IAI Accepts, published online ahead of print on 4 November 2013 Infect. Immun. doi:10.1128/IAI.01104-13 Copyright © 2013, American Society for Microbiology. All Rights Reserved.



Antibodies mediate the formation of neutrophil extracellular traps



(NETs) in the middle ear and facilitate secondary pneumococcal



otitis media

4  5  6 

Kirsty R. Short1+, Maren von Köckritz-Blickwede2, Jeroen D. Langereis3, Keng Yih Chew4,



Emma R. Job1, Charles W. Armitage5, Brandon Hatcher6, Kohtaro Fujihashi6, Patrick C.



Reading1,7, Peter W. Hermans3, Odilia L. Wijburg1*§ and Dimitri A Diavatopoulos3*§

9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29 

1

Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia 2 Department of Physiological Chemistry, University of Veterinary Medicine, Hannover, Germany 3 Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands 4 Department of Zoology, The University of Melbourne, Melbourne, Australia 5 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia 6 Department of Paediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, U.S.A 7 WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia

+

Current address: Department of Viroscience, Rotterdam, The Netherlands * These two authors contributed equally. § Corresponding author: [email protected] and [email protected].

30  31  32  33  34 

Running title: Antibodies, NETs and otitis media 1   

35 

ABSTRACT: Otitis media (OM; a middle ear infection) is a common childhood illness which

36 

can leave some children with permanent hearing loss. OM can arise following infection with a

37 

variety of different pathogens, including a co-infection with as influenza A virus (IAV) and

38 

Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that co-

39 

infection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we

40 

have used a mouse-model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in

41 

the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host

42 

inflammatory response facilitates bacterial outgrowth in the middle ear. Using B-cell deficient

43 

infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication.

44 

We subsequently show that this is due to antibody-dependent neutrophil extracellular traps

45 

(NETs) formation in the middle ear, which instead of clearing the infection allow the bacteria to

46 

replicate. We further demonstrate the importance of these NETs as a potential therapeutic target

47 

through the transtympanic administration of a DNase, which effectively reduces the bacterial

48 

load in the middle ear. Taken together, these data provide a novel insight into how pneumococci

49 

are able to replicate in the middle ear cavity and induce disease.

50  51 

Key Words: Otitis media, Streptococcus pneumoniae, influenza virus, viral-bacterial co-

52 

infection, NETs, antibodies, neutrophils

53  54  55  56  57 

2   

58 

INTRODUCTION

59 

Otitis media (OM) is one of the most common paediatric diseases worldwide. It can affect up to

60 

80% of children before the age of three years, and can lead to permanent hearing loss [1]. Up to

61 

70% of cases of acute OM are caused by viral-bacterial co-infections [2]. Of particular relevance

62 

are co-infections with influenza A virus (IAV) and the bacterium Streptococcus pneumoniae. In

63 

clinical cases and experimental models, infection with IAV facilitates the replication of

64 

S. pneumoniae in the middle ear [3-8]. Using an infant mouse model of OM (designed to mimic

65 

the underdeveloped immune system of children) we have previously demonstrated that the

66 

development of pneumococcal OM in co-infected mice was due to the inflammation induced by

67 

IAV in the middle ear [3,8]. However, the mechanisms by which the host inflammatory response

68 

mediates secondary pneumococcal OM remain undefined.

69 

The middle ear has few residential leukocytes and an infection in this organ results in an influx

70 

of neutrophils, macrophages and lymphocytes [9-11]. Neutrophils have traditionally been

71 

considered to play a protective role in OM [12,13]. However, recent studies have speculated that

72 

neutrophils may contribute to bacterial persistence in the middle ear via the formation of

73 

neutrophil extracellular traps (NETs) [14-16]. NETs refer to the extracellular DNA produced by

74 

neutrophils to ‘trap’ bacterial pathogens. This extracellular DNA is studded with histones and

75 

antimicrobial compounds to kill the trapped bacteria [17]. Interestingly, the pneumococcal

76 

capsule and D-alanine residues on pneumococcal lipoteichoic acids can inhibit NET killing [18],

77 

potentially enabling the pneumococcus to survive and persist within biofilm-like NET-structures

78 

in the middle ear.

3   

79 

Pneumococcal OM predominately develops in the absence of pre-existing immunity, with

80 

incidence peaking between 6 months (when maternal antibodies have waned) and 2 years, when

81 

specific immunity develops [19]. In these immunologically naïve individuals, natural antibodies

82 

may represent an important defence mechanism against influenza-virus mediated pneumococcal

83 

disease, as is seen in pneumococcal sepsis [20]. Conversely, the formation of immune complexes

84 

in the middle ear may facilitate, rather than clear, bacterial OM [21], suggesting that organ-

85 

specific differences may exist with regards to the role of antibodies during pneumococcal

86 

disease. Moreover, the ability of antibodies to interact with neutrophils in the middle ear [19],

87 

and the suggestion that neutrophils may facilitate bacterial OM [14,15], may indicate that the

88 

role of antibodies and neutrophils in pneumococcal-influenza OM is more complex than simply

89 

protecting against disease development.

