Vol. 38, No. 4611 Biol. Pharm. Bull. 38, 611–617 (2015)

Regular Article

Analysis of Cysteine and Histidine Residues Required for Zinc Response of the Transcription Factor Human MTF-1 Kaoru Suzuki,a Fuminori Otsuka,b Hirotomo Yamada,a and Shinji Koizumi*,a a

 Mechanism of Health Effect Research Group, National Institute of Occupational Safety and Health; 6–21–1 Nagao, Tama-ku, Kawasaki 214–8585, Japan: and b Laboratory of Molecular Environmental Health, Faculty of PharmaSciences, Teikyo University; 2–11–1 Kaga, Itabashi-ku, Tokyo 173–8605, Japan. Received December 8, 2014; accepted January 22, 2015 Metal responsive element (MRE)-binding transcription factor-1 (MTF-1) is a zinc finger (ZF) transcription factor that plays a key role in heavy metal homeostasis by regulating relevant genes in response to metals. MTF-1 is known to be activated by heavy metals such as Zn and Cd, but the mechanism of activation remains unclear. In the present study, Cys and His residues of human MTF-1 (hMTF-1), some of which may be involved in interaction with metals or with each other, were screened for their contribution to Zn-dependent transcription. To avoid poor induction ratios of previous transfection assays, we re-examined experimental conditions to establish an assay able to correctly detect Zn-responsive transcription. Using this assay, a series of Cys and/or His substitution mutants were analyzed over the entire hMTF-1 molecule. In five out of the six ZFs (ZF1 to ZF5), Cys mutations that disrupt the ZF structure abolished response to Zn. Of these, ZF5 was shown for the first time to be essential for Zn-responsive transcription, despite it being unnecessary for Zn-induced DNA binding. These results indicate that Zn activation of hMTF-1 involves an additional process besides induction of DNA binding activity. Our assay also confirmed the importance of Cys in the acidic activation domain, as well as those in the C-terminal Cys cluster, implicated in transcription in other studies. The identified Cys residues might contribute to metal response of hMTF-1 through direct metal binding and/ or intramolecular interactions, analysis of which will be helpful in understanding the mechanism of metal response. Key words  heavy metal; zinc finger; transcription factor; cysteine; metallothionein

Metal  responsive  element  (MRE)-binding  transcription  factor-1 (MTF-1) is a transcription factor that plays a central role  in  controlling  cellular  heavy  metals.1–3) In mammalian  cells,  this  protein  is  known  to  regulate  genes  encoding  metallothioneins (MTs) involved in homeostasis of essential metals  as  well  as  protection  against  toxic  metals,4) ZnT1 involved in Zn transport,5) and a number of other proteins.6,7) MTF-1  is  activated  when  cells  are  exposed  to  heavy  metals  such as Zn and Cd,8,9)  consequently  inducing  transcription  of  the  relevant  genes  by  binding  to  a  specific  regulatory  DNA  sequence, MRE.10,11) The molecular mechanism of MTF-1 activation  has  been  enthusiastically  investigated  because  of  its  physiological  and  toxicological  importance,  but  has  not  been  fully  understood  yet.  In  protein-DNA  binding  experiments  using  cell  extracts,  Zn  added  in vitro  induced  binding  of MTF-1 to MRE,12,13) implying a mechanism of metal induction. MTF-1,  consisting  of  753  amino  acids  in  humans  and  675  amino acids in mice,14)  contains  six  consecutive  Cys2–His2 zinc  fingers  (ZFs)  in  the  N-terminal  half  of  the  molecule  and  three transcriptional activation domains (acidic, Pro-rich, and Ser/Thr-rich domains) in the C-terminal half.8) In studies of deletion  mutants,  only  those  retaining  the  ZF  domain  can  bind  to  DNA,8,11)  and  an  isolated  ZF  domain  specifically  recognizes  and  binds  to  MRE,15)  suggesting  that  the  ZF  domain  functions  as  a  DNA-binding  domain,  as  with  conventional  Cys2–His2  ZFs.  The  ZF  domain  by  itself  appears  insufficient  for  metal-dependent  DNA-binding,  and  coexistence  of  other  regions  of  the  MTF-1  molecule  is  required.11,16)  These  findings  remind  us  a  mechanism  analogous  to  those  reported  for  yeast transcription factors, in which more than one functional

domain  is  involved  in  metal  regulation.17)  Putative  regulatory  roles have been proposed for some ZFs of hMTF-1 based on physicochemical analyses of an isolated ZF domain,15,18) but no conclusive evidence has been obtained yet. Also, some regions  outside the ZF domain are required for metal-dependent transcription,19,20) but the mechanisms by which they function and their relationships with the ZF domain remain unclear. In the present study, we intended to determine the amino acid residues essential for metal-induced transcriptional activity of hMTF-1 by a comprehensive analysis of point mutants. Prior to this analysis, we made efforts to improve the quality of a transfection assay, which had been less reliable in correctly  estimating  metal  response.  Using  an  improved  assay,  hMTF-1 mutants with substitutions at Cys and/or His residues, some  of  which  might  possibly  be  involved  in  interaction  with  metals or with each other, were analyzed.

