyngamide T (FAA) MF: C25H38ClNO5 MW: 468.02592 (g/mol) PubChem ID: 643677 Chlipala et al. (2010)

Gross et al. (2010)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

52. Palmyramide A (CD) MF: C36H53N3O9 MW: 671.82072 (g/mol) PubChem ID: 45380200

54. Pitipeptolide B (CD) MF: C44H67N5O9 MW: 810.03088 (g/mol) PubChem ID: 10819182

51. Nhatrangin B (PP) MF: C21H31BrO8 Avg. mass: 491.370 Da ChemSpider ID: 27025354

53. Pitipeptolide A (CD) MF: C44H65N5O9 MW: 808.015 (g/mol) PubChem ID: 11803484

Chemical structure and other details

Luesch et al. (2001)

Taniguchi et al. (2010)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 57. Pseudodysidenin (LP) MF: C17H23Cl6N3O2S MW: 546.16642 (g/mol) PubChem ID: 10745152

55. Pitipeptolide C (CD) MF: C44H69N5O9 MW: 812.04676 (g/mol) PubChem ID: 15479259

Chemical structure and other details

58. Serinolamide A (LP) MF: C23H45NO3 MW: 383.6083 (g/mol) PubChem ID: 56597771

56. Pitiprolamide (CD) MF: C49H72N6O10 Avg. mass: 905.130188 Da ChemSpider ID: 27026161 Jime´nez and Scheuer (2001)

Montaser et al. (2011)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

63. 8-Epi-malyngamide C (FAA) MF: C24H38ClNO5 Avg. mass: 456.015198 Da ChemSpider ID: 24658926

61. Somocystinamide A (LP) MF: C42H70N4O4S2 Avg. mass: 759.159607 Da ChemSpider ID: 10478837

59. Somamide A MF: C48H67N7O12S Avg. mass: 966.150 Da ChemSpider ID: 10214335

Chemical structure and other details

64. 8-O-acetyl-8-epi-malyngamide C (FAA) MF: C26H40ClNO6 Avg. mass: 498.05191 Da ChemSpider ID: 27025100

62. Wewakazole (CDO) MF: C59H72N12O12 MW: 1141.27618 (g/mol) PubChem ID: 21578002

60. Somamide B MF: C46H62N8O12 MW: 919.03088 (g/mol) PubChem ID: 23657292

Gross et al. (2010)

Wrasidlo et al. (2008) Singh et al. (2011)

Nogle et al. (2001)

References

Antonie van Leeuwenhoek

123

123

L. semiplena

L. polychroa

Species

Table 1 continued

1. Cyclic depsipeptide (CD) MF: C24H36N4O6S2 MW: 540.69584(g/mol) PubChem ID: 5352062

3. Carriebowmide (CD) MF: C46H68N6O9S Avg. mass: 881.132 Da ChemSpider ID: 28285867

1. Dragonamide C (LP) MF: C33H57N5O6 MW: 619.83558 (g/mol) PubChem ID: 24878746

Chemical structure and other details

2. Lyngbyastatin 8 (CD) MF: C47H64N8O12 MW: 933.05746 (g/mol) PubChem ID: 71718338

2. Dragonamide D (LP) MF: C32H55N5O6 MW: 605.809 (g/mol) PubChem ID: 24878793

Li and Rein (2010) Kwan et al. (2009)

Gunasekera et al. (2008)

Gunasekera et al. (2008)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

7. Semiplenamide C (LP) MF: C20H39NO2 MW: 325.52916 (g/mol) PubChem ID: 11347939

5. Semiplenamide A (LP) MF: C23H43NO2 Avg. mass: 365.592987 Da ChemSpider ID: 8559689

3. Lyngbyastatin 9 (CD) MF: C49H68N8O12 MW: 961.11062(g/mol) PubChem ID: 50915769

Chemical structure and other details

8. Semiplenamide D (LP) MF: C26H49NO3 MW: 423.67216 (g/mol) PubChem ID: 11316191

6. Semiplenamide B (LP) MF: C25H45NO3 Avg. mass: 407.6297 Da ChemSpider ID: 8629501

4. Lyngbyastatin 10 (CD) MF: C49H67BrN8O12 Avg. mass:1040 Da ChemSpider ID: 27024731

Han et al. (2003)

Han et al. (2003)

Kwan et al. (2009)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 13. Wewakpeptin B (LP) MF: C52H89N7O11 Avg. mass: 988.303406 Da ChemSpider ID: 9598105

11. Semiplenamide G (LP) MF: C24H45NO4 MW: 411.6184 (g/mol) PubChem ID: 21589501

9. Semiplenamide E (LP) MF: C24H45NO3 MW: 395.619 (g/mol) PubChem ID:11463588

Chemical structure and other details

14. Wewakpeptin C (LP) MF: C54H81N7O11 Avg. mass: 1004.260986 Da ChemSpider ID: 9518611

12. Wewakpeptin A (LP) (LP) MF: C52H85N7O11 Avg. mass: 984.271606 Da ChemSpider ID: 9380429

10. Semiplenamide F (LP) MF: C22H43NO3 MW: 369.58172 (g/mol) PubChem ID: 10022023

Han et al. (2005)

Han et al. (2003) Han et al. (2005)

Han et al. (2003)

References

Antonie van Leeuwenhoek

L. sordida

Species

Table 1 continued

3. Wewakazole (CDO) MF: C59H72N12O12 MW: 1141.27618 (g/mol) PubChem ID: 21578002

1. Apratoxin D (CD) MF: C48H75N5O8S MW: 882.2028 (g/mol) PubChem ID: 24896935

15. Wewakpeptin D (DP) MF: C54H85N7O11 Avg. mass: 1008.29303 Da ChemSpider ID: 9609508

Chemical structure and other details

2. Malyngamide 2(FAA) MF: C25H42ClNO6 Avg. mass: 488.057098 Da ChemSpider ID: 26386326

Gutierrez et al. (2008)

Gutierrez et al. (2008) Malloy et al. (2011)

Han et al. (2005)

References

Antonie van Leeuwenhoek

123

Lyngbya sp.