90 

Here, we use B6.uMT-/- mice (which lack B lymphocytes) [22] to investigate the role of

91 

antibodies in pneumococcal-influenza OM. Our data suggests that antibodies facilitate the

92 

development of secondary bacterial OM by inducing NETs in the middle ear. These NETs,

93 

instead of clearing the pneumococci, may then provide scaffolding for bacterial outgrowth.

94 

Accordingly, DNAse treatment reduced pneumococcal OM. These data provide a new

95 

mechanistic insight into pneumococcal-IAV co-infections and identify NETs as an important

96 

target for treating and preventing pneumococcal OM.

97 

4   

98 

MATERIALS AND METHODS:

99 

Viral and bacterial strains: The bioluminescent S. pneumoniae strain EF3030lux (type 19F) [23]

100 

was used in all experiments. Influenza virus strain A/Udorn/307/72 (H3N2) was used to model

101 

infection with IAV. Virus stocks were prepared in embryonated eggs and quantified as described

102 

previously [24].

103  104 

Mice: Animal experiments were approved by the Animal Ethics Committee of the University of

105 

Melbourne and were conducted in accordance with the relevant Australian legislation. B6,

106 

B6.uMT-/- and B6.pIgR-/- mice were bred and housed under SPF conditions at the Department of

107 

Microbiology and Immunology, the University of Melbourne. B6.uMT-/- mice lack B

108 

lymphocytes and antibodies (although these mice can selectively produce some antibodies)

109 

[22,25,26]. In contrast, B6.pIgR-/- mice are deficient in the polymeric Ig receptor (pIgR) [27,28].

110 

Accordingly, these mice are unable to secrete polymeric antibodies and the serum of these mice

111 

contains significantly more IgA and IgG than sera from C57BL/6 (B6) mice [27,28].

112 

Infection of mice: Five-day old B6 and B6.µMT-/- mice were colonised intranasally with 2×103

113 

colony forming units (CFU) of S. pneumoniae EF3030Lux or PBS in 3μLs. At 14-days of age,

114 

mice were infected intranasally with 102.5 plaque forming units (PFU) of egg-grown IAV in

115 

3μLs. Six days post-IAV infection, mice were euthanized and organs were collected for analysis.

116 

Enumeration of bacterial and viral load: Tissues used to quantify bacterial and viral load were

117 

collected and processed as described previously [3,23]. Viral load was determined using plaque

118 

assays on MDCK cells, as described elsewhere [24].

5   

119 

Histology and immunofluorescence: Middle ears were collected and processed for histological

120 

analysis essentially as described previously [3]. Antigen retrieval was performed by microwave

121 

heating slides in citrate buffer (Antigen retrieval solution, Dako). Slides were treated with

122 

Image-iT™ FX Signal Enhancer (Invitrogen), as recommended by the manufacturer and stained

123 

with rabbit anti-CRAMP, a marker for mouse NETs (provided by Richard Gallo, UCSD,

124 

California [29], 7.75µg/mL) or the respective isotype controls (rabbit IgG whole molecule,

125 

Jackson ImmunoResearch). Slides were subsequently stained with an Alexa 647-conjugated goat

126 

anti-rabbit antibody (Invitrogen) and mounted on glass slides using Prolong Gold with 4’,6’-

127 

diamidino-2-phenylindole (DAPI, Invitrogen). For each sample (individual ear), a minimum of

128 

three randomly selected images were acquired (Leica DMI6000CS confocal microscope) and

129 

used for quantification of NET-producing cells. Data were expressed as percentages of NET-

130 

forming cells in relation to the total number of cells. The mean value derived from random

131 

images per sample was used for statistical analysis.

132 

Antibody transfer: 100µL of sera was transferred to B6.µMT-/- mice daily (from 14-19 days

133 

old) via intraperitoneal (i.p.) injection. Sera used for transfer experiments was collected and

134 

pooled from naive B6.pIgR-/- mice (male and female) that were > 6 weeks of age.

135 

Transtympanic injection: IgA was enriched from naive B6.pIgR-/- sera using ammonium

136 

sulfate immunoprecipitation. IgG was then depleted with Protein G (Genscript, USA), and IgA

137 

was further purified using mouse IgA purification resin (Affiland SA, Belgium) as per the

138 

manufacturer’s instructions. IgA purity was confirmed by SDS-PAGE, Western immunoblot and

139 

ELISA (data not shown). Purified IgA (2µg) or PBS was then injected transtympanically into the

140 

middle ear of S. pneumoniae EF3030lux colonised B6. µMT mice four and five days post-IAV

6   

141 

infection. Alternatively, 10µg of DNase (Sigma, U.S.A.) or PBS was injected transtympanically

142 

into the middle ear of co-infected B6 mice four and five days post-IAV infection.

