IJSEM Papers in Press. Published October 20, 2014 as doi:10.1099/ijs.0.055160-0

1

Allosalinactinospora lopnorensis gen. nov., sp. nov., a new

2

member of the family Nocardiopsaceae isolated from soil

3

Lin Guo1#, Li Tuo1#, Xugela Habden2, Yuqin Zhang1, Jiameng Liu1, Zhongke Jiang1,

4 5

Shaowei Liu1, Tohty Dilbar2*, Chenghang Sun1*

6

1

7

Peking Union Medical College, Beijing 100050, P. R. China.

8

2

9

830054, P. R. China.

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences &

College of Life Science and Chemistry, Xinjiang Normal University, Urumchi

10 11

#These authors contributed equally to this work

12 13 14 15 16 17 18

*Correspondence:

19

Chenghang Sun and Dilbar Tohty

20

Tel: +86-10-63165278

21

Fax: +86-10-63017302

22

[email protected]

23

[email protected]

24 25

Running Title: Allosalinactinospora lopnorensis gen. nov., sp. nov.

26

Category: New Taxa-Actinobacteria

27 28

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of

29

strain CA15-2T is KF284163.

30 31 32 33

34

A novel actinomycete strain, designated as strain CA15-2T, was isolated from a

35

soil sample collected from the rhizosphere of Tamarisk in Lop Nor region,

36

Xinjiang, China, and was characterized by using the polyphasic taxonomic

37

approach. The optimal growth occurred at 37 °C, pH 7.5-8.0 and with 5% (w/v)

38

NaCl. Strain CA15-2T formed white to pale yellow branched substrate mycelium

39

without fragmentation and sparse aerial mycelium with wavelike curves.

40

Whole-cell hydrolysates of the isolate contained meso-diaminopimelic acid as the

41

diagnostic diamino acid of the cell wall but no diagnostic sugars. The polar lipids

42

contained

43

phosphatidylcholine

44

phosphatidylethanolamine

45

unidentified phospholipid (PL) and other lipids (L). MK-9(H8), MK-10(H8) and

46

MK-10(H6) were the predominant menaquinones. The major fatty acids were

47

iso-C16:0 (54.14%) and C16:0 (14.02%). The G+C content of genomic DNA was

48

69.6 mol%. Phylogentic analysis based on 16S rRNA gene sequences revealed

49

that strain CA15-2T formed a distinct subclade in the family Nocardiopsaceae

50

with less than 95% similarities of the 16S rRNA gene sequence to all konown

51

members of family Nocardiopsaceae. On the basis of the polyphasic evidences, a

52

novel

53

Allosalinactinospora lopnorensis gen. nov., sp. nov. is proposed. The type strain of

54

Allosalinactinospora lopnorensis is strain CA15-2T (=DSM 45697T =CGMCC

55

4.7074T).

diphosphatidylglycerol

genus

(PC), (PE),

(DPG),

phosphatidylglycerol

phosphatidylmethylethanolamine one

Allosalinactinospora

unidentified

gen.

nov.

glycolipid

with

the

(PG), (PME),

(GL),

type

one

species

56 57

The family Nocardiopsaceae with Nocardiopsis as the type genus was first proposed

58

by Rainey et al. (1996) based on polyphasic analysis. At the time of preparing this

59

manuscript, the family Nocardiopsaceae contained eight genera: Nocardiopsis (Meyer,

60

1976), Thermobifida (Zhang et al., 1998), Streptomonospora (Cui et al., 2001),

61

Haloactinospora (Tang et al., 2008), Marinactinospora (Tian et al., 2009),

62

Murinocardiopsis (Kämpfer et al., 2010), Spinactinospora (Chang et al., 2011) and

63

Salinactinospora (Chang et al., 2012). As the largest genus in the family

64

Nocardiopsaceae,

65

(http://www.bacterio.net/nocardiopsis.html; Euzéby, 1997), more than half of them

66

were isolated from saline environments such as saltern (Chun et al., 2000), saline or

67

hypersaline soils (Al-Zarban et al., 2002; Li et al., 2003a; Li et al., 2004, 2006;

Nocardiopsis

contained

37

species

and

2

subspecies

68

Hozzein et al., 2004; Zhang et al., 2008; Yang et al., 2008a; Chen et al., 2008, 2010;

69

Hamedi et al., 2010, 2011) or marine samples (sabry et al., 2004; Kroppentstedt &

70

Evtushenko, 2006; Tian et al., 2009; Chen et al., 2009; Fang et al., 2011; Li et

71

al., 2012). In addition, one in total four species in the genus Thermobifida was

72

isolated from a salt mine (Yang et al., 2008b). Eight in total nine species in the genus

73

Streptomonospora were isolated from a salt lake or hypersaline soils (Cui et al., 2001;

74

Li et al. 2003b; Cai et al. 2008, 2009; Meklat et al., 2014) or marine samples

75

(Zhang et al., 2013). The genus Haloactinospora, Marinactinospora, Spinactinospora

76

and Salinactinospora contained only one species and the type species of these genera

77

were isolated from a salt lake (Tang et al., 2008) or marine sediments (Tian et al.,

78

2009; Chang et al., 2011, 2012).