Species

Table 1 continued

123 5. Biselyngbyaside (MG) MF: C34H54O10 Avg. mass: 622.786621 Da ChemSpider ID: 29214826

3. Apratoxin C (CD) MF: C44H67N5O8S Avg. mass: 826.09768 ChEBI ID: 35216

1. Apratoxin A (CD) MF: C45H69N5O8S MW: 840.12306 (g/mol) PubChem ID: 6326668

Chemical structure and other details

6. Coibamide A (CD) MF: C65H110N10O16 Avg. mass: 1287.626343 Da ChemSpider ID: 27023755

4. Bisebromoamide (PE) MF:C51H72BrN7O8S MW: Not available ChemSpider ID: 27025887

2. Apratoxin B (CD) MF: C44H67N5O8S Avg. mass: 826.09768 Da ChEBI ID: 35215

Teruya et al. (2009b)

Teruya et al. (2009a)

Singh et al. (2011) Luesch et al. (2002)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

11. Dragonamide C (LP) MF: C33H57N5O6 MW: 619.83558 (g/mol) PubChem ID: 24878746

9. Dolastatin 12 (CD) MF: C50H80N8O11 Avg. mass: 969.217224 Da ChemSpider ID: 10235751

7. Curacin D (LP) MF: C22H33NOS Avg mass: 785.090881 Da PubChem ID: 21575335

Chemical structure and other details

12. Dragonamide D (LP) MF: C32H55N5O6 MW: 605.809 (g/mol) PubChem ID: 24878793

10. Dolastatin 15 (LP) MF: C45H68N6O9 Avg. mass: 837.056 Da ChemSpider ID: 8094620

8. Dolastatin 10 (LP) MF: C42H68N6O6S MW: 359.56852 (g/mol) ChemSpider ID: 7986684

Williams et al. (2003)

Taori et al. (2008) Singh et al. (2011)

Dixit and Suseela (2013)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 15.Lyngbyastatin 5 (CD) MF: C53H68N8O15 Avg. mass: 1057.151611 Da ChemSpider ID: 23076610

13.Kempopeptin A (CD) MF: C50H70N8O13 MW: 991.1366 (g/mol) PubChem ID: 25112524

Chemical structure and other details

16.Lyngbyastatin 6 (CD) MF: C54H69N8NaO18S Avg. mass: 1173.22 Da ChemSpider ID: 27023114

14.Kempopeptin B (CD) MF: C46H73BrN8O11 MW: 994.022 (g/mol) PubChem ID: 25112655 Taori et al. (2007)

Taori et al. (2008)

References

Antonie van Leeuwenhoek

Species

Table 1 continued

19. Pahayokolide A (CD) MF: C72H105N13O20 Avg. mass: 1472.679199 Da ChemSpider ID: 23076846

17. Lyngbyastatin 7 (CD) MF: C48H66N8O12 Avg. mass: 947.083984 Da ChemSpider ID: 23076612

Chemical structure and other details

20. Pahayokolide B (CD) MF: C63H90N12O18 Avg. mass: 1303.458252 Da ChemSpider ID: 23076847

18. Palauamide (CD) MF: C46H69N5O10 MW: 852.067 (g/mol) PubChem ID: 11549667 An et al. (2007)

Williams et al. (2003) Zou et al. (2005)

References

Antonie van Leeuwenhoek

123

Species

Table 1 continued

123 23. Ulongamide B (CD) MF: C32H45N5O7S MW: 643.794 (g/mol) PubChem ID: 11093484

21. Somamide B (CD) MF: C46H62N8O12 MW: 919.03088 (g/mol) PubChem ID: 23657292

Chemical structure and other details

24.Ulongamide C (CD) MF: C36H45N5O7S MW: 691.8368 (g/mol) PubChem ID: 10941492

22. Ulongamide A (CD) MF: C32H45N5O6S MW: 627.7946 (g/mol) PubChem ID: 10985040

Williams et al. (2003)

Williams et al. (2003)

References

Antonie van Leeuwenhoek

27. Ulongapeptin (CD) MF: C44H68N6O8 Avg. mass: 809.046082 Da ChemSpider ID: 9150045

25. Ulongamide D (CD) MF: C34H49N5O7S MW: 671.84716 (g/mol) PubChem ID: 10952495

Chemical structure and other details

26. Ulongamide E (CD) MF: C35H51N5O7S MW: 685.87374 (g/mol) PubChem ID: 44559889 Williams et al. (2003)

Williams et al. (2003)

References

Avg. mass average mass, CD cyclic depsipeptide, CDO cyclic dodecapeptide, DP depsipeptide, FAA fatty acid amide, GL glicomacrolide, LD linear depsipeptide, LP lipopeptide, MA macrolactone, MG macrolide glycoside, MF molecular formula, MW molecular weight, PE peptide, PP polyketide-peptide

Species

Table 1 continued

Antonie van Leeuwenhoek

123

Antonie van Leeuwenhoek

activity. GLs are another class of chemical compounds isolated from cyanobacteria with anticancer activity. For example, lyngbyaloside, 2-epi-lyngbyaloside, 18e-lyngbyaloside C, 18z-lyngbyaloside C, isolated from L. bouillonii has anticancer activity (Table 1). Peptides have suitability as drugs or drugable agents; peptides are suitable alternatives to small synthetic molecules because of several advantages, notably: 1. compared to small synthetic molecules, peptides possess less toxicity and they should not accumulate in organs; 2. rapid degradation of peptides as drugs is a desirable trait due to which, peptide-drugs are effective; 3. the degraded product(s) are innocuous amino acids without toxicity (Loffet 2002); 4. peptides can work on their targets very selectively, as the interaction with target molecule(s) is very specific compared to small synthetic molecules (Hummel et al. 2006). These features of peptides contribute to their adoption as drugable agents. Peptide drugs include receptor agonists and antagonists, peptide hormones and analogues, HIV protease inhibitors, and a few more (Vlieghe et al. 2010). Thus, considering the merits of peptides as drug molecules, cyclic peptides also could be used as the better peptide-based drugs. Many chemicals of other cyanobacteria have been used with eukaryotic cytoskeleton cancer targets, such as tubulin and actin microfilaments for the cancer treatment. Furthermore, a number of cyano-peptides modulate cellular events for apoptosis in cancer cell (Simmons et al. 2005; Oftedal et al. 2010). Thus, cyanobacterial toxins are a natural source of anticancer agents in pharmacology and pharmaceutical chemistry for the drug development (Tan 2007).