143 

Enzyme linked Immunosorbance Assay (ELISA): Total IgA, IgM and IgG in serum samples

144 

and clarified middle ear homogenates were measured by a standard ELISA [22]. Briefly, 96-well

145 

Maxisorp immunoplates (Nunc, U.S.A.) were coated with goat anti-mouse IgA, goat anti-mouse

146 

IgM or goat anti mouse IgG (Sigma). Wells were blocked with BSA, washed and then serum or

147 

middle ear homogenates were added. To generate a standard curve, serial dilutions of known

148 

amounts of purified mouse IgA (BD Pharmingen, USA), mouse IgM (Millipore, USA.) or mouse

149 

IgG (AbD Serotech, UK) were included on each plate. Following incubation and washing, goat

150 

anti-mouse IgA/IgM/IgG horse-radish peroxidise conjugated antibodies (Southern Biotech,

151 

USA) were added. Bound antibody was visualized using OPD substrate and absorbance was

152 

measured at 492nm in a Multiskan plate reader (Labsystems, Finland) and antibody

153 

concentrations were determined using the relevant standard curve.

154 

7   

155 

RESULTS:

156 

B6.µMT-/- mice display reduced pneumococcal outgrowth in the middle ear

157 

To assess the role of antibodies in pneumococcal-influenza OM, B6.µMT-/- mice and B6 mice

158 

were colonised with S. pneumoniae. Nine days later mice were infected with IAV and six days

159 

later OM was monitored. Six-days post IAV infection was selected as the time-point of interest

160 

as we have previously assessed the kinetics of the infection and shown that day six represents the

161 

peak of pneumococcal OM in infant B6 mice [3]. Consistent with our previous findings [3], B6

162 

mice had high bacterial titres in the middle ear following IAV infection (Fig. 1A), which we

163 

have previously shown to result in a 20dB hearing loss [8]. Strikingly, B6.µMT-/- mice displayed

164 

significantly lower pneumococcal titres in the middle ear compared to B6 mice (Fig. 1A). The

165 

titres of pneumococci in the middle ears of B6.µMT-/- mice (approximately 103 CFU) is

166 

consistent with bacterial titres in the middle ears of mice infected with S. pneumoniae alone

167 

[3,8], and we have demonstrated that this amount of bacteria in the ears does not result in hearing

168 

loss [8]. The difference in bacterial outgrowth between B6 and B6.µMT-/- mice was not due to

169 

impaired replication of IAV in B6.µMT-/- mice or a reduced inflammatory infiltrate in the ears of

170 

B6.µMT-/- mice (Fig. S1). Importantly, the observed decrease in pneumococcal replication was

171 

restricted to the middle ear, as no differences in pneumococcal titres were observed between B6

172 

and B6.µMT-/- mice in the nasopharynx (Fig. 1B).

173 

Antibodies facilitates pneumococcal outgrowth in the middle ear

174 

B6.µMT-/- mice lack B lymphocytes and therefore, for the most part, do not produce antibodies

175 

[22]. However, these mice can produce at least some level of IgA in response to Salmonella [25]

176 

as well as IgE/IgG in the lung in response to Aspergillus fumigatus [26]. Therefore, to determine 8   

177  178 

if antibodies could restore pneumococcal growth, we adoptively transferred serum into B6.µMT/-

recipient mice from naive B6.pIgR-/- mice (Fig. 2A). B6.pIgR-/- mice were used instead of wild-

179 

type B6 mice, as these mice have higher levels of serum IgG and IgA than wild-type mice

180 

[27,28], therefore reducing the number of intraperitoneal injections required. Sera was derived

181 

from naïve mice, rather than from mice with specific anti-pneumococcal antibodies, as we found

182 

that 20-day old co-infected mice have not yet developed significant levels of specific anti-

183 

pneumococcal antibodies in the middle ear (Fig S2). Therefore, any role putative role of

184 

antibodies in pneumococcal OM is not likely to be driven by specific anti-pneumococcal

185 

antibodies. The transfer of naïve serum to co-infected B6.µMT-/- mice significantly increased

186 

bacterial titres in the middle ear relative to mice treated with PBS (Fig. 2A). Serum transfer also

187 

resulted in middle ear antibody titres that were equivalent to co-infected B6 mice (Fig. 2C-E). To

188 

confirm that antibodies facilitated pneumococcal outgrowth in the middle ear, we injected IgA

189 

purified from naïve sera directly into the middle ears of co-infected B6.uMT-/- mice. Although

190 

we were unable to use a large number of mice for these experiments, due to the difficulties

191 

associated with administering transtympanic injections to infant mice, the administration of IgA

192 

resulted in higher bacterial and IgA titres compared to the injection of PBS (Fig 2F and 2G). No

193 

reactivity was observed between the IgA used for these transtympanic injections and

194 

pneumococcal or IAV antigens (Fig. S3A & B), suggesting that OM can occur in the absence of

195 

specific anti-pneumococcal/IAV antibodies.