79 80

During the study on diversity of cultivable rhizosphere actinomycetes from

81

psmmophyte in Xinjiang, China, strain CA15-2T was isolated from a saline soil

82

sample at the rhizosphere of Tamarisk collected in Lop Nor region (90.455°N,

83

40.186°E), a dried-up salt lake located between the Taklamakan and Kumtag deserts

84

in the southeastern portion of Xinjiang Uygur Autonomous Region, China (Tuo et al.,

85

2012). Based on phylogenetic analysis, strain CA15-2T could be readily distinguished

86

from previously described genera of the family Nocardiopsaceae and represents a

87

new genus. In this paper, the taxonomic description of this strain is reported.

88 89

Strain CA15-2T was isolated and purified by the dilution plating method on HV agar

90

(Hayakawa & Nonomura, 1987) after incubated at 28 °C for eight weeks. The purified

91

strain was maintained on slants of tryptic soy agar (TSA; Difco) containing 5% (w/v)

92

NaCl at 4 °C and in 20% (v/v) glycerol at -80 °C. All cultural media were

93

supplemented with 5% (w/v) NaCl for observation of growth at 37 °C for 3-4 weeks,

94

strain CA15-2T grew well on TSA (Difco) and R2A (Difco) agar, poor growth

95

occurred on ISP 2, ISP 4 agars (Shirling & Gottlieb, 1966), Capek agar (Waksman,

96

1961), nutrient agar (Difco) and potato agar (Waksman, 1961), No growth occured on

97

ISP 5 agar (Shirling & Gottlieb, 1966). The isolate did not produce diffusible

98

pigments on any of the media tested. Morphological characteristics were observed by

99

light microscopy (model BH2; Olympus) using the coverslip technique described by

100

Zhou et al. (1998) and then recorded by scanning electron microscopy (Quanta 200;

101

FEI) using gold-coated dehydrated specimens of 3-month cultures from TSA

102

supplemented with 5% NaCl at 37 °C. Strain CA15-2T formed white to pale yellow

103

branched substrate mycelia without fragmentation and sparse aerial mycelia were

104

observed as wavelike curves and no fragmentation (Fig. 1).

105 106

Physiological characteristics, including temperature, pH ranges and NaCl tolerance,

107

were tested using TSA or tryptic soy broth (TSB; Difco) as the basal medium. Growth

108

was tested at 0, 4, 10, 15, 20, 25, 28, 32, 37, 42, 45 and 50 °C on TSA supplemented

109

with 5% (w/v) NaCl. Concentration of NaCl supplemented in TSB was 0, 1, 3, 5, 8,

110

10, and 15% (w/v), respectively at 37 °C for NaCl tolerance experiment. The pH

111

range for growth was tested between pH 5.0 and pH 11.0 at intervals of 0.5 pH units

112

in TSB using the buffer system described by Xu et al. (2005). Strain CA15-2T was

113

able to grow at 20 °C-42 °C and grew well at 28 °C-37 °C, but no growth occurred at

114

15 °C or 45 °C. The optimum growth temperature was 37 °C. Growth was observed at

115

pH 6.0-9.0 and optimum pH for growth occurred at pH 7.5-8.0. Strain CA15-2T could

116

grow with 0-10% (w/v) NaCl, but no growth occurred at 15% (w/v) NaCl, optimum

117

concentration of NaCl for growth was 5% (w/v). Carbon utilization and acid

118

production from carbohydrates were tested using Biolog GENIII MicroPlates and the

119

API 50CH (bioMeriéux) system, respectively, according to the manufacturers’

120

protocol. Sole nitrogen sources were determined using the basal liquid medium (1-1):

121

1.0 g D-glucose, 0.05 g MgSO4·7H2O, 0.05 g NaCl, 0.001 g FeSO4·7H2O and 0.01 g

122

K2HPO4. All of the physiological tests above were observed consistently for 1 month.

123

Qualitative enzyme tests were determined using API ZYM (bioMérieux) and oxidase

124

was detected using API oxidase reagent (bioMeriéux) as described by manufacturer’s

125

instructions. Catalase was determined by production of bubbles after a drop of 3%

126

H2O2 was added. Other physiological and biochemical tests of strain CA15-2T were

127

examined according to the methods of Williams et al. (1983) and Kämpfer et al.