Cyanobacterial bioactive molecules under clinical trials Phases of clinical trials are, phase 0 or pre-clinical, phase I, phase II and phase III that are involved in the drug-development process of a synthetic, or a semisynthetic chemical or an active natural compound. Generally, the approval of Food and Drug Administration (FDA) is mandatory for each phase. A few prominent Lyngbya-compounds such as, dolastatin 10, dolastatin 15, curacin and desmethoxymajusculamide C, etc., and their analogues are in clinical trials as potential anticancer drugs (Marks et al. 2003; Perez et al. 2005). Dolastatins are a group

123

of unique peptides that were identified too in other cyanobacteria (Luesch et al. 2001). The antineoplastic activity of dolastatins is the inhibition of microtubule assembly of proliferating cells; eventually, its analogues, dolastatin 1, 2, 3 and so on, up to dolastatin 16 from Lyngbya and other cyanobacteria have gained prominence as anticancer drugs, of which, dolastatin 10 and dolastatin 15 have been recorded with promising antineoplastic activities (Costa et al. 2012). Furthermore, phase I and II clinical trials of dolastatin 10 had been undertaken by National Cancer Institute, USA; however, its toxic effects caused a moratorium of clinical trials (Simmons et al. 2005). Alternatively, soblidotin, the synthetic analogue of dolastatin 10 with an improved pharmacological and pharmacokinetic properties without any exaggerated toxicity was promoted, which had too cleared clinical trial phases I, II and III by Aska Pharmaceuticals, Tokyo (Bhatnagar and Kim 2010). Thus, Lyngbya-compounds directly or their modified analogues are desirable chemical species, with the potentiality of passing through the drug development process as antineoplastic agents (Marks et al. 2003; Catassi et al. 2006; Ma et al. 2006; Dixit and Suseela 2013). The other Lyngbya-compound, curacin is a unique thiazolinecontaining lipopeptide that inhibits microtubule assembly in cancer cells (Blokhin et al. 1995). Its natural analogues from L. majuscula, curacin A, B, C and D (Gerwick et al. 1994; Yoo and Gerwick 1995; Ma´rquez et al. 1998) were unable to produce anticancer effectivity during in vivo animal trails; but, synthetic analogue(s) of curacin served the development of anticancer agents (Wipf et al. 2004). Updated clinical information reveals that most Lyngbya-compounds, their several synthetic analogues individually and antibody–drug conjugates (ADCs) are in the process of development as anticancer drugs (Bouchard et al. 2014; Table 2). ADCs are nearer to development as potent anticancer drugs, since those have proved as the sought after anticancer agents, simulating the classical magic bullet theory of Paul Ehrlich in the use of an antibiotic. In the simplest form, an ADC is comprised of an antibody to which, a cytotoxic agent was attached through a linker to a Lyngbya compound, for the possible use in cancer chemotherapy as a stratagem (Table 2). The list of ADCs continues to grow, bolstered by the success of the brentuximab vedotin (BV, the trade name, Adcetris, as an injection made by Settle

MMAE

MMAF

MMAF

MMAE

MMAE

Dolastatin 15

AGS-15E (AGS-15ME)a

AGS-16C3F (AGS-16M8F)a

A1-mcMMAF (PF-06263507)a

BAY 79-4620 (3ee9/MMAE)a

Brentuximab vedotin (cAC10vc or SGN-35)a

Cematodin (LU-103793); peptide

L. majuscula

MMAE

MMAE

L. majuscula

MMAE

MMAE

Lyngbya sp.

Lyngbya sp.

MMAE

MMAE

Curacin A; lipid

DCDT-2980Sa

DCDS-4501Aa

Desmethoxy-majusculamide C (DMMC); peptide

DMUC-5754A (RG-7458)a

DNIB-0600A (RG-7599)a

Dolastatin 10; peptide

Dolastatin 15; peptide

DSTP-3086S (RG-7450)a

Enfortumab vedotin (AGS22MSE and AGS-22ME)a

synthetic analogues

MMAF

Source

ABT-414 (NCT01741727)a

Chemical class

Name;

Solid tumours, Urogenital cancer

Metastatic prostate cancer

Phase I trial trials

Phase I clinical trials

Preclinical phase trials

Phase II clinical trials

Brest cancer Microtubule assembly

Phase I clinical trials

Phase I clinical trials

Phase I clinical trials

Preclinical phase

Phase II clinical trials

Phase II clinical trials

Preclinical phase

Phase III clinical trials

Phase II clinical trials

Phase II clinical trials

Phase I clinical trials

Phase I clinical trials

Phase I clinical trials

Phase I clinical trials

Phase II clinical trials

Previous status

Tubulin

Lung, platinum resistant ovarian cancer

Ovarian and pancreatic cancer

Tubulin

Follicular B cell lymphoma

Leukemias

Inhibits microtubule assembly and tubulin

Lung cancer

Microtubule assembly

Lymphoma and CD30 of tumor cell

Hodgkin

Solid tumors

Advanced solid tumors

Renal and liver cancer

Bladder cancer

Brain tumors and lung cancer

Molecular target

Under review

Under review

Withdrawn for low water solubility

Under review

Dropped due to some toxic effects

Under review

Under review

Under review

Under review

Under review

Withdrawn due to low water solubility

Under review

Withdrawn due to lack of objective response

FDA approved

Under review

Under review

Under review

Under review

Under review

Current status

Table 2 Clinical status of compounds of Lyngbya, their chemical class, molecular targets for cancer drug development