196 

NETs facilitate pneumococcal outgrowth in the ears of co-infected B6 mice

197 

We have previously demonstrated that infection with IAV induces an influx of neutrophils into

198 

the middle ear cavity of infant mice [3]. Moreover, pneumococci in the ear co-localise with this

199 

influx of neutrophils [3] and neutrophils are thought to interact with antibodies in the middle ear 9   

200 

[19]. In light of the suggested role of NETs in OM [14,15], we reasoned that antibodies in the

201 

middle ear may facilitate bacterial outgrowth by inducing NETs. To test this hypothesis, B6 and

202 

B6.µMT-/- mice were co-infected with S. pneumoniae and IAV and NET formation in the middle

203 

ear was assessed. Immunofluorescence showed that B6.μMT-/- mice formed significantly less

204 

NETs in the middle ear compared to co-infected wild-type B6 mice (Fig. 3A and B). We

205 

confirmed with immunofluorescence that pneumococci localised to the neutrophilic infiltrate in

206 

the middle ears of NET positive B6 mice (see Fig. S4). The production of NETs in the middle

207 

ear was independent of S. pneumoniae, as NETs were also detected in the middle ears of B6

208 

mice infected with IAV alone (Fig. 3A and B).

209 

To confirm that reduced NET formation in B6.μMT-/- mice was due to the absence of antibodies

210 

in these mice, NET formation was assessed in co-infected B6.μMT-/- mice following

211 

transtympanic injection of IgA or PBS. The administration of IgA resulted in a significant

212 

increase in NET production in the middle ear compared to injections with PBS (Fig. 3C). PBS

213 

treated B6.µMT-/- mice displayed reduced NET formation compared to B6.µMT-/- mice that were

214 

not treated transtympanically (Fig. 3B & C) suggesting that the transtympanic injection itself

215 

may limit the detection of NETs by immunofluorescence. Nevertheless, the significant increase

216 

in NETs observed in IgA treated mice relative to PBS treated mice suggests that antibodies can

217 

facilitate NET production in the middle ears.

218 

Due to the sequestered nature of the middle ear, depletion of neutrophils using the 1A8

219 

monoclonal antibody is ineffectual [8]. Instead, to investigate whether or not the antibody-

220 

dependent difference in NET production observed between B6 and B6.µMT-/- mice affected

221 

bacterial titres in the middle ear, B6 mice were co-infected with S. pneumoniae EF3030lux and

222 

IAV. DNase was then injected transtympanically in order to destroy the NETs present in the 10   

223 

middle ear. Alternatively, control mice were treated with PBS. Bacterial titres in the middle ear

224 

were then determined six days post-IAV infection. Treatment with DNAse resulted in

225 

significantly less pneumococci in the middle ear compared to PBS treatment (Fig. 3D). These

226 

data thus suggest that the decreased NET production in B6.µMT-/- mice may help reduce

227 

pneumococcal outgrowth in the middle ear.

228 

DISCUSSION:

229 

OM represents a major healthcare burden worldwide and can arise from co-infection with IAV

230 

and S. pneumoniae. We have previously shown that IAV facilitates pneumococcal outgrowth in

231 

the middle ear by triggering middle ear inflammation [3,8]. The present study suggests that the

232 

ability of antibodies to trigger NET production in the middle ear may be a key component of the

233 

host inflammatory response that facilitates the development of bacterial middle ear disease.

234 

It has previously been suggested that NETs may be an important mechanism by which

235 

pneumococci persist in the middle ear [14,16], as they are able to reside in NETs and resist NET-

236 

mediated killing [18,30]. Consistent with this notion, bacterial biofilms entangled with DNA

237 

strands from NETs can be found in the in the middle ear effusions of children with recurrent

238 

acute OM [16]. Accordingly, it has been suggested that DNases may be a useful adjunct

239 

treatment in children with recurrent or chronic otitis media [16]. However, the therapeutic

240 

benefit of DNase treatment in an animal model of OM has yet to be demonstrated. Here, we

241 

show that not only do co-infected mice develop NETs in the middle ear, but that the

242 

transtympanic administration of a DNAse reduces pneumococcal outgrowth in the middle ear of

243 

IAV infected mice. DNases have previously been used very successfully to treat patients with

244 

cystic fibrosis [31-33]. Similarly, a study from the early 1960s showed that a DNase derived

11   

245 

from beef pancreas had a therapeutic effect on patients with OM [34]. Our data may thus suggest

246 

that DNAse treatment could be an efficacious treatment option for children with OM. Indeed, the

247 

ability of a DNase (Dornase-alpha) to resolve OM in children is currently the subject of a clinical

248 

trial in Australia, whereby Dornase-alpha is administered to the middle ears of children

249 

undergoing surgery for grommet insertion [35]. In the present study the transtympanic

250 

administration of DNAse to the middle ear was designed to mimic this surgical administration

251 

DNAse. Of course, an animal model can never fully recapitulate the complexity of human

252 

disease and it remains possible that DNAse treatment would not reduce bacterial titres in

253 

children, or that this would not result in a subsequent improvement in hearing. Nevertheless, our

254 

data suggest that the therapeutic benefits of DNAse treatment in OM is an interesting area of

255 

further study.

256 

Surprisingly, we identified antibodies as an important trigger for NET production in the middle

257 

ear. Previous studies have suggested that B6.uMT-/- mice can at least produce IgE and IgG upon

258 

challenge with a fungal pathogen [26]. However, the potential production of IgE/IgG in these

259 

mice following microbial challenge [26] does not detract from our findings that antibodies

260 

mediate NET formation and pneumococcal OM. We showed that the transfer of purified IgA to

261 

B6.uMT-/- mice induced NET production in the middle ear, which clearly indicates that

262 

antibodies contribute to disease development. One possible explanation to reconcile our findings

263 

with the suggestion that B6.uMT-/- mice still produce some antibodies upon infection [26] may

264 

be that a certain threshold level of antibodies are required for the development of secondary

265 

pneumococcal OM. Alternatively, it is possible that the CD19(+)CD9(+)IgD(+) B-1 cells found

266 

by Ghosh et al [26] in the lungs of μMT-/- mice are not present in the middle ear.