128

(1991). The detailed physiological and biochemical characteristics of the strain

129

CA15-2T are given in the species description.

130 131

Biomass for molecular systematic and chemotaxonomic studies was carried out using

132

whole-cell hydrolysates (4M HCl, 100 °C, 15h) of strain CA15-2T cultured in TSB

133

medium supplemented with 5% (w/v) NaCl at pH 7.5 for 14 days at 37 °C and with

134

180 r.p.m. The diagnostic isomers of diaminopimelic acid in whole-cell hydrolysates

135

was identified by TLC on cellulose plates using the solvent system of Schleifer &

136

Kandler (1972). The diagnostic sugar in whole-cell hydrolysates was identified by

137

TLC as described by Staneck & Roberts (1974). For analysis of menaquinones,

138

plipids and fatty acids, Salinactinospora qingdaonensis CXB832T, the closest

139

phylogentic neighbour of strain CA15-2T was used as a reference strain and cultured

140

under the same conditions as strain CA15-2T. Polar lipids were extracted and analysed

141

by two-dimensional TLC on a silica gel 60 F254 plates (Merck) as described by

142

Minnikin et al. (1984), the solvent system of the first dimension and the second

143

dimension

144

chloroform-methanol-acetic acid-water (80:18:12:5, v/v), respectively. Menaquinones

145

were extracted according to the method of Collins et al. (1977) and analyzed by

146

HPLC (Groth et al., 1997), and then confirmed by a single quadrupole mass

147

spectrometer LCMS-2020 (Shimadzu). The parameters for separation and molecular

148

ion peak identification of menaquinones were as below: a UFLC system was equipped

149

with SPD-M20A photodiode array detector, and an atmospheric pressure chemical

150

ionization (APCI) interface and a reversed-phase column (Shim-pack XR-ODS, 3.0

151

mm i.d. × 75 mm, Shimadzu). Mobile phase was methanol:iso-propanol (60:40, v/v) at

152

a flow rate of 0.3 ml/min. The APCI interface in positive ionization mode was used for

153

MS analysis with the following operating settings: Nebulizer gas flow rate, 4.0 L/min;

154

drying gas flow rate, 15.0 L/min; APCI interface temperature, 350 °C; DL temperature,

155

250 °C; heat block temperature, 200 °C; APCI interface voltage, 4.5 kV; Detector

156

voltage, 1.20 kV. Data acquisition and processing were accomplished using Shimadzu

157

LCMS solution software. For analysis of fatty acids, strain CA15-2T and reference

158

strain were cultured on TSA medium supplemented with 5% (w/v) NaCl at 37 °C for

159

2 weeks. The whole-cell fatty acid was prepared according to the standard protocol of

160

Sasser (1990), and analyzed using MIDI Sherlock Version 6.0 and ACTIN1 database.

was

chloroform-methanol-water

(64:27:5,

v/v)

and

161 162

The whole-cell hydrolysate of strain CA15-2T contained meso-diaminopimelic acid

163

but no characteristic sugars. The major polar lipids were comprised of

164

diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylcholine (PC),

165

phosphatidylmethylethanolamine

166

unidentified glycolipid (GL), one unidentified phospholipid (PL) and other lipids (L).

167

The polar lipids profiles were shown in Fig. S1. The predominant menaquinones were

168

MK-9(H8) (35.48%), MK-10(H8) (29.82%) and MK-10(H6) (14.45%), minor amounts

169

of MK-9(H4) (2.84%), MK-9(H6) (7.64%), MK-9(H10) (0.51%), MK-10(H2) (0.57%),

(PME),

phosphatidylethanolamine

(PE),

one

170

MK-10(H4) (5.78%), MK-10(H10) (2.12%) and MK-9(H2) (0.8%) were also present

171

(Fig. S2). The fatty acid profile contained iso-C16:0 (54.14%), C16:0 (14.02%),

172

anteiso-C17:0 (8.44%), C18:0 (5.42%), C18:1ω7c (5.15%), iso-C18:0 (4.17%), C18:0

173

10-methyl (3.73%), C18:1ω9c (1.93%), iso-C17:0 (1.58%) and anteiso-C15:0 (1.41%)

174

(Table. S1). The major components of menaquinones, polar lipids and fatty acids of

175

strain Salinactinospora qingdaonensis CXB832T were similar to those previously

176

reported (Chang et al., 2012). The slight difference in the proportion of menaquinones

177

and fatty acids and types of polar lipids, which may be due to the different

178

experimental conditions used.