MATERIALS AND METHODS Cell Culture Immortalized MTF-1(−/−) mouse embryonic fibroblasts (dko7),8) a generous gift from Dr. Walter Schaffner,  were  cultured  in  Dulbecco-modified  minimum  essential  medium plus 10% fetal calf serum. Plasmids   A  reporter  plasmid  p(MREa)4MTprCAT  has  a  minimal  promoter  of  the  human  metallothionein-IIA  (hMTIIA)  gene  fused  to  the  reporter  chloramphenicol  acetyltransferase  (CAT)  gene,  with  four  tandem  copies  of  the  hMT-IIA  MREa sequence inserted immediately upstream of the promoter.11)  pMT-CAT  (described  in  our  previous  report21) as pUC-MTCA T)  contains  the  hMT-IIA  promoter  (up  to  −767) fused to the CAT gene. pRSVL, a reference plasmid, express-

 * To whom correspondence should be addressed.  e-mail: [email protected] © 2015 The Pharmaceutical Society of Japan

612

Biol. Pharm. Bull.

Vol. 38, No. 4 (2015)

es  the  firefly  luciferase  gene  under  the  control  of  the  Rous  sarcoma  virus  long  terminal  repeat  promoter.22) pCI-MTF-1 (described in our previous report11) as pCI-hMTF-1b) contains hMTF-1  cDNA  inserted  downstream  of  the  cytomegalovirus  immediate  early  enhancer/promoter  in  the  expression  vector  pCI (Promega, U.S.A.). Expression  plasmids  of  hMTF-1  mutants  each  with  a  Cysto-Tyr  substitution  in  one  of  the  six  ZFs  have  been  described  previously.11)  Expression  plasmids  of  other  MTF-1  mutants  were  prepared  using  a  PrimeSTAR  Mutagenesis  Basal  Kit  (Takara  Bio,  Shiga,  Japan),  according  to  the  manufacturer’s  instructions.  All  introduced  mutations  were  confirmed  by  DNA  sequencing.  For  convenience,  the  mutated  Cys  and  His  residues are indicated by a one-letter code, and are numbered in order from the N-terminus; e.g., C4 and H15 represent the fourth  Cys  and  fifteenth  His  residues  from  the  N-terminus,  respectively. In principle, Cys residues were substituted by Tyr  or  Ser,  and  His  residues  were  substituted  by  Asn.  Some  mutants have more than one substitution at closely positioned target  amino  acids.  For  H15  and  H16/H17  within  ZF5  which  constitute  extra  His  residues  in  Cys2–His2  ZF,  HisAsp  and  HisHis sequences were converted to GlnGlu and TyrSer which are  the  sequences  found  at  the  corresponding  positions  in  ZF2,  respectively,  to  avoid  disruption  of  the  finger  structure.  Details  concerning  individual  amino  acid  substitutions  are  indicated in the figures. Northern Blotting dko7 cells were plated in 10-cm dishes at 2.5×105 cells/10 mL  medium  with  streptomycin  (100 µg/ mL)  and  penicillin  (100 units/mL),  and  cultured  for  24 h.  The  cells  were  transfected  with  pMT-CAT  (8 µg)  and  pCI-MTF-1  (1 µg)  using  the  standard  calcium  phosphate  method.  After  24 h, the cells were incubated with or without 100 µM ZnSO4 for  6 h  before  harvest.  Extracted  RNA  samples  were  analyzed  by  Northern  blotting  with  digoxigenin  (DIG)-labeled  RNA  probes, as described previously.23)  RNA  probes  for  mouse  MT-I  (mMT-I)  and  CAT  transcripts  were  prepared  as  described,23)  using  an  RsaI  fragment  of  mMT-I  cDNA  contain-

Fig.  2.  An Improved Assay to Detect Zn-Induced Activation of hMTF-1

Fig.  1.  Effect  of  Limiting  Dilution  of  the  hMTF-1  Expression  Plasmid  on MRE-Regulated Reporter Activity dko7 cells were plated at 105 cells/6-cm dish and cultured for 3 d. The cells were transfected with p(MREa)4MTprCAT  (3.2 µg),  pRSVL  (0.8 µg)  and  the  indicated  amounts  of  pCI-MTF-1  using  a  standard  calcium  phosphate  transfection  method  (the  total  DNA  amount  was  adjusted  to  4.4 µg/plate  with  pUC19  DNA).  After  45 h  the cells were treated with (filled bars) or without (open bars) 100 µM ZnSO4 for 4 h, and relative reporter activity was determined as described in Materials and Methods. Averages of data from assays carried out in duplicate are shown with errors.