267  12   

268 

A variety of different stimuli have been identified as triggering NET formation either in vivo or

269 

in vitro [36]. These include IL-8, components of the complement cascade and select bacterial and

270 

fungal pathogens [36]. It is therefore interesting to consider the ways in which antibodies may

271 

trigger NET formation in the middle ear. Antibodies could induce NET formation in an indirect

272 

manner by activating the complement cascade [36,37]. The chemotactic complement-derived

273 

peptide complement factor 5a (C5a) can then induce NET formation by neutrophils that have

274 

been primed with granulocyte macrophage colony-stimulating factor or interferons [36]. Whilst

275 

IAV can trigger the expression of interferon regulated genes in the middle ear [8], a role for

276 

complement in middle ear NET production and pneumococcal OM is inconsistent with previous

277 

reports that complement protects against the development of pneumococcal OM [38]. Moreover,

278 

in vitro we have found that IgA is able to induce both NET formation and pneumococcal

279 

outgrowth in the absence of complement (data not shown). Thus, clearly elucidating the pathway

280 

by which antibodies induce NET formation in the middle ear remains an important area for

281 

future studies.

282 

In this study we used purified IgA to confirm the role of antibodies in NETs and pneumococcal

283 

outgrowth in the middle ear. However, other antibody isotypes may also be able to induce NET

284 

formation in vivo. Indeed, our preliminary data suggests that the presence of IgG (in the absence

285 

of IgA) in the middle ears of co-infected B6.μMT-/- mice is also sufficient to facilitate

286 

pneumococcal outgrowth (data not shown). Thus, the interactions between antibodies and NET-

287 

producing neutrophils may not be restricted to one antibody isotype.

288 

The antibodies involved in the development of OM in the present study were unlikely to be

289 

specific for S. pneumoniae or IAV, as middle ear disease could be induced in B6.μMT-/- mice by

290 

the transfer of IgA which did not bind to pneumococci or IAV antigens. Moreover, co-infected 13   

291 

B6 mice (which develop pneumococcal OM) did not possess pneumococcal specific antibodies

292 

in the middle ear. It currently remains unclear if the ‘OM-inducing’ antibodies observed in this

293 

study were natural antibodies (i.e polyspecific, low affinity antibodies that can be produced in

294 

the absence of apparent antigenic stimuli) [39] or high-affinity antibodies that were produced in

295 

response to non-pneumococcal antigens. The possibility also exists that these antibodies actually

296 

bind to self-antigens, as autoantibodies are known inducers of NET production [40].

297 

It is important to note that despite the findings of this study, specific anti-pneumococcal

298 

antibodies are still likely to protect against pneumococcal OM, as has been observed in clinical

299 

trials of anti-pneumococcal conjugate vaccines [41,42]. This is due, in part, to the ability of anti-

300 

capsular antibodies to reduce nasopharyngeal colonisation with the corresponding serotype

301 

strains [43,44]. Colonisation is the essential first step in the development of pneumococcal OM

302 

and an increased number of pneumococci in the nose is associated with an increased risk of OM

303 

[45,46]. Therefore, regardless of whether or not anti-pneumococcal antibodies are able to induce

304 

NETS in the middle ear, anti-pneumococcal antibodies are still likely to decrease the risk of OM

305 

by reducing pneumococcal colonisation in the nasopharynx.

306 

Finally, this study found that the role of ‘OM-inducing antibodies’ in pneumococcal outgrowth

307 

was at least to some extent tissue-specific, as B6.µMT-/- mice did not display reduced

308 

pneumococcal titres in the nasal cavity relative to wild-type B6 mice. However, the role of

309 

NETS in secondary pneumococcal disease may not be restricted to the middle ear. It has recently

310 

been demonstrated that mice co-infected with S. pneumoniae and influenza virus display

311 

increased pulmonary lesions and NET formation in the lung compared to mice infected with

312 

either pathogen alone, and these NETs were unable to kill S. pneumoniae [47]. Therefore,

313 

determining the role of NETs, and the stimuli required for their production, in the pathogenesis 14   

314 

of invasive pneumococcal disease (i.e. pneumococcal pneumonia, sepsis and meningitis) remains

315 

a key area of further study.

316  317  318  319  320  321  322  323  324 

15   

325 

ACKNOWLEDGEMENTS

326 

KRS is supported by a GlaxoSmithKline post-graduate support grant and the Elizabeth and

327 

Vernon Puzey post-graduate research scholarship. DAD is supported by the 7th Framework

328 

Programme of the European Commission (ETB grant 08010). OLW is supported by a Career

329 

Development Fellowship (RD Wright Fellowships) from the Australian National Health and

330 

Medical Research Council. The Melbourne World Health Organisation Collaborating Centre for

331 

Reference and Research on Influenza is supported by the Australian Government Department of

332 

Health and Ageing. Part of this work was supported by the Australia National Health and

333 

Medical Research Council (NHMRC) grant number 1044976.