179 180

To determine the G+C content, genomic DNA was prepared according to the method

181

described by Marmur (1961). The G+C content of strain CA15-2T was determined as

182

69.6 mol% by reverse-phase HPLC method (Mesbah et al., 1989).

183 184

Extraction of genomic DNA and PCR amplification of the 16S rRNA gene from strain

185

CA15-2T were performed as described by Li et al. (2007). The PCR products were

186

cloned by the pEASY-T1 Cloning kit (Transgen Biotechnology) and sequenced by an

187

ABI PRISMTM 3730XL DNA Analyzer. The similarity values of 16S rRNA gene

188

sequence were calculated by EzTaxon server (http://eztaxon-e.ezbiocloud.net/; Chun

189

et al., 2007). Multiple alignments with sequences of closely related taxa in family

190

Nocardiopsaceae were done by CLUSTAL_X (Thompson et al., 1997). A

191

neighbour-joining tree based on 16S rRNA gene sequences was constructed using the

192

method of Saitou & Nei (1987) from Knuc values (Kimura, 1980) and MEGA version

193

5.0 (Tamura et al., 2007) (Fig. 2), maximum-likelihood tree was constructed using the

194

method of Felsenstein (1981) with MEGA version 5.0 (Tamura et al. 2011) (Fig. S3).

195

Bootstrap resampling analysis using Felsenstein (1985) method was employed to

196

evaluate the topology of phylogenetic tree with 1000 replicates.

197 198

BLAST search showed that strain CA15-2T had the highest similarities (10%) of iso-C16:0 and

283

C16:0. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol,

284

phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine,

285

one unidentified glycolipid, one unidentified phospholipid and other lipids. The G+C

286

content of the genomic DNA is 69.6 mol%.

α

α

-glucosidase and

α

-mannosidase.

287 288

The type strain, CA15-2T (=DSM 45697T =CGMCC 4.7074T) was isolated from

289

rhizosphere soil sample of Tamarisk collected from the Lop Nor region, Xinjiang

290

Province, northwest of China.

291 292

Acknowledgments

293

We are grateful to Dr X.-H. Zhang for providing the strain Salinactinospora

294

qingdaonensis CXB832T. This research was supported by the National Natural

295

Sciences Foundation of China (NSFC, Grant no.81172963 & 81373308), the National

296

Science and Technology Major Project (Grant no.2012ZX09301-002-001-018) from

297

the Ministry of Science and Technology of China, Specialized Research Fund for the

298

Doctoral Programme of Higher Education from the Ministry of Education of China

299

(SRFDP, Grant no. 20111106110032) and Natural Sciences Foundation of Beijing

300

(7133249).

301 302 303 304 305

306

References

307

Al-Zarban, S. S., Abbas, I., Al-Musallam, A. A., Steiner, U., Stackebrandt, E. &

308

Kroppenstedt, R. M. (2002). Nocardiopsis halotolerans sp. nov., isolated from salt

309

marsh soil in Kuwait. Int J Syst Evol Microbiol 52(2), 525-529.

310

Cai, M., Zhi, X.-Y., Tang, S.-K., Zhang, Y.-Q., Xu, L.-H. & Li, W.-J. (2008).

311

Streptomonospora halophila sp. nov., a halophilic actinomycete isolated from a

312

hypersaline soil. Int J Syst Evol Microbiol 58, 1556-1560.

313

Cai, M., Tang, S.-K., Chen,Y.-G., Li, Y., Zhang, Y.-Q. & Li, W.-J. (2009).

314

Streptomonospora amylolytica sp. nov. and Streptomonospora flavalba sp. nov., two

315

novel halophilic actinomycetes isolated from a salt lake. Int J Syst Evol Microbiol 59,

316

2471-2475.

317

Chang, X. B., Liu, W. Z. & Zhang, X.-H. (2011). Spinactinospora alkalitolerans

318

gen. nov., sp. nov., an actinomycete isolated from marine sediment. Int J Syst Evol

319

Microbiol 61(12), 2805-2810.

320

Chang, X. B., Liu, W. Z. & Zhang, X. H. (2012). Salinactinospora qingdaonensis

321

gen. nov., sp. nov., a halophilic actinomycete isolated from a salt pond. Int J Syst Evol

322

Microbiol 62(4), 954-959.

323

Chen, Y.-G., Cui, X.-L., Kroppenstedt, R. M., Stackebrandt, E., Wen, M.-L., Xu,

324

L.-H. & Jiang, C.-L. (2008). Nocardiopsis quinghaiensis sp. nov., isolated from

325

saline soil in China. Int J Syst Evol Microbiol 58, 699-705.