Genetics and Astellas Pharma

Seattle

Genentech, Roche



Multicenter Cooperative group

Cancer Institute, US

National

Seattle Genetics

Genentech, Roche



Genentech, Roche

Genentech, Roche



North Central Cancer Treatment Group

Knoll division of Abbott GMBH for treatment of breast cancer

Seattle Genetics

Seattle Genetics

Pfizer

Astellas Pharma

Seattle Genetics

AbbVie (Abbott Pharmaceutical)

Company

Newman and Cragg (2014)

Newman and Cragg (2014)

Marks et al. (2003)

Perez et al. (2005)

Simmons et al. (2005)

Newman and Cragg (2014)

Newman and Cragg (2014)

Simmons et al. (2009)

Li et al. (2013)

Li et al. (2013)

Wipf et al. (2004)

Blokhin et al. (1995)

Marks et al. (2003)

Newman and Cragg (2004)

de Arruda et al. (1995)

Anonymous (2011)

Francisco et al. (2003)

Newman and Cragg (2014)

Newman and Cragg (2014)

Newman and Cragg (2014)

Phillips et al. (2013)

Reference

Antonie van Leeuwenhoek

123

123

MMAE

MMAE

MMAF

MMAF

Dolastatin 10 synthetic analogues

Dolastatin 15 synthetic analogues

MMAF

MLN-0264a

PSMA-ADCa

SGN-LIV1Aa

SGN-19A (SGN-CD19A)a

Soblidotin (TZT 1027); peptidea

Tasidotin (ILX-651); peptide

Vorsetuzumab mafodotin; SGN-75a

Phase III clinical trials

Solid tumors, microtubule assembly, lung cancer Phase I clinical trials

Phase III clinical trials

Microtubule assembly and breast cancer

Renal cell cancer and CD70

Phase I clinical trials

Phase I clinical trials

Phase II clinical trials

Phase I clinical trials

Phase II trial trials

Previous status

Acute Leukemia and Hodgkin Lymphoma

Breast cancers (ER?/ HER2-; HER2 ? and triple negative

Prostate cancer

Pancreatic cancer

Brest cancer

Molecular target

Under review

Under review

Under review

Under review

Under review

Under review

Under review

Under review

Current status

Seattle Genetics

Genzyme Corporation, Cambridge

Aska Pharmaceuticals, Tokyo

Seattle Genetics

Seattle Genetics

Progenics Pharmaceuticals

Seattle Genetics

CuraGen

Company

Doronina et al. (2003)

Mita et al. (2006)

Simmons et al. (2005)

Bhatnagar and Kim (2010)

Newman and Cragg (2014)

Newman and Cragg (2014)

Wang et al. (2011)

Newman and Cragg (2014)

Yardley et al. (2012)

Reference

Antibody–drug conjugate drug (ADC), rest others are individual chemicals; monomethylauristatin E (MMAE) is a synthetic analogue of dolastatin 10; monomethylauristatin F (MMAF) is a derivative of MMAE

a

MMAE

Source

Glembatumumab Vedotin (CDX-011)a

Chemical class

Name;

Table 2 continued

Antonie van Leeuwenhoek

Antonie van Leeuwenhoek

Genetics), as the first ADC drug, approved by FDA in 2011, against Hodgkin lymphoma or the systemic anaplastic large cell lymphoma (Anonymous 2011). BV was designed for the cancer target, CD30, as an adduct of brentuximab, a monoclonal antibody and the antitubulin agent, monomethyl auristatin E (the synthetic analogue of dolastatin 10, in short, vedotin), through an enzyme-cleavable dipeptide linker. The ADC was stable in body circulation in vivo, during the treatment. The release of vedotin occurs, when the linker is cleaved selectively, soon after the binding of CD30 via brentuximab with the ADC at lysosomes at cancer cells, wherein it binds to tubulin, causing the breakdown of microtubules; eventually, the G2/M (gap 2 phase and mitosis) in cell-cycle is arrested with the eventual apoptosis. The derivatives of monomethyl auristatin E (MMAE) is monomethyl auristatin F (MMAF), which is used for the development of an ADC with a particular antibody for a specific cancer. MMAE and MMAF as adducts with specific antibodies, nearly 20 anticancer drugs have been developed; each of those is a target to specific cancer types. Of 20 drugs, CDX-014, HuMax-CD74 and HuMab-TF-011-vcMMAE, etc., are in preclinical trials; while (ABT-414, AGS-15E, AGS-16C3F, A1mcMMAF, DCDT-2980S, DCDS-4501A, DMUC5754A, DNIB-0600A, DSTP-3086S, enfortumab vedotin, glembatumumab vedotin, MLN-0264 and MLN-0264, etc. are in clinical trials, developed by Seattle Genetics, Genentech, Progenics Pharmaceuticals, Astellas Pharma, CuraGen, Pfizer and Abbott Pharmaceutical, (Newman and Cragg 2014), along with license from FDA. Since, there is a commonality of the control of cancer types broadly by the inhibition of a target protein, responsible for the origin of cancer stem cells (Costa et al. 2012; Dixit and Suseela 2013), it can be envisaged that the concept of the development of ADCs, in a systematic approach, could be widely adopted with the involvement of a natural compound. The development of emulative and efficacious drugs for the diverse cancer types, individually as well as holistically, is still an elusive goal in pharmaceutics, today; and bioactive compounds of Lyngbya are used to target cancer macromolecules, tubulin or actin filaments, protein kinase, microtubule, calcium influx, serine proteases, caspase, Bcl-2 protein, voltage-gated sodium channel and cancer related secretary pathways inhibition in eukaryotic cells (Ma´rquez et al. 1998; Newman and Cragg 2004;