334 

16   

335 

REFERENCES:

336  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378  379 

1.  Cripps  A,  Otczyk  D,  Kyd  J.  2005.  Bacterial  otitis  media:  a  vaccine  preventable  disease?  Vaccine  23:  2304‐2310.  2. Massa HM, Cripps AW, Lehmann D. 2010. Otitis media: viruses, bacteria, biofilms and vaccines. Med.  J. Aus. 191: S44‐49.  3.  Short  KR,  Diavatopoulos  DA,  Thornton  R,  Pedersen  J,  Strugnell  RA,  Wise  AK,  Reading  PC,  Wijburg  OL.  2011.  Influenza  virus  induces  bacterial  and  nonbacterial  otitis  media.  J.  Infect.  Dis.  204:  1857‐1865.  4. Chonmaitree T, Owen M, Howie V. 1990. Respiratory viruses interfere with bacteriologic response to  antibiotic in children with acute otitis media. J. Infect. Dis. 162: 546‐549.  5.  Giebink  GS,  Berzins  IK,  Marker  SC,  Schiffman  G.  1980.  Experimental  otitis  media  after  nasal  inoculation of Streptococcus pneumoniae and influenza A virus in chinchillas. Infect. Immun. 30:  445‐450.  6.  McCullers  JA,  Karlström  Å,  Iverson  AR,  Loeffler  JM,  Fischetti  VA.  2007.  Novel  strategy  to  prevent  otitis media caused by colonizing Streptococcus pneumoniae. PLoS Path. 3: e28.  7.  Peltola  VT,  Boyd  KL,  McAuley  JL,  Rehg  JE,  McCullers  JA.  2006.  Bacterial  Sinusitis  and  Otitis  Media  following Influenza Virus Infection in Ferrets. Infect. Immun. 74: 2562‐2567.  8.  Short  KR,  Reading  PC,  Brown  LE,  Pedersen  J,  Gilbertson  B,  Job  ER,  Edenborough  KM,  Habets  MN,  Zomer  A,  Hermans  PWM,  Diavatopoulos  DA,  Wijburg  OL.  2012.  Influenza‐induced  inflammation drives pneumococcal otitis media. Infect. Immun. 81: 645‐652.  9.  Jecker  P,  Pabst  R,  Westermann  J.  1996.  The  mucosa  of  the  middle  ear  and  eustachian  tube  in  the  young  rat:  number  of  granulocytes,  macrophages,  dendritic  cells,  NK  cells  and  T  and  B  lymphocytes in healthy animals and during otitis media. Acta. Otolaryngol. 116: 443‐450..  10.  Maeda  K,  Hirano  T,  Ichimiya  I,  Kurono  Y,  Suzuki  M,  Mogi  G.  2004.  Cytokine  expression  in  experimental chronic otitis media with effusion in mice. Laryngoscope 114: 1967‐1972.  11.  Sato  K,  Liebeler  CL,  Quartey  MK,  Le  CT,  Giebink  GS.  1999.  Middle  ear  fluid  cytokine  and  inflammatory cell kinetics in the chinchilla otitis media model. Infect. Immun. 67: 1943‐1946.  12.  Abramson  JS,  Giebink  GS,  Quie  PG.  1982.  Influenza  A  virus‐induced  polymorphonuclear  leukocyte  dysfunction in the pathogenesis of experimental pneumococcal otitis media. Infect. Immun. 36:  289‐296.  13.  Hill  HR,  Book  LS,  Hemming  VG,  Herbst  JJ.  1977.  Defective  neutrophil  chemotactic  responses  in  patients with recurrent episodes of otitis media and chronic diarrhea. Am. J. Dis. Child. 131: 433.  14. Reid SD, Hong W, Dew KE, Winn DR, Pang B, Watt J, Glover DT, Hollingshead SK, Swords WE. 2009.  Streptococcus  pneumoniae  forms  surface‐attached  communities  in  the  middle  ear  of  experimentally infected chinchillas. J. Infect. Dis. 199: 786‐794.  15.  Juneau  RA,  Pang  B,  Weimer  KED,  Armbruster  CE,  Swords  WE.  2011.  Nontypeable  Haemophilus  influenzae initiates formation of neutrophil extracellular traps. Infect. Immun. 79: 431‐438.  16.  Thornton  RB,  Wiertsema  SP,  Kirkham  L‐AS,  Rigby  PJ,  Vijayasekaran  S,  Coates  HL,  Richmond  PC.  2013.  Neutrophil  Extracellular  Traps  and  Bacterial  Biofilms  in  Middle  Ear  Effusion  of  Children  with Recurrent Acute Otitis Media–A Potential Treatment Target. PLoS ONE 8: e53837.  17. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky  A. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532‐1535.  18.  Wartha  F,  Beiter  K,  Albiger  B,  Fernebro  J,  Zychlinsky  A,  Normark  S,  Henriques‐Normark  B.  2007.  Capsule  and  d‐alanylated  lipoteichoic  acids  protect  Streptococcus  pneumoniae  against  neutrophil extracellular traps. Cell. Microbiol. 9: 1162‐1171. 