326

Chen,Y.-G., Zhang, Y.-Q.,Tang, S.-K., Liu, Z.-X., Xu, L.-H., Zhang, L.-X. & Li,

327

W.-J. (2010). Nocardiopsis terrae sp. nov., a halophilic actinomycete isolated from

328

saline soil. Antonie van Leeuwenhoek 98, 31-38.

329

Chun, J., Bae, K. S., Moon, E. Y., Jung, S.-O.,Lee, H. K. & Kim, S.-J. (2000).

330

Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated

331

from a saltern. Int J Syst Evol Microbiol 50, 1909-1913.

332

Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W. (2007).

333

EzTaxon: a web-based tool for the identification of prokaryotes based on 16S

334

ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259-2261.

335

Cui, X.-L., Mao, P.- H., Zeng, M., Li, W.-J., Zhang, L.-P., Xu, L.-H. & Jiang,

336

C.-L. (2001). Streptomonospora salina gen. nov., sp. nov., a new member of the

337

family Nocardiopsaceae. Int J Syst Evol Microbiol 51, 357-363.

338

Collins, M. D., Pirouz, T., Goodfellow, M. & Minnikin, D. E. (1977). Distribution

339

of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100, 221-230.

340

Euzéby, J. P. (1997). List of bacterial names with standing in nomenclature: a folder

341

available on the Internet. Int J Syst Bacteriol 47, 590-592.

342

Fang, C. Y., Zhang, J. L., Pang, H. C., Li, Y. Y., Xin, Y. H. & Zhang, Y. B. (2011).

343

Nocardiopsis flavescens sp. nov., an actinomycete isolated from marine sediment. Int

344

J Syst Evol Microbiol 61, 2640-2645.

345

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum

346

likelihood approach. J Mol Evol 17, 368–376.

347

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the

348

bootstrap. Evolution 39, 783-791.

349

Groth, I., Schumann, P., Rainey, F. A., Martin, K., Schuetze, B. & Augsten, K.

350

(1997). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated

351

from compost soil. Int J Syst Bacteriol 47, 1129-1133.

352

Grund, E. & Kroppenstedt, R. M. (1990). Chemotaxonomy and numerical

353

taxonomy of the genus Nocardiopsis Meyer 1976. Int J Syst Bacteriol 40 (1), 5-11.

354

Hamedi, J., Mohammadipanah, F., von Jan, M., Pötter, G., Schumann, P., Spröer,

355

C., Klenk, H.-P. & Kroppenstedt, R. M. (2010). Nocardiopsis sinuspersici sp. nov.,

356

isolated from sandy rhizospheric soil. Int J Syst Evol Microbiol 60, 2346-2352.

357

Hamedi, J., Mohammadipanah, F., Pötter, G., Spröer, C., Schumann, P., Göker,

358

M. & Klenk, H.-P. (2011). Nocardiopsis arvandica sp. nov., isolated from sandy soil.

359

Int J Syst Evol Microbiol 61, 1189-1194.

360

Hayakawa, M. & Nonomura, H. (1987).

361

medium for the selective isolation of soil actinomycetes. J. Ferm. Tech. 65, 501-509.

362

Hozzein, W. N. & Trujillo, M. E. (2012). Genus . Nocardiopsis Meyer 1976, 487AL.

363

In Bergey’s manual of systematic bacteriology, 2nd edn, vol. 5, pp. 1891-1906. Edited

364

by W. B. Whitman, M. Goodfellow, P. Kämpfer, H.-J. Busse, M. E. Trujillo, W.

365

Ludwig, K.-I. Suzuki & A. Parte. New York: Springer.

366

Kämpfer, P., Kroppenstedt, R. M. & Dott, W. (1991). A numerical classification of

367

the genera Streptomyces and Streptoverticillium using miniaturized physiological tests.

368

J Gen Microbiol 137, 1831-1891.

369

Kämpfer, P., Schäfer, J., Lodders, N. & Martin, K. (2010). Murinocardiopsis

370

flavida gen.nov., sp. nov., an actinomycete isolated from indoor walls. Int J Syst Evol

371

Microbiol 60 (10), 1729-1734.

372

Kimura, M. (1980). A simple method for estimating evolutionary rates of base

Humic-acid vitamins agar, a new

І

373

substitutions through comparative studies of nucleotide sequences. J Mol Evol 16,

374

111-120.

375

Kroppenstedt, R. M. & Evtushenko, L. I. (2006). The family Nocardiopsaceae. In

376

The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn, vol. 3, pp. 754-795.

377

Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt.

378

New York: Springer-Verlag.

379

Li, J., Yang, J., Zhu, W.-Y., He, J., Tian, X.-P., Xie, Q., Zhang, S. & Li, W.-J.

380

(2012). Nocardiopsis coralliicola sp. nov., isolated from the gorgonian coral, Menella

381

praelonga. Int J Syst Evol Microbiol 62, 1653-1658.