Perez et al. 2005; Simmons et al. 2005; Watanabe et al. 2006; Tabuchi et al. 2009; Oftedal et al. 2010; Sainis et al. 2010). Chemotherapy, radiation therapy, surgery and targeted therapy, etc., are in use for cancer treatment. The targeted therapies are designed to interfere with specific molecules, for tumor growth, the drug development cascade stems from information on molecular biology of cancer cells. Several drugs are developed for targeting particular protein receptor/enzymes, approved by FDA (Anonymous 2015). Since, traditional chemotherapies eliminate rapidly the majority of dividing body cells, the primary aim of targeted therapies is to eliminate cancer cells precisely and have potentially lesser side effects. Antineoplastic activities of Lyngbya compounds, apratoxin A to E were screened with U2OS osteosarcoma, HT29 colon adenocarcinoma and HeLa cervical carcinoma, LoVo colon cancer, H-460 lung cancer cell lines; similarly, antineoplastic activities of biselyngbyaside was screened with HeLa S3 epithelial carcinoma, SNB-78 central nervous system cancer and NCI H522 lung cancer cell lines (Costa et al. 2012). Additionally cell lines, breast cancer MDA-MB-231, melanoma LOX IMVI, leukemia HL-60 and astrocytoma SNB75, Ovarian carcinoma OVCAR-3, kidney cancer A498, lung cancer NCI-H460, colorectal cancer KM20L2 and glioblastoma SF-295 were generally used for most Lyngbya compounds (Costa et al. 2012).

Conclusion It can be suggested that the cited Lyngbya compounds could further be pursued for cancer drug development, since most of them have structural complexities and have promising anticancer activities, identified at preliminary levels. It is discernible that when the structure of a compound was available, its synthesis could be pursued for an efficacious drug with fewer side effects, as seen with the development of synthetic analogues of dolastatin 10, as soblidotin; similarly, of dolastatin 15, the synthetic analogue is tasidotin, suitable for chemical manipulation, to cite as examples of dolastatins. Moreover, soblidotin and tasidotin are in clinical trial stages. However, with the development of the ADC approach, the synthetic analogue of dolastatin 10, MMAE adduct with an antibody has

123

Antonie van Leeuwenhoek

been approved by FDA. Obviously, structural information of individual Lyngbya compounds could lend themselves in the cancer drug development attempts, holistically.

References An T, Krishnaswamy T, Kumar S, Wang M, Liu L, Lay J Jr, Liyanage R, Berry J, Gantar M, Marks V, Gawley RE, Rein KS (2007) Structures of pahayokolides A and B, two cyclic peptides from a Lyngbya sp. J Nat Prod 70:730–735 Anonymous (2011) Brentuximab vedotin. Drugs R D 11:85–95. doi: 10.2165/11591070-000000000-00000 Anonymous (2015) http://www.fda.gov/Drugs/Information OnDrugs/ApprovedDrugs/ucm279174.htm. Assessed 09 May 2015 Bhatnagar I, Kim S-K (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8: 2673–2701 Blokhin AV, Yoo H-D, Geralds RS, Nagle DG, Gerwick WH, Hamel E (1995) Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogs. Mol Pharmacol 48:523–531 Bouchard H, Viskov C, Garcia-Echeverria C (2014) Antibodydrug conjugates—a new wave of cancer drugs. Bioorg Med Chem Lett 24:5357–5363 Cao Z, Gerwick WH, Murray TF (2010) Antillatoxin is a sodium channel activator that displays unique efficacy in heterologously expressed rNav1.2, rNav1.4 and rNav1.5 a subunits. BMC Neurosci 11:154. doi:10.1186/1471-220211-154 Catassi A, Cesario A, Arzani D, Menichini P, Alama A, Bruzzo C, Imperatori A, Rotolo N, Granone P, Russo P (2006) Characterization of apoptosis induced by marine natural products in non small cell lung cancer A549 cells. Cell Mol Life Sci 63:2377–2386 Chang TT, More SV, Lu IH, Hsu JC, Chen TJ, Jen YC, Lu CK, Li WS (2011) Isomalyngamide A, A-1 and their analogs suppress cancer cell migration in vitro. Eur J Med Chem 46:3810–3819 Cheung MY, Liang S, Lee J (2013) Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. J Microbiol 51:1–10 Chlipala GE, Pham HT, Nguyen VH, Krunic A, Shim SH, Soejarto DD, Orjala J (2010) Nhatrangins A and B, aplysiatoxin-related metabolites from the marine cyanobacterium Lyngbya majuscula from Vietnam. J Nat Prod 73:784–787 Costa M, Costa-Rodrigues J, Fernandes MH, Barros P, Vasconcelos V, Martins R (2012) Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis. Mar Drug 10:2181–2207 Dash NP, Kumar A, Singh PK (2015) Cyanobacteria, pesticides and rice interaction. Biodivers Conserv 24:955–1005