17   

380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395  396  397  398  399 

19. Faden HS. 1997. Immunology of the middle ear: role of local and systemic antibodies in clearance of  viruses and bacteria. Ann. N. Y. Acad. Sci. 830: 49‐60.  20. Briles DE, Claflin JL, Schroer K, Forman C. 1981. Mouse IgG3 antibodies are highly protective against  infection with Streptococcus pneumoniae. Nature. 294:88‐90.  21. Palva T, Lehtinen T, Rinne J. 1983. Immune complexes in middle ear fluid in chronic secretory otitis  media. Ann. Otol. Rhinol. Laryngol. 92: 42‐44.  22. Kitamura D, Roes J, Kühn R, Rajewsky K. 1991. AB cell‐deficient mouse by targeted disruption of the  membrane exon of the immunoglobulin μ chain gene. Nature 350: 423‐426.  23.  Diavatopoulos  D,  Short  K,  Price  J,  Wilksch  J,  Brown  L,  Briles  D,  Strugnell  R,  Wijburg  O.  2010.  Influenza  A  virus  facilitates  Streptococcus  pneumoniae  transmission  and  disease.  FASEB.  J.  24:  1789‐1798.  24.  Short  KR,  Diavatopoulos  DA,  Reading  PC,  Brown  LE,  Rogers  KL,  Strugnell  RA,  Wijburg  OLC.  2011.  Using Bioluminescent Imaging to Investigate Synergism Between Streptococcus pneumoniae and  Influenza A Virus in Infant Mice. J. Vis. Exp.: e2357.  25.  Macpherson  AJ,  Lamarre  A,  McCoy  K,  Harriman  GR,  Odermatt  B,  Dougan  G,  Hengartner  H,  Zinkernagel  RM.  2001.  IgA  production  without  mu  or  delta  chain  expression  in  developing  B  cells. Nat. Immunol. 2: 625‐631.  26.  Ghosh S, Hoselton SA, Schuh JM. 2012. u‐chain‐deficient mice possess B‐1 cells and produce IgG  and IgE, but not IgA, following systemic sensitization and inhalational challenge in a fungal  asthma model. J Immunol 189: 1322‐1329. 

400  401 

27. Uren TK, Johansen FE, Wijburg OLC, Koentgen F, Brandtzaeg P, Strugnell RA. 2003. Role of the  polymeric Ig receptor in mucosal B cell homeostasis. J. Immunol. 170: 2531‐2539. 

402  403  404  405  406  407  408  409  410  411  412  413  414  415  416  417  418  419  420  421  422  423  424 

28. Sait LC, Galic M, Price JD, Simpfendorfer KR, Diavatopoulos DA, Uren TK, Janssen PH, Wijburg OLC,  Strugnell  RA.  2007.  Secretory  antibodies  reduce  systemic  antibody  responses  against  the  gastrointestinal commensal flora. Int. Immunol. 19: 257‐265.  29.  Dorschner  RA,  Pestonjamasp  VK,  Tamakuwala  S,  Ohtake  T,  Rudisill  J,  Nizet  V, Agerberth  B, Gudmundsson  GH, Gallo  RL.  2001  Cutaneous  injury  induces  the  release  of  cathelicidin  anti‐ microbial peptides active against group A Streptococcus. J Invest Dematol 117: 91‐97.  30. Moorthy AN, Narasaraju T, Rai P, Perumalsamy R, Tan K, Wang S, Engelward B, Chow VT. 2013. In  vivo  and  in  vitro  studies  on  the  roles  of  neutrophil  extracellular  traps  during  secondary  pneumococcal pneumonia after primary pulmonary influenza infection. Front. Immunol. 4:56.  31. Aitken ML, Burke W, McDonald G, Shak S, Montgomery AB, Smith A. 1992. Recombinant human  DNase inhalation in normal subjects and patients with cystic fibrosis. JAMA 267: 1947‐1951.  32.  Shah  PL,  Scott  SF,  Knight  RA,  Marriott  C,  Ranasinha  C,  Hodson  ME.  1996.  In  vivo  effects  of  recombinant human DNase I on sputum in patients with cystic fibrosis. Thorax 51: 119‐125.  33. Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL. 1990. Recombinant human DNase I reduces  the viscosity of cystic fibrosis sputum. Proc. Natl. Acad. Sci. U S A 87: 9188‐9192.  34.  Loch  WE,  Loch  MH.  1962.  Enzyme  treatment  of  ear  infections.  Local  use  of  pancreatic  dornase.  Laryngoscope 72: 598‐607.  35.  Research,  T.  I.  f.  C.  H.  2013.  "Dornase  Alfa  Study."      Retrieved  28/6/2013,  2013,  from  http://vaccine.childhealthresearch.org.au/clinical‐trials/dornase‐alfa.aspx.  36. von Köckritz‐Blickwede M, Nizet V. 2009. Innate immunity turned inside‐out: antimicrobial defense  by phagocyte extracellular traps. J. Mol. Med. 87: 775‐783.  37.  Nascimento  MTC,  Wardini  AB,  Pinto‐da‐Silva  LH,  Saraiva  EM.  2012.  ETosis:  A  Microbicidal  Mechanism beyond Cell Death. J. Parasitol. Res. 2012. 