382

Li, M.-G., Li, W.-J., Xu, P., Cui, X.-L., Xu, L.-H. & Jiang, C.-L. (2003a).

383

Nocardiopsis xingjiangensis sp. nov., a halophilic actinomycete isolated from saline

384

soil sample in china. Int J Syst Evol Microbiol 53, 317-321.

385

Li, W.-J., Xu, P., Zhang, L.-P.,Tang,S.-K., Cui,X.-L.,Mao, P.-H., Xu, L.-H.,

386

Shumann, P., Stackbrandt, E. & Jang, C.-L. (2003b). Streptomonospora alba sp.

387

nov., a novel halophiliactinomycete, and emended description of thegenus

388

Streptomonospora Cui et al. 2001. Int J Syst Evol Microbiol 53, 1421-1425.

389

Li, W.-J., Park, D.-J., Tang, S.-K., Wang, D., Lee, J.-C., Xu, L.-H., Kim, C.-J. &

390

Jiang, C.-L. (2004). Nocardiopsis salina sp. nov., a novel halophilic actinomycete

391

isolated from a saline soil in China. Int J Syst Evol Microbiol 54, 1805-1809.

392

Li, W.-J., Kroppenstedt, R. M., Wang, D., Tang, S.-K., Lee, J.-C., Park, D.-J.,

393

Kim, C.-J., Xu, L.-H. & Jiang, C.-L. (2006). Five novel species of the genus

394

Nocardiopsis isolated from hypersaline soils and emended description of

395

Nocardiopsis salina Li et al. 2004. Int J Syst Evol Microbiol 56, 1089-1096.

396

Li, W.-J., Xu, P., Schumann, P., Zhang, Y.-Q., Pukall, R., Xu, L.-H.,

397

Stackebrandt, E. & Jiang, C.-L. (2007). Georgenia ruanii sp. nov., a novel

398

actinobacterium isolated from forest soil in Yunnan (China) and emended description

399

of the genus Georgenia. Int J Syst Evol Microbiol 57, 1424-1428.

400

Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from

401

microorganisms. J Mol Biol 3, 208-218.

402

Meklat, A., Bouras, N., Riba, A., Zitouni, A., Mathieu, F., Rohde, M., Schumann,

403

P., Spröer, C., Klenk, H. P. & Sabaou, N. (2014). Streptomonospora algeriensis sp.

404

nov., a halophilic actinomycete isolated from soil in Algeria. Antonie van

405

Leeuwenhoek 106 (2), 287-292.

406

Mesbah, M., Premachandran, U. & Whitman, W. B. (1989). Precise measurement

407

of the G+C content of deoxyribonucleic acid by high-performance liquid

408

chromatography. Int J Syst Bacteriol 39 (2), 159-167.

409

Meyer, J. (1976). Nocardiopsis, a new genus of the order Actinomycetales. Int J Syst

410

Bacteriol 26, 487-493.

411

Minnikin, D. E., O’Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M.,

412

Schaal, A. & Parlett, J. H. (1984). An integrated procedure for the extraction of

413

bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233-241.

414

Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. (1996).

415

The genus Norcardiopsis represents a phylogenetically coherent taxon and a distinct

416

actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46,

417

1088-1092.

418

Sabry, S., Ghanem, N. B., Abu-Ella, G. A., Schumann, P., Stackebrandt, E. &

419

Kroppenstedt, R. M. (2004). Nocardiopsis aegyptia sp. nov., isolated from marine

420

sediment. Int J Syst Bacteriol 54, 453-456.

421

Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for

422

reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.

423

Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty

424

acids, MIDI Technical Note 101. Newark, DE MIDI Inc.

425

Schleifer, K. H. & Kandler, O. (1972). Peptidoglycan types of bacterial cell walls

426

and their taxonomic implications. Bacteriol Rev 36, 407-477.

427

Shirling, E. B. & Gottlieb, D. (1966). Methods for characterization of Streptomyces

428

species. Int J Syst Bacteriol 16, 313-340.

429

Staneck, J. L. & Roberts, G. D. (1974). Simplified approach to identification of

430

aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28 (2), 226-231.

431

Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4:molecular

432

evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24,

433

1596-1599.

434

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011).

435

MEGA5:

436

likehood,evolutionary distance, and maximum parsimony methods, Mol Biol Evol 28

437

(10), 2731-2739.

438

Tang, S.-K., Tian, X.-P., Zhi, X.-Y., Cai, M., Wu, J.-Y., Yang, L.-L., Xu, L.-H. &



molecular

evolutionary

genetics

analysis

using

maximum

439

Li, W.-J. (2008). Haloactinospora alba gen. nov., sp. nov., a halophilic filamentous

440

actinomycete of the family Nocardiopsaceae. Int J Syst Evol Microbiol 58 (9),

441

2075-2080.