a:  Relatively  high  basal  expression  of  the  CAT  reporter  gene.  dko7  cells  were  transfected  with  pMT-CAT  and  pCI-MTF-1  using  the  calcium  phosphate  method  and cultured for 24 h, followed by incubation with or without 100 µM ZnSO4 for 6 h further. Extracted RNAs were electrophoresed in formaldehyde–1% agarose gel  and transcripts coding for endogenous mMT-1 (upper panel) and CAT (lower panel)  were  detected  with  DIG-labeled  RNA  probes.  Data  for  duplicate  plates  are  shown.  M  indicates  DIG-labeled  RNA  molecular  weight  markers  (Roche).  b:  CAT  protein  accumulates prior to Zn induction. dko7 cells were plated at 5×104 cells/35-mm dish  and  cultured  for  24 h.  The  cells  were  transfected  with  pMT-CAT  (1.6 µg)  and  the  indicated  amount  of  pCI-MTF-1  by  calcium  phosphate  transfection  (total  DNA  amount was adjusted to 2 µg by adding pUC19). After 24 h, the cells were harvested  (hatched  bars)  or  incubated  for  6 h  further  with  (filled  bars)  or  without  (open  bars)  100 µM ZnSO4 followed by harvest, and CAT levels in cell lysates were determined.  Average  CAT  values  from  assays  performed  in  duplicate  are  shown  with  errors.  c:  Improved assay with a shorter Zn induction time. dko7 cells were transfected with pMT-CAT  and  pRSVL  together  with  pCI-MTF-1  or  an  equimolar  amount  of  the  empty  expression  vector  pCI  using  FuGENE  HD  reagent.  After  4 h  the  cells  were  incubated with or without 100 µM ZnSO4 for a further 4 h, and relative reporter activity was determined as described in Materials and Methods. Data from two independent  experiments  each  carried  out  in  duplicate  were  normalized  relative  to  the value for MTF-1-transfected, Zn-treated cells (taken as 100), and averages with  standard errors are shown.

Biol. Pharm. Bull. Vol. 38, No. 4 (2015)613

ing the entire coding region and a PvuII/XbaI fragment of the  pCAT3  Basic  plasmid  (Promega)  covering  the  C-terminal  182  amino acids of CAT, respectively. Transient Transfection Assay Transient transfection assays were carried out according to the standard calcium phosphate  transfection  protocol  (Figs.  1,  2b),  or  using  a  transfection  reagent  FuGENE  HD  (Roche;  Figs.  2c,  3–5).  CAT  levels  in  cell  lysates  were  analyzed  using  CAT-ELISA  (Roche).  In  experiments  using  the  reference  plasmid  pRSVL,  luciferase  activity was measured as described previously,22,24) and relative reporter activity, i.e., CAT level normalized relative to luciferase activity, is indicated unless otherwise stated. For  experiments  using  calcium  phosphate  transfection,  details of experimental conditions are indicated in the figure legends. Transfection using the FuGENE HD reagent was carried  out  according  to  the  manufacturer’s  instructions.  dko7  cells  were plated in 35-mm dishes at 2×105 cells/2 mL medium, and  cultured  for  24 h.  The  cells  were  transfected  with  pMT-CAT  (0.4 µg),  pRSVL  (0.2 µg)  and  pCI-MTF-1  or  a  hMTF-1  mutant  expression  plasmid  (0.02 µg).  The  total  amount  of  DNA  to  be  transfected was adjusted to 1 µg  by  adding  pUC19  DNA.  An  optimal FuGENE HD reagent : DNA ratio of 3 : 1 was adopted.  After  4 h  the  cells  were  incubated  with  or  without  100 µM ZnSO4 for 4 h before harvest.