123

Davies-Coleman M, Dzeha TM, Gray CA, Hess S, Pannell LK, Hendricks DT, Arendse CE (2003) Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of Lyngbya majuscula. J Nat Prod 66:712–715 de Arruda M, Cocchiaro CA, Nelson CM, Grinnell CM, Janssen B, Haupt A, Barlozzari T (1995) LU103793 (NSC D-6693 56): a synthetic peptide that interacts with microtubules and inhibits mitosis. Cancer Res 55:3085–3092 Dixit RB, Suseela MR (2013) Cyanobacteria: potential candidates for drug discovery. Antonie van Leeuwen 103:947– 961 Dobretsov S, Abed RMM, Al Maskari SMS, Al Sabahi JN, Victor R (2011) Cyanobacterial mats from hot springs produce antimicrobial compounds and quorum-sensing inhibitors under natural conditions. J Appl Phycol 23:983– 993 Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21: 778–784 Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833 Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, Rejniak SX, Gordon KA, DeBlanc R, Toki BE, Law CL, Doronina SO, Siegall CB, Senter PD, Wahl AF (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465 Galhano V, de Figueiredo DR, Alves A, Correia A, Pereira MJ, Laranjo JG, Peixoto F (2011) Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiologia 663:187–203 Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate DL (1994) Structure of curacin A, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59:1243–1245 Gromicho M, Dinis J, Magalha˜es M, Fernandes AR, Tavares P, Laires A, Rueff J, Rodrigues AS (2011) Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1. Leuk Lymphom 52:1980–1990 Gross H, McPhail KL, Goeger DE, Valeriote FA, Gerwick WH (2010) Two cytotoxic stereoisomers of malyngamide C, 8-epi-malyngamide C and 8-O-acetyl-8-epi-malyngamide C, from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 71:1729–1735 Gunasekera SP, Ross C, Paul VJ, Matthew S, Luesch H (2008) Dragonamides C and D, linear lipopeptides from the marine cyanobacterium brown Lyngbya polychroa. J Nat Prod 71:887–890 Gunasekera SP, Owle CS, Montaser R, Luesch H, Paul VJ (2011) Malyngamide 3 and cocosamides A and B from the

Antonie van Leeuwenhoek marine cyanobacterium Lyngbya majuscula from Cocos Lagoon, Guam. J Nat Prod 74:871–876 Gutierrez M, Suyama TL, Engene N, Wingerd JS, Matainaho T, Gerwick WH (2008) Apratoxin D, a potent cytotoxic cyclodepsipeptide from Papua New Guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida. J Nat Prod 71:1099–1103 Han B, McPhail KL, Ligresti A, Di Marzo V, Gerwick WH (2003) Semiplenamides A-G, fatty acid amides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J Nat Prod 66:1364–1368 Han B, Goeger D, Maier CS, Gerwick WH (2005) The wewakpeptins, cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J Org Chem 70:3133–3139 Han B, Gross H, Goeger DE, Mooberry SL, Gerwick WH (2006) Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 69:572–575 Hochhaus A, Erben P, Ernst T, Mueller M (2007) Resistance to targeted therapy in chronic myelogenous leukemia. Semin Hematol 44:S15–S24 Hummel G, Reineke U, Reimer U (2006) Translating peptides into small molecules. Mol BioSyst 2:499–508 Jaiswal P, Prasanna R, Singh PK (2005) Isolation and screening of rice field cyanobacteria exhibiting algicidal activity. Asian J Microbiol Biotechnol Environ Sci 7:367–373 Jaiswal P, Prasanna R, Singh PK (2008) Cyanobacterial bioactive molecules—an overview of their ‘‘cidal’’ properties. Can J Microbiol 54:701–717 Jime´nez JI, Scheuer PJ (2001) New lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 64:200–203 Joo SH (2012) Cyclic peptides as therapeutic agents and biochemical tools. Biomol Ther (Seoul) 20:19–26 Klein D, Braekman JC, Daloze D, Hoffmann L, Castillo G, Demoulin V (1999) Lyngbyapeptin A, a modiÒed tetrapeptide from Lyngbya bouillonii (Cyanophyceae). Tetrahedron Lett 40:695–696 Kulasooriya SA (2011) Cyanobacteria: pioneers of planet earth. Ceylon J Sci (BioSci) 40:71–88 Kwan JC, Eksioglu EA, Liu C, Paul VJ, Luesch H (2009) Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J Med Chem 52:5732–5747 LePage KT, Goeger D, Yokokawa F, Asano T, Shioiri T, Gerwick WH, Murray TF (2005) The neurotoxic lipopeptide kalkitoxin interacts with voltage-sensitive sodium channels in cerebellar granule neurons. Toxicol Lett 158:133–139 Li L (2010) Rein KS (2010) New Peptides Isolated from Lyngbya species: a review. Mar Drugs 8:1817–1837 Li D, Poon KA, Yu SF, Dere R, Go M, Lau J, Zheng B, Elkins K, Danilenko D, Kozak KR, Chan P, Chuh J, Shi X, Nazzal D, Fuh F, McBride J, Ramakrishnan V, de Tute R, Rawstron A, Jack AS, Deng R, Chu YW, Dornan D, Williams M, Ho W, Ebens A, Prabhu S, Polson AG (2013) DCDT2980S, an anti-CD22-monomethyl auristatin E antibody-drug conjugate, is a potential treatment for non-Hodgkin lymphoma. Mol Cancer Ther 12:1255–1265 Loffet A (2002) Peptides as drugs: is there a market? J Pept Sci 8:1–7