442

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.

443

(1997). The CLUSTAL_X windows interface: flexible strategies for multiple

444

sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 (24),

445

4876-4882.

446

Tian, X.-P., Tang, S.-K., Dong, J.-D., Zhang, Y.-Q., Xu, L.-H., Zhang, S. & Li,

447

W.-J. (2009). Marinactinospora thermotolerans gen. nov., sp. nov., a marine

448

actinomycete isolated from a sediment in the northern South China Sea. Int J Syst

449

Evol Microbiol 59, 948-952.

450

Tuo, L ., Habden, X., Guo, L., Zhang, Y.-Q., Tao, L., Wang, F.-F., Liu, J.-M.,

451

Jiang, Z.-K., Pan, Z., Zhang, Y.-B. & Sun, C.-H. (2012). Studies on diversity and

452

bioactivity of rhizosphere actinomycetes from psammophyte in Lop Nor Region. Chin

453

J Antibiot 37 (1), 21-26.

454

Waksman, S. A. (1961). The Actinomycetes, vol. II. Classification, Identification and

455

Description of Genera and Species. Baltimore: Williams & Wilkins.

456

Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H.

457

A. & Sackin, M. J. (1983). Numerical classification of Streptomyces and related

458

genera. J Gen Microbiol 129, 1743-1813.

459

Xu, P., Li, W.-J., Tang, S.-K., Zhang, Y.-Q., Chen, G.-Z., Chen, H.-H., Xu, L.-H.

460

& Jiang, C.-L. (2005). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member

461

of the family Oxalobacteraceae isolated from China. Int J Syst Evol Microbiol 55,

462

1149-1153.

463

Yamamura, H., Ohkubo, S.-Y., Ishida, Y., Otoguro, M., Tamura, T. & Hayakawa,

464

M. (2010). Nocardiopsis nikkonensis sp. nov., isolated from a compost sample. Int J

465

Syst Evol Microbiol 60 (12), 2967-2971.

466

Yang, L.-L., Tang, S.-K., Zhang, Y.-Q., Zhi, X.-Y., Wang, D., Xu, L.-H. & Li, W.-J.

467

(2008b). Thermobifida halotolerans sp. nov., isolated from a salt mine sample, and

468

emended description of the genus Thermobifida. Int J Syst Evol Microbiol 58,

469

1821-1825.

470

Yang, R., Zhang, L.-P., Guo, L.-G., Shi, N., Lu, Z. & Zhang, X. (2008a).

471

Nocardiopsis valliformis sp. nov., an alkaliphilic actinomycete isolated from alkali

472

soil in China. Int J Syst Evol Microbiol 58, 1542-1546.

473

Yassin, A. F., Galinski, E. A., Wohlfarth, A., Jahnke, K.-D., Schaal, K. P. &

474

Trüper, H. G. (1993). A new actinomycete species, Nocardiopsis lucentensis sp. nov.

475

Int J Syst Bacteriol 43 (2), 266-271.

476

Zhang, D.-F., Pan, H.-Q., He, J., Zhang, X.-M., Zhang, Y.-G., Klenk, H.-P., Hu,

477

J.-C. & Li, W.-J. (2013). Description of Streptomonospora sediminis sp. nov. and

478

Streptomonospora

479

arabia Hozzein & Goodfellow 2008 as Streptomonospora arabica comb. nov. and

480

emended description of the genus Streptomonospora. Int J Syst Evol Microbiol 63,

481

4447-4455.

482

Zhang, X., Zhang, L.-P., Yang, R., Shi, N., Lu, Z., Chen, W. X., Jiang, C.-L. &

483

Xu, L.-H. (2008). Nocardiopsis ganjiahuensis sp. nov., isolated from a soil from

484

Ganjiahu, China. Int J Syst Bacteriol 58, 195-199.

485

Zhang, Z., Wang, Y. & Ruan, J. (1998). Reclassification of Thermomonospora and

486

Microtetraspora. Int J Syst Bacteriol 48, 411-422.

487

Zhou, Z.-H., Liu, Z.-H., Qian, Y.-D., Kim, S. B. & Goodfellow, M. (1998).

488

Saccharopolyspora spinosporotrichia sp. nov., a novel actinomycete from soil. Int J

489

Syst Bacteriol 48, 53-58.