18   

425  426  427  428  429  430  431  432  433  434  435  436  437  438  439  440  441  442  443  444  445  446  447  448  449  450  451  452 

38. Tong HH, Li YX, Stahl GL, Thurman JM. 2010. Enhanced susceptibility to acute pneumococcal otitis  media in mice deficient in complement C1qa, factor B, and factor B/C2. Infect. Immun. 78: 976‐ 983.  39.  Casali  P,  Schettino  E.  1996  Structure  and  function  of  natural  antibodies.  Immunology  of  Silicones:  Springer. pp. 167‐179.  40. Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, Gröne HJ, Brinkmann  V, Jenne DE. 2009. Netting neutrophils in autoimmune small‐vessel vasculitis. Nat Med 15: 623‐ 625.  41. Eskola J, Kilpi T, Palmu A, Jokinen J, Eerola M, Haapakoski J, Herva E, Takala A, Käyhty H, Karma P.  2001. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. New Eng. J. Med.  344: 403‐409.  42.  Fireman  B,  Black  SB,  Shinefield  HR,  Lee  J,  Lewis  E,  Ray  P.  2003.  Impact  of  the  pneumococcal  conjugate vaccine on otitis media. Pediat. Infect. Dis. J. 22: 10‐16.  43.  Cohen  R,  Levy  C,  Bingen  E,  Koskas  M,  Nave  I,  Varon  E.  2012.  Impact  of  13‐valent  pneumococcal  conjugate vaccine on pneumococcal nasopharyngeal carriage in children with acute otitis media.  Pediat. Infect. Dis. J. 31: 297‐301.  44. Cohen R, Levy C, Bonnet E, Grondin S, Desvignes V, Lecuyer A, Fritzell B, Varon E. 2010. Dynamic of  pneumococcal  nasopharyngeal  carriage  in  children  with  acute  otitis  media  following  PCV7  introduction in France. Vaccine 28: 6114‐6121.  45. Kadioglu A, Weiser JN, Paton JC, Andrew PW. 2008. The role of Streptococcus pneumoniae virulence  factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6: 288‐301.  46. Smith‐Vaughan H, Byun R, Nadkarni M, Jacques NA, Hunter N, Halpin S, Morris PS, Leach AJ. 2006.  Measuring  nasal  bacterial  load  and  its  association  with  otitis  media.  BMC Ear Nose Throat Disord. 6: 10.  47. Moorthy AN, Narasaraju T, Rai P, Perumalsamy R, Tan K, Wang S, Engelward B, Chow VT. 2013. In  vivo  and  in  vitro  studies  on  the  roles  of  neutrophil  extracellular  traps  during  secondary  pneumococcal pneumonia after primary pulmonary influenza infection. Front. Immunol. 4: 56.   

453  454  455  456  457  458  459 

19   

460  461  462 

FIGURE LEGENDS: 

463 

Figure 1: Co-infected B6.µMT-/- mice do not display pneumococcal outgrowth in the middle

464 

ear. A) Titers of S. pneumoniae EF3030lux in the middle ears of mice six days after i.n. infection

465 

with IAV. Each data point represents an individual ear from one mouse. Statistical significance

466 

was determined using a Mann-Whitney U-Test and statistical significance is denoted by three

467 

asterisks (p < 0.001). Data are pooled from a minimum of two independent experiments. A

468 

dashed line indicates the detection limit of the assay. B) Titers of S. pneumoniae EF3030lux in the

469 

nasal cavity of mice six days after i.n. infection with IAV. Statistical significance was

470 

determined using a Mann-Whitney U-Test. Data are pooled from two independent experiments.

471 

A dashed line indicates the detection limit of the assay.

472  473 

Figure 2: The transfer of sera induces pneumococcal OM in B6.µMT-/- mice. A) Titers of S.

474 

pneumoniae EF3030lux in the middle ears of B6.µMT-/- mice six days after i.n. infection with

475 

IAV. Mice were treated by daily i.p. injection from 14-days old to 19-days old with sera from

476 

adult B6.pIgR-/- mice or PBS. Each data point represents an individual ear from one mouse.

477 

Mann-Whitney U-Test and statistical significance is denoted by one asterisk (p < 0.05). Data are

478 

pooled from a minimum of two independent experiments. A dashed line indicates the detection

479 

limit of the assay. B-D) Middle ear antibody titres of IgM (B), IgG (C) and IgA (D) in co-

480 

infected 20-day old B6.µMT-/- mice following transfer of sera/PBS or co-infected 20-day old

481 

wild-type B6 mice (in grey bars). Statistical significance was determined using a Kruskal-Wallis 20   

482 

test with Dunn’s Multiple Comparison test and is denoted by one asterisk (p

Antibodies mediate formation of neutrophil extracellular traps in the middle ear and facilitate secondary pneumococcal otitis media.

Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise follow...
756KB Sizes 0 Downloads 0 Views