RESULTS Establishment of a Transient Transfection Assay That Can Correctly Evaluate Zn-Responsive Transcriptional Activity of MTF-1   Concerning  the  endogenous  MT  gene  known  to  be  regulated  by  MTF-1,  expression  is  restricted  to  very  low  levels  unless  cells  are  exposed  to  inducers.25)  By  contrast,  in  a  transfection  assay  with  overexpressed  MTF-1  and  an  MRE-containing  reporter  vector,  high  basal  levels  of  reporter  activity  were  observed,  making  it  difficult  to  correctly assess metal response.11) Prior to the analysis of hMTF-1 mutants, we first investigated the cause of such high basal activity.  As  a  possible  explanation,  overexpressed  MTF-1  might  neutralize  a  putative  negative  regulator  that  suppresses  the  activity of MTF-1 in the absence of inducers.26) To verify this hypothesis,  we  examined  whether  metal  response  depends  on  the  levels  of  recombinant  hMTF-1  expressed  in  MTF-1(−/−) dko7  cells  (Fig.  1).  Expression  of  an  MRE-regulated  CAT  reporter  gene  showed  high  basal  activity  at  25 ng  pCI-MTF-1  and was almost unresponsive to Zn, consistent with our previous  results  obtained  using  HeLa  cells.11) If this had been due to  a  negative  regulator,  dilution  of  the  input  hMTF-1  would  have rescued response to Zn. However, Zn response was never recovered, even when the quantity of pCI-MTF-1 was lowered  to  0.2 ng,  at  which  only  a  near-background  level  of  activity was detected. During this study, we noted that another  reporter  plasmid  pMT-CAT  containing  the  intact  hMT-IIA  gene  upstream  sequence  (up  to  −767)  fused  to  the  CAT  gene  showed  higher  CAT  expression  levels  and  improved  Zn  response,  probably  due  to  a  synergistic  effect  of  the  MRE’s  arranged  in  the  promoter.22)  Accordingly,  this  plasmid  was  used  for further analysis. To  see  if  the  observed  high  basal  expression  occurs  at  the  transcriptional  level,  we  next  determined  CAT-mRNA  levels  in  pMT-CAT-transfected  dko7  cells  cultured  with  or  without  Zn  (Fig.  2a).  In  contrast  to  the  high  basal  CAT  protein  levels 

observed in Fig. 1, CAT-mRNA expression levels were low in  the absence of Zn, and markedly increased with Zn treatment (Fig.  2a,  lower  panel).  Endogenous  mMT-I  gene  expression  was also induced by Zn, but uninduced levels were more strictly  limited  (Fig.  2a,  upper  panel).  These  results  suggested  that the relatively high basal expression of CAT-mRNA might  lead  to  the  accumulation  of  CAT  protein  with  a  longer  half  life.  To  verify  this  idea,  we  determined  CAT  protein  levels  before  and  after  induction  by  Zn  (Fig.  2b).  Control  cells  incubated  for  6 h  without  Zn  (Fig.  2b,  open  bars)  showed  high  CAT  levels,  at  approximately  70%  of  Zn-induced  levels  (filled  bars).  Nearly  the  same  levels  of  CAT  were  observed  for  cells  harvested without 6 h incubation (hatched bars), indicating that  the  high  basal  levels  were  due  to  CAT  accumulation  before  Zn  induction.  These  results  suggested  that  optimal  conditions  for detecting response to Zn could be achieved by minimizing  CAT  accumulation.  To  test  this,  we  used  a  transfection  protocol  using  a  FuGENE  HD  reagent  that  enables  more  sensitive  detection  of  reporter  activity.  In  fact,  shortening  the  period  between transfection and Zn induction to 4 h successfully lowered  basal  levels  with  an  induction  ratio  of  9-fold  (Fig.  2c)  as  compared  with  1.5-fold  in  Fig.  2b.  Zn  induction  for  6 h  as  in  Fig.  2b  gave  a  similar  induction  ratio  (data  not  shown),  and  a  more  convenient  4-h  induction  protocol  used  in  Fig.  2c  was  adopted in the analysis of hMTF-1 mutants described below. Analysis of Cys and His Residues of hMTF-1 Required for Zn-Induced Transcription The interactions of amino acid  residues  with  metals  or  with  each  other  might  possibly  be  involved  in  metal  regulation  of  MTF-1,  and  Cys  and  His  residues could act as interfaces for such interactions. Hence we constructed a library of mutants each with an amino acid substitution(s) at Cys and/or His residues in the hMTF-1 molecule,  and  analyzed  them  for  Zn-responsive  transcription  using  the improved assay described above. First, hMTF-1 mutants with defective ZFs were analyzed. Each mutant had a substitution of the second Cys in one of the six Cys2–His2 ZFs, representing  loss-of-function  mutants  of  these  ZFs.  Although  these  mutants had been analyzed in our previous work,11) HeLa cells  used in that study had endogenous MTF-1 activity, making the  results  unclear  together  with  the  usually  observed  high  basal  activity.  Hence  these  mutants  were  analyzed  again  using  the  improved  assay  (Fig.  3).  Mutants  of  ZF1  to  ZF4  (substitutions  at C4, C6, C8 and C10, respectively) almost completely lost basal as well as Zn-induced activity. Mutation of ZF5 (substitution at C12) also reduced both basal and Zn-induced activity, but  to  a  lesser  extent.  Only  mutation  of  ZF6  (substitution  at  C14) showed no effect. In this experiment, as well as those in  Figs.  4  and  5,  it  was  confirmed  that  the  loss  of  activity  was  not due to decreased protein expression levels by immunoblotting (data not shown). Next,  mutants  with  substitutions  at  Cys  and/or  His  residues  other than those conserved in the Cys2–His2 ZFs were analyzed. Results for the residues located in the N-terminal half of  hMTF-1  are  shown  in  Fig.  4.  In  general,  each  mutant  had  a  single  amino  acid  substitution,  but  in  some  cases  where  the  relevant residues were located in close proximity to one another (e.g. C1 and H2), more than one substitution was introduced in  a  single  mutant  plasmid.  None  of  the  mutations  examined  had  a  large  effect.  Only  in  the  H16/H17  double  mutant,  Zninduced activity was reduced by about 30%. Cys and His residues located in the C-terminal half of

614

Biol. Pharm. Bull.