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

nanhaiensis sp.

nov.,

and

reclassification

of Nocardiopsis

507

Fig. 1. Scanning electron micrograph of strain CA15-2T grown on TSA supplemented

508

with 5% (w/v) NaCl for 3 months at 37 °C. Bars: (a), 10.0 µm; (b), 5.0 µm

509 510

Fig. 2. Neighbour-joining tree based on 16S rRNA gene sequences of the strain

511

CA15-2T and related strains in the family Nocardiopsaceae. Numbers at nodes refer to

512

bootstrap values (based on 1000 replicates; only values >50% are shown). Bar, 5 nt

513

substitution per 1000 nt.

514 515 516 517 518 519 520 521 522 523 524

Table. 1. Differential characteristics of strain CA15-2T and related genera of the family Nocardiopsaceae. Taxa: 1, strain CA15-2T; 2, Salinactinospora (data from this study and Chang et al., 2012); 3, Nocardiopsis (Kroppenstedt & Evtushenko, 2006; Hozzein & Trujillo, 2012); 4, Thermobifida (Yang et al., 2008); 5, Marinactinospora (Tian et al., 2009); 6, Haloactinospora (Tang et al., 2008); 7, Streptomonospora(Cai et al., 2008); 8, Spinactinospora (Chang et al., 2011); 9, Murinocardiopsis (Kämpfer et al., 2010). Cell walls of all taxa contain meso-diaminopimelic acid. Gal, galactose; Rib, ribose; Glu, glucose; Xyl, xylose; DPG, diphosphatidylglycerol; PE, phosphatidylethanolamine; PC, phosphatidylcholine; PI, phosphatidylinositol; PG, phosphatidylglycerol; PIM, phosphatidylinositolmannoside; PME, phosphatidylmethylethanolamine; PL, unknown phospholipid; L, unknown lipid. ND, no data available; i, iso; ai, anteiso. 1

2

3

4

5

6

7

8

9

Form long spore chains

Form long spore chains

Form short chains spores

Form long or short spore chains

No aerial mycelium

Non-fragment

Aerial mycelium

Wave shaped non-fragment

Form long chains spores

Differentiate into straight to flexuous spore chains

Form dichotomously branched sporophores

Substrate mycelium

Branched, non-fragment

Branched, non-fragment

Branched, fragment

Branched, non-fragment

Branched, non-fragment

Spore chains with pseudosporangia at the end of substrate mycelium

Branched, non-fragment

Branched, non-fragment

Noon

Gal, Xyl, Glu

Glu

Gal, Rib

Gal

Rib, Glu

None

MK-10(H8,H6), MK-11(H8)

MK-10(H6, H8), MK-9 (H8)

MK-10(H4, H8), MK-11(H4), MK-12(H2)

DPG, PG, PC, PIM,PI, PL i-C16:0, ai-C17:0, C18:0 10-methyl, C17:0 10-methyl

PG, PC, DPG, PI,

PC, PG, DPG, PI

i-C16:0, ai-C17:0, C18:0

i-C16:0, ai-C17:0, C18:1 ω9c

71.1

ND

Diagnostic sugars

None

Glu, Xyl

Predominant menaquinones

MK-9(H8)(35.48%), MK-10(H8)(29.82%) , MK-10(H6)(14.45%)

MK-10(H8)(53.49%), MK-9(H8)(22.29%), MK-10(H6)(10.77%)*

MK-10 (H2, H4, H6) or MK-9 (H4, H6)

MK-10 (H4, H6, H8)

MK-11(H8, H10), MK-10(H8)

MK-10(H8), MK-11(H4, H6, H8)

Diagnostic phospholipid

DPG, PG, PC, PE, PME, PL, GL

DPG, PG, PL, GL*

PC, PME, PG, DPG

DPG, PC, PG, PME,PI,PL,PE

DPG, PC, PG, PIM, PI, PL

DPG, PG, PC, PIM

Major fatty acids

i-C16:0, ai-C17:0

i-C16:0, ai-C17:0, C16:0*

i-C16:0, ai-C17:0, C18:010-methyl

i-C16:0, ai-C17:0

i-C16:0, i-C16:1, C18:010-methyl

i-C16:0, ai-C17:0

DNA G+C content (mol%)

69.6

60.1

64–76

66–72

72

68

*Data from this study for Salinactinospora qingdaonensis CXB832T.

72-75

Fig. 1. Scanning electron micrograph of strain CA15-2T grown on TSA supplemented with 5% (w/v) NaCl for 3 months at 37 °C. Bars: (a), 10.0 µm; (b), 5.0 µm

Fig. 2. Neighbour-joining tree based on 16S rRNA gene sequences of the strain CA15-2T and related strains in the family Nocardiopsaceae. Numbers at nodes refer to bootstrap values (based on 1000 replicates; only values >50% are shown). Bar, 5 nt substitution per 1000 nt.

Nocardiopsis alba DSM 43377T (ANAC1000