Luesch H, Yoshida WY, Moore RE, Paul VJ, Mooberry SL (2000) Isolation, structure determination, and biological activity of Lyngbyabellin A from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 63:611–615 Luesch H, Pangilinan R, Yoshida WY, Moore RE, Paul VJ (2001) Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 64:304–307 Luesch H, Yoshida WY, Moore RE, Paul VJ (2002) New apratoxins of marine cyanobacterial origin from Guam and Palau. Bioorg Med Chem 10:1973–1978 Ma D, Zou B, Cai G, Hu X, Liu JO (2006) Total synthesis of the cyclodepsipeptide apratoxin A and its analogues and assessment of their biological activities. Chemistry 12: 7615–7626 Ma´rquez B, Verdier-Pinard P, Hamel E, Gerwick WH (1998) Curacin D, an antimitotic agent from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 49:2387–2389 MacMillan JB, Molinski TF (2002) Caylobolide A, a unique 36-membered macrolactone from a Bahamian Lyngbya majuscula. Org Lett 4:1535–1538 Malloy KL, Villa FA, Engene N, Matainaho T, Gerwick L, Gerwick WH (2011) Malyngamide 2, an oxidized lipopeptide with nitric oxide inhibiting activity from a papua new guinea marine cyanobacterium. J Nat Prod 74:95–98 Marks RS, Graham DL, Sloan JA, Hillman S, Fishkoff S, Krook JE, Okuno SH, Mailliard JA, Fitch TR, Addo F (2003) Phase II study of the dolastatin 15 analogue Lu 103793 in the treatment of advanced non-small-cell lung cancer. Am J Clin Oncol 26:336–337 Martins RF, Ramos MF, Herfindal L, Sousa JA, Skarven K, Vasconcelos VM (2008) Antimicrobial and cytotoxic assessment of marine cyanobacteria—Synechocystis and Synechococcus. Mar Drugs 6:1–11 Matthew S, Ross C, Rocca JR, Paul VJ, Luesch H (2007) Lyngbyastatin 4, a dolastatin 13 analogue with elastase and chymotrypsin inhibitory activity from the marine cyanobacterium Lyngbya confervoides. J Nat Prod 70: 124–127 Matthew S, Schupp PJ, Luesch H (2008) Apratoxin E, a cytotoxic peptolide from a Guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J Nat Prod 71:1113– 1116 Matthew S, Paul VJ, Luesch H (2009a) Largamides A-C, tiglic acid-containing cyclodepsipeptides with elastase-inhibitory activity from the marine cyanobacterium Lyngbya confervoides. Planta Med 75:528–533 Matthew S, Paul VJ, Luesch H (2009b) Tiglicamides A-C, cyclodepsipeptides from the marine cyanobacterium Lyngbya confervoides. Phytochemistry 70:2058–2063 McPhail KL, Correa J, Linington RG, Gonza´lez J, Ortega-Barrıa E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscule. J Nat Prod 70:984– 988 Medina RA, Goeger DE, Hills P, Mooberry SL, Huang N, Romero LI, Ortega-Barrı´a E, Gerwick WH, McPhail KL (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130:6324–6325

123

Antonie van Leeuwenhoek Mita AC, Hammond LA, Bonate PL, Weiss G, McCreery H, Syed S, Garrison M, Chu QS, DeBono JS, Jones CB, Weitman S, Rowinsky EK (2006) Phase I and pharmacokinetic study of tasidotin hydrochloride (ILX651), a third generation dolastatin-15 analogues, administered weekly for 3 weeks every 28 days in patients with advanced solid tumors. Clin Cancer Res 12:5207–5215 Mondal S, Bandyopadhyay S, Ghosh MK, Mukhopadhyay S, Roy S, Mandal C (2012) Natural products: promising resources for cancer drug discovery. Antican Agent Med Chem 12:49–75 Montaser R, Abboud KA, Paul VJ, Luesch H (2011) Pitiprolamide, a proline-rich dolastatin 16 analogue from the marine cyanobacterium Lyngbya majuscula from Guam. J Nat Prod 74:109–112 Moore RE, Corbett TH, Patterson GML, Valeriote FA (1996) The search for new antitumor drugs from blue-green algae. Current Pharm Design 2:317–330 Mynderse JS, Moore RE, Kashiwagi M, Norton TR (1977) Antileukemia activity in the Oscillatoriaceae: isolation of debromoaplysiatoxin from Lyngbya. Science 196:538–540 Natarajan C, Gupta V, Kumar K, Prasanna R (2013) Molecular characterization of a fungicidal endoglucanase from the cyanobacterium Calothrix elenkinii. Biochem Genet 51: 766–779 Nautiyal J, Kanwar SS, Yingjie YuY, Majumdar APN (2011) Combination of dasatinib and curcumin eliminates chemoresistant colon cancer cells. J Mol Signal 6:7. doi:10.1186/ 1750-2187-6-7 Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238 Newman DJ, Cragg GM (2014) Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs 12:255–278 Nogle LM, Gerwick WH (2002) Isolation of four new cyclic depsipeptides, antanapeptins A-D, and dolastatin 16 from a Madagascan collection of Lyngbya majuscula. J Nat Prod 65:21–24 Nogle LM, Gerwick WH (2003) Diverse secondary metabolites from a Puerto Rican collection of Lyngbya majuscula. J Nat Prod 66:217–220 Nogle LM, Okino T, Gerwick WH (2001) Antillatoxin B, a neurotoxic lipopeptide from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 64:983–985 Oftedal L, Selheim F, Wahlsten M, Sivonen K, Døskeland SO, Herfindal L (2010) Marine benthic cyanobacteria contain apoptosis-inducing activity synergizing with daunorubicin to kill leukemia cells, but not cardiomyocytes. Mar Drugs 8:2659–2672 Perez EA, Hillman DW, Fishkin PA, Krook JE, Tan WW, Kuriakose PA, Alberts SR, Dakhil SR (2005) Phase II trial of dolastatin-10 in patients with advanced breast cancer. Invest New Drug 23:257–261 Pettit GR, Hogan F, Xu JP, Tan R, Nogawa T, Cichacz Z, Pettit RK, Du J, Ye QH, Cragg GM, Herald CL, Hoard MS, Goswami A, Searcy J, Tackett L, Doubek DL, Williams L, Hooper JN, Schmidt JM, Chapuis JC, Tackett DN, Craciunescu F (2008) Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from