Vol. 38, No. 4 (2015)

Fig.  3.  Transcriptional Activity of hMTF-1 Mutants with an Amino Acid Substitution in the Zinc Finger Domain Locations of the mutations in the hMTF-1 molecule are indicated at the top of the figure. ZF, zinc finger domain (each ZF is indicated by a black box and numbered); A, acidic domain; P, Pro-rich domain; S/T, Ser/Thr-rich domain. Mutated Cys residues are indicated by one letter code numbered in the order from the N-terminus, e.g. C4 representing the fourth Cys. Detailed information for the mutants is shown on the right of the figure. dko7 cells were transfected with pMT-CAT, pRSVL and an expression  plasmid  of  hMTF-1  variant  with  a  mutation  in  one  of  the  ZFs.  Four  hours  later  the  cells  were  incubated  with  (filled  bar)  or  without  100 µM ZnSO4 (open bar) for 4 h further,  and  relative  reporter  activity  was  determined  as  described  in  Materials  and  Methods.  All  experiments  included  the  cells  transfected  with  wild  type  (wt) hMTF-1 and an empty expression vector pCI, to enable direct comparison between experiments. Data from three independent experiments each carried out in duplicate were normalized relative to the value for wt hMTF-1-transfected and Zn-induced cells (taken as 100), and averages with standard errors are shown.

hMTF-1  were  also  analyzed  (Fig.  5).  Impaired  Zn  response  was observed in two mutants. One was the C15 mutant with a substitution of the Cys residue located at the N-terminus of the acidic activation domain. In this mutant, Zn-induced activity was almost completely abolished, and basal activity was also decreased by half. The other mutant had substitutions at C16–19 which constitutes a Cys cluster located C-terminal to the  Ser/Thr-rich  region.  Zn-induced  activity  was  reduced  to  near the basal level of wild type (wt) hMTF-1, and basal activity was almost completely abolished.

DISCUSSION Transient Transfection Assay Adjusted to Detect Heavy Metal-Responsive Transcription   A nalyses  of  MTF-1  mutants in previous studies have been carried out under a variety of  experimental  conditions  different  in  species,  cell  types,  measuring  objects  and  analytical  methods.  Such  experimental  divergence  may  be  responsible,  at  least  in  part,  for  the  often  observed  discrepancies  between  study  results.  In  this  context,  analysis of MTF-1 mutants under a unified and reliable condition  seemed  necessary.  Although  transient  transfection  assays  provide a quite useful way to assess metal-dependent transcriptional activity, there has previously been a problem concerning  low  metal  induction  ratios  with  high  uninduced  basal  activity.9,11,26) Increased metal response has been reported in cells cultured in serum-free medium,19) but apparent metalinduced  reporter  activity  could  reflect  not  only  transcriptional  activation but also subcellular localization, since MTF-1 tends to reside in the cytoplasm under serum-free conditions and

heavy metals can induce its translocation to the nucleus.27) In the  present  study,  we  investigated  assay  conditions  that  enable detection of metal-induced transcription in conventional serum-containing  medium.  High  basal  expression  was  found  to  be  due  to  the  accumulation  of  CAT  protein  before  metal  induction,  resulting  from  elevated  basal  mRNA  expression.  Together  with  the  observation  of  limited  basal  expression  of  the  hMT-IIA  gene,25)  endogenous  chromatin-packaged  MT  genes  appear  to  be  more  strictly  controlled  in  the  absence  of  metals  than  a  reporter  gene  on  a  plasmid.  Consequently,  an  assay appropriate for evaluating metal responsive transcription  with  low  basal  activity  was  achieved  by  adjusting  conditions  in  order  to  minimize  CAT  accumulation.  This  improvement  also made the assay more convenient, which can be completed in a shorter time. Amino Acid Residues Required for Zn-Responsive Transcription Transcriptional activity of yeast heavy metalresponsive transcription factors such as Mac1 and Zap1 is considered  to  be  regulated  by  intramolecular  interactions  modulated by Cu or Zn ions.17) Mammalian MTF-1 might also  be  regulated  by  a  similar  mechanism  involving  multiple  functional domains, based on observations that the loss of only a part of the MTF-1 molecule severely affects transcriptional activity,8)  and  that  Zn-dependent  DNA  binding  of  MTF-1  requires  not  only  the  DNA  binding  domain  but  also  additional  parts of the molecule.11,16)  From  a  functional  screening  of  Cys  and  His  residues  potentially  involved  in  metal  regulation,  several  Cys  residues  were  identified  to  be  necessary  for  Zn-responsive  transcription  (Figs.  3–5).  These  include  Cys  residues located in five ZFs (C4, C6, C8, C10 and C12, respec-

Biol. Pharm. Bull. Vol. 38, No. 4 (2015)615

Fig.  4.  Transcriptional Activity of hMTF-1 Mutants with Amino Acid Substitutions in the N-Terminal Half of the Molecule Mutants with substitutions at Cys and/or His residues within the N-terminal half of the hMTF-1 molecule were assayed for Zn-responsive transcription and the results are indicated as in Fig. 3. Mutated Cys and His residues are indicated by a one-letter code numbered in order from the N-terminus (e.g., C2 and H5 represent the second Cys and fifth His, respectively).

tively), the acidic activation domain (C15), and the C-terminal Cys cluster (C16–19). To  date,  differential  roles  of  the  six  ZFs  of  MTF-1  have  been discussed. N-Terminal four ZFs, ZF1 to ZF4, have a strong  affinity  to  Zn  and  are  postulated  to  be  the  canonical  Cys2–His2  ZFs  involved  in  DNA-binding.15,18) Mutations in these ZFs prevent DNA binding and consequently impair transcription.8,11,18) Consistent with these observations, the results shown  in  Fig.  3  confirm  that  mutations  in  ZFs  1–4  abolish  basal  and  metal-induced  transcription.  It  has  been  suggested  that ZF1 and the linker between ZF1 and ZF2 are involved in  metal  regulation  of  mMTF-1,9,28) while their roles have not been confirmed in hMTF-1.3,11,29) In contrast to the N-terminal ZFs, ZF5 and ZF6 show low  Zn  affinity  and  have  been  assumed  to  play  regulatory  roles.15,18) However, their deletion mutants9) as well as point mutants11) show a phenotype similar to wt MTF-1 both in heavy  metal-induced  MRE  binding  and  transcriptional  activity. Nevertheless, the assay developed in the present study demonstrates  for  the  first  time  that  a  mutation  in  ZF5  impairs  Zn-responsive transcription. It seems likely that the effect of this  mutation  on  Zn  response  was  masked  by  the  high  basal  levels of our previous assay.11) It should be noted that ZF5 is essential for Zn-induced transcription in spite of the fact that it is unnecessary for Zn-dependent DNA binding.11) This indicates that Zn activation of hMTF-1 requires another distinct process  in  addition  to  induction  of  DNA  binding.  ZF5  mutation did not completely abolish both basal and Zn-induced

activity,  showing  characteristics  dissimilar  from  mutations  in  ZF1 to ZF4. The C15 residue located within the acidic activation domain and overlapping the nuclear export signal27) was also essential for response to Zn. The C15 mutant shown in Fig. 5 has a Cys  to  Tyr  substitution,  the  latter  being  the  amino  acid  at  the  corresponding  position  in  mMTF-1.  It  has  been  reported  that  the  Zn-dependent activity of a chimeric transcription factor, consisting of a Gal4 DNA-binding domain and an hMTF-1 acidic  activation domain, is reduced by the conversion to this mousetype amino acid.20) Our data demonstrate that this mutation impairs  the  Zn  response  of  intact  hMTF-1  as  well.  Another  mutant with a Cys to Ser substitution at the same position showed  a  similar  phenotype  (data  not  shown).  Leu  residues  located near this position in hMTF-127) and mMTF-130) were also reported to be important for Zn-induced transcription. Our assay also determined the C-terminal Cys cluster to be the  third  site  essential  for  response  to  Zn.  This  region  has  been reported to be required for Zn-dependent transcription but  unnecessary  for  DNA-binding  and  subcellular  localization,19) and is likely to function as a dimerization interface.31) Our  results  confirm  the  importance  of  these  Cys  residues.  In  addition, mutation of residues H16/H17 resulted in partial loss of  activity  (Fig.  4).  These  residues  may  be  involved  in  base  recognition.1) Future Studies for Understanding the Mechanism of Zn Regulation   Comprehensive screening of hMTF-1 mutants in  our  present  study  identified  Cys  and  His  residues  required  for 

616

Biol. Pharm. Bull.

Vol. 38, No. 4 (2015)

Fig.  5.  Transcriptional Activity of hMTF-1 Mutants with Amino Acid Substitutions in the C-Terminal Half of the Molecule Mutants with amino acid substitutions within the C-terminal half of the hMTF-1 molecule were assayed for Zn-responsive transcription as in Fig. 3 and the results are  indicated as in Fig. 4.