123

marine organisms, terrestrial plants, and microorganisms (1a,). J Nat Prod 71:438–444 Phillips AC, Boghaert ER, Vaidya KS Ansell PJ, Shalinsky DR, Zhang Y, Voorbach MJ, Mudd S, Holen KD, Humerickhouse RA, Reilly EB (2013) ABT-414: an anti-EGFR antibody-drug conjugate as a potential therapeutic for the treatment of patients with squamous cell tumors. In proceedings of the 25th EORTC-NCI-AACR symposium on Mol Cancer Ther 12; A250. doi:10.1158/1535-7163. TARG-13-A250 Ramaswamy AV, Sorrels CM, Gerwick WH (2007) Cloning and biochemical characterization of the hectochlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:1977–1986 Rodriguez-Meizoso I, Jaime L, Santoyo S, Cifuentes A, Garcı´aBlairsy RG, Sen˜ora´ns FJ, Iba´n˜ez E (2008) Pressurized fluid extraction of bioactive compounds from Phormidium species. J Agric Food Chem 56:3517–3523 Sainis I, Fokas D, Vareli K, Tzakos AG, Kounnis V, Briasoulis E (2010) Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar Drugs 8:629–657 Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Can Ther 4:333–342 Simmons TL, Nogle LM, Media J, Valeriote FA, Mooberry SL, Gerwick WH (2009) Desmethoxymajusculamide C, a cyanobacterial depsipeptide with potent cytotoxicity in both cyclic and ring-opened forms. J Nat Prod 72:1011– 1016 Singh RK, Tiwari SP, Rai AK, Mohapatra TM (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64:401–412 Soria-Mercado IE, Pereira A, Cao Z, Murray TF, Gerwick WH (2009) Alotamide A, a novel neuropharmacological agent from the marine cyanobacterium Lyngbya bouillonii. Org Lett 11:4704–4707 Tabuchi Y, Matsuoka J, Gunduz M, Imada T, Ono R, Ito M, Motoki T, Yamatsuji T, ShirakawaY Takaoka M, Haisa M, Tanaka N, Kurebayashi J, Jordan VC, Naomoto Y (2009) Resistance to paclitaxel therapy is related with Bcl-2 expression through an estrogen receptor mediated pathway in breast cancer. Int J Oncol 34:313–319 Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68:954– 979 Taniguchi M, Nunnery JK, Engene N, Esquenazi E, Byrum T, Dorrestein PC, Gerwick WH (2010) Palmyramide A, a cyclic depsipeptide from a palmyra atoll collection of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 73: 393–398 Taori K, Matthew S, Rocca JR, Paul VJ, Luesch H (2007) Lyngbyastatins 5-7, potent elastase inhibitors from Floridian marine cyanobacteria, Lyngbya spp. J Nat Prod 70:1593–1600 Taori K, Paul VJ, Luesch H (2008) Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J Nat Prod 71:1625–1629 Teruya T, Sasaki H, Kitamura K, Nakayama T, Suenaga K (2009a) Biselyngbyaside, a macrolide glycoside from the

Antonie van Leeuwenhoek marine cyanobacterium Lyngbya sp. Org Lett 11:2421– 2424 Teruya T, Sasaki H, Fukazawa H, Suenaga K (2009b) Bisebromoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org Lett 11:5062–5065 Tidgewell K, Engene N, Byrum T, Media J, Doi T, Valeriote FA, Gerwick WH (2010) Evolved diversification of a modular natural product pathway: apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. Chem BioChem 11:1458–1466 Tripathi A, Puddick J, Prinsep MR, Lee PPF, Tan LT (2009a) Hantupeptin A, a cytotoxic cyclic depsipeptide from a Singapore collection of Lyngbya majuscula. J Nat Prod 72:29–32 Tripathi A, Puddick J, Prinsep MR, Lee PPF, Tan LT (2009b) Hantupeptins B and C, cytotoxic cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 72:29–32 Tripathi A, Puddick J, Prinsep MR, Rottmann M, Chan KP, Chen DY, Tan LT (2011) Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 72:2369–2375 Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56 Wang X, Ma D, Olson WC, Heston WD (2011) In vitro and in vivo responses of advanced prostate tumors to PSMA ADC, an auristatin-conjugated antibody to prostate-specific membrane antigen. Mol Cancer Ther 10:1728–1739 Watanabe J, Minami M, Kobayashi M (2006) Antitumor activity of TZT-1027 (soblidotin). Anticancer Res 26:1973– 1981

White JD, Xu Q, Lee CS, Valeriote FA (2004) Total synthesis and biological evaluation of kalkitoxin, a cytotoxic metabolite of the cyanobacterium Lyngbya majuscula. Org Biomol Chem 2:2092–2102 Williams PG, Yoshida WY, Moore RE, Paul VJ (2002) Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides. J Nat Prod 65:29–31 Williams PG, Yoshida WY, Quon MK, Moore RE, Paul VJ (2003) Ulongapeptin, a cytotoxic cyclic depsipeptide from a Palauan marine cyanobacterium Lyngbya sp. J Nat Prod 66:651–654 Wipf P, Reeves JT, Day BW (2004) Chemistry and biology of curacin A. Curr Pharm Des 10:1417–1437 Wrasidlo W, Mielgo A, Torres VA, Barbero S, Stoletov K, Suyama TL, Klemke RL, Gerwick WH, Carson DA, Stupack DG (2008) The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Proc Natl Acad Sci USA 105:2313–2318 Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A, Cigler T, Stopeck A, Citron D, Oliff I, Bechhold R, Loutfi R, Garcia A, Crowley E, Green J, Yellin MJ, Davis TA, Vahdat LT (2012) A randomized phase 2 study of the antibody-drug donjugate CDX-011 in advanced GPNMB-over-expressing breast cancer: the emerge study. In: Proceedings of the CTRC-AACR San Antonio breast cancer symposium, San Antonio, TX, USA, 4–8 December Yoo HD, Gerwick WH (1995) Curacins B and C, new antimitotic natural products from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 58:1961–1965 Zou B, Long K, Ma DW (2005) Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of palauamide. Org Lett 7:4237–4240

123

Anticancer compounds from cyanobacterium Lyngbya species: a review.

The use of synthetic anticancer drugs and other methods followed in cancer therapy have several side effects; and ineffective methods or drugs give a ...
2MB Sizes 8 Downloads 17 Views