Zn-responsive transcription, and also confirmed that other Cys  and  His  residues  are  not  essential.  Analysis  of  residues  that  may be important for metal binding and intra- or intermolecular  interactions  would  provide  insights  into  the  mechanism  of  metal  regulation.  In  particular,  ZF5,  with  its  low  Zn  affinity  allowing  reversible  association  with  Zn  under  physiological  conditions, is likely to play a role in metal regulation.15,18) The affinity  of  an  isolated  ZF  domain  to  MRE  was  not  markedly  affected  by  saturation  of  the  low-affinity  ZFs  with  Zn  ions,15) leading us to envisage an interaction between ZF5 and another  site outside the ZF domain. Residues C15 located near ZF5 and  C16–19  might  be  candidates  for  a  possible  interaction  interface.  Investigation  into  interactions  between  these  residues  would  provide  clues  to  enable  understanding  of  metal  regulation. It remains to be determined whether residues other than Cys and His contribute to metal regulation. Conflict of Interest interest.

The  authors  declare  no  conflict  of 

REFERENCES   1)  Giedroc  DP,  Chen  X,  Apuy  JL.  Metal  response  element  (MRE)binding  transcription  factor-1  (MTF-1):  structure,  function,  and  regulation. Antioxid. Redox Signal., 3, 577–596 (2001).   2)  Laity  JH,  Andrews  GK.  Understanding  the  mechanisms  of  zincsensing  by  metal-response  element  binding  transcription  factor-1  (MTF-1). Arch. Biochem. Biophys., 463, 201–210 (2007).   3)  Günther V, Lindert U, Schaffner W. The taste of heavy metals: gene  regulation  by  MTF-1.  Biochim. Biophys. Acta, 1823, 1416–1425 (2012).

  4)  Heuchel  R,  Radtke  F,  Georgiev  O,  Stark  G,  Aguet  M,  Schaffner  W.  The  transcription  factor  MTF-1  is  essential  for  basal  and  heavy  metal-induced  metallothionein  gene  expression.  EMBO J., 13, 2870–2875 (1994).   5)  Langmade SJ, Ravindra R, Daniels PJ, Andrews GK. The transcription  factor  MTF-1  mediates  metal  regulation  of  the  mouse  ZnT1  gene. J. Biol. Chem., 275, 34803–34809 (2000).   6)  Günes  C,  Heuchel  R,  Georgiev  O,  Muller  KH,  Lichtlen  P,  Bluthmann  H,  Marino  S,  Aguzzi  A,  Schaffner  W.  Embryonic  lethality  and  liver  degeneration  in  mice  lacking  the  metal-responsive  transcriptional activator MTF-1. EMBO J., 17, 2846–2854 (1998).   7)  Lichtlen P, Wang Y, Belser T, Georgiev O, Certa U, Sack R, Schaffner  W.  Target  gene  search  for  the  metal-responsive  transcription  factor MTF-1. Nucleic Acids Res., 29, 1514–1523 (2001).   8)  Radtke  F,  Georgiev  O,  Muller  HP,  Brugnera  E,  Schaffner  W.  Functional domains of the heavy metal-responsive transcription regulator  MTF-1. Nucleic Acids Res., 23, 2277–2286 (1995).   9)  Bittel  DC,  Smirnova  IV,  Andrews  GK.  Functional  heterogeneity  in  the  zinc  fingers  of  metalloregulatory  protein  metal  response  element-binding  transcription  factor-1.  J. Biol. Chem., 275, 37194– 37201 (2000). 10)  Stuart  GW,  Searle  PF,  Palmiter  RD.  Identification  of  multiple  metal  regulatory  elements  in  mouse  metallothionein-I  promoter  by  assaying synthetic sequences. Nature, 317, 828–831 (1985). 11)  Koizumi S, Suzuki K, Ogra Y, Gong P, Otsuka F. Roles of zinc fingers  and  other  regions  of  the  transcription  factor  human  MTF-1  in  zinc-regulated DNA binding. J. Cell. Physiol., 185, 464–472 (2000). 12)  Westin  G,  Schaffner  W.  A  zinc-responsive  factor  interacts  with  a  metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J., 7, 3763–3770 (1988). 13)  Koizumi  S,  Yamada  H,  Suzuki  K,  Otsuka  F.  Zinc-specific  activation  of  a  HeLa  cell  nuclear  protein  which  interacts  with  a  metal  responsive  element  of  the  human  metallothionein-IIA  gene.  Eur. J. Biochem., 210, 555–560 (1992).

Biol. Pharm. Bull. Vol. 38, No. 4 (2015)617 14)  Brugnera E, Georgiev O, Radtke F, Heuchel R, Baker E, Sutherland  GR,  Schaffner  W.  Cloning,  chromosomal  mapping  and  characterization  of  the  human  metal-regulatory  transcription  factor  MTF-1.  Nucleic Acids Res., 22, 3167–3173 (1994). 15)  Chen  X,  Agarwal  A,  Giedroc  DP.  Structural  and  functional  heterogeneity  among  the  zinc  fingers  of  human  MRE-binding  transcription factor-1. Biochemistry, 37, 11152–11161 (1998). 16)  Dalton  TP,  Bittel  D,  Andrews  GK.  Reversible  activation  of  mouse  metal response element-binding transcription factor 1 DNA binding  involves  zinc  interaction  with  the  zinc  finger  domain.  Mol. Cell. Biol., 17, 2781–2789 (1997). 17)  Rutherford  JC,  Bird  AJ.  Metal-responsive  transcription  factors  that  regulate  iron,  zinc,  and  copper  homeostasis  in  eukaryotic  cells.  Eukaryot. Cell, 3, 1–13 (2004). 18)  Chen  X,  Chu  M,  Giedroc  DP.  MRE-Binding  transcription  factor-1:  weak  zinc-binding  finger  domains  5  and  6  modulate  the  structure,  affinity,  and  specificity  of  the  metal-response  element  complex.  Biochemistry, 38, 12915–12925 (1999). 19)  Chen X, Zhang B, Harmon PM, Schaffner W, Peterson DO, Giedroc  DP.  A  novel  cysteine  cluster  in  human  metal-responsive  transcription factor 1 is required for heavy metal-induced transcriptional activation in vivo. J. Biol. Chem., 279, 4515–4522 (2004). 20)  Lindert  U,  Cramer  M,  Meuli  M,  Georgiev  O,  Schaffner  W.  Metalresponsive  transcription  factor  1  (MTF-1)  activity  is  regulated  by  a  nonconventional  nuclear  localization  signal  and  a  metal-responsive  transactivation domain. Mol. Cell. Biol., 29, 6283–6293 (2009). 21)  Ogra  Y,  Suzuki  K,  Gong  P,  Otsuka  F,  Koizumi  S.  Negative  regulatory role of Sp1 in metal responsive element-mediated transcriptional activation. J. Biol. Chem., 276, 16534–16539 (2001). 22) Koizumi S, Suzuki K, Ogra Y, Yamada H, Otsuka F. Transcriptional  activity and regulatory protein binding of metal-responsive elements  of  the  human  metallothionein-IIA  gene.  Eur. J. Biochem., 259, 635–642 (1999).

23)  Yamada  H,  Uenishi  R,  Suzuki  K,  Koizumi  S.  Cadmium-induced  alterations  of  gene  expression  in  human  cells.  Environ. Toxicol. Pharmacol., 28, 61–69 (2009). 24)  Suzuki  K,  Koizumi  S.  An  improved  transfection  assay  for  evaluating the effects of heavy metals. Ind. Health, 47, 419–422 (2009). 25)  Murata  M,  Gong  P,  Suzuki  K,  Koizumi  S.  Differential  metal  response  and  regulation  of  human  heavy  metal-inducible  genes.  J. Cell. Physiol., 180, 105–113 (1999). 26)  Palmiter  RD.  Regulation  of  metallothionein  genes  by  heavy  metals  appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc. Natl. Acad. Sci. U.S.A., 91, 1219–1223 (1994). 27)  Saydam  N,  Georgiev  O,  Nakano  MY,  Greber  UF,  Schaffner  W.  Nucleo-cytoplasmic  trafficking  of  metal-regulatory  transcription  factor  1  is  regulated  by  diverse  stress  signals.  J. Biol. Chem., 276, 25487–25495 (2001). 28)  Li  Y,  Kimura  T,  Laity  JH,  Andrews  GK.  The  zinc-sensing  mechanism of mouse MTF-1 involves linker peptides between the zinc fingers. Mol. Cell. Biol., 26, 5580–5587 (2006). 29)  Apuy  JL,  Chen  X,  Russell  DH,  Baldwin  TO,  Giedroc  DP.  Ratiometric pulsed alkylation/mass spectrometry of the cysteine pairs in  individual  zinc  fingers  of  MRE-binding  transcription  factor-1  (MTF-1) as a probe of zinc chelate stability. Biochemistry, 40, 15164–15175 (2001). 30)  Li  Y,  Kimura  T,  Huyck  RW,  Laity  JH,  Andrews  GK.  Zinc-induced  formation  of  a  coactivator  complex  containing  the  zinc-sensing  transcription factor MTF-1, p300/CBP, and Sp1. Mol. Cell. Biol., 28, 4275–4284 (2008). 31)  Günther  V,  Davis  AM,  Georgiev  O,  Schaffner  W.  A  conserved  cysteine cluster, essential for transcriptional activity, mediates homodimerization of human metal-responsive transcription factor-1 (MTF-1). Biochim. Biophys. Acta, 1823, 476–483 (2012).

Analysis of cysteine and histidine residues required for zinc response of the transcription factor human MTF-1.

Metal responsive element (MRE)-binding transcription factor-1 (MTF-1) is a zinc finger (ZF) transcription factor that plays a key role in heavy metal ...
668KB Sizes 0 Downloads 6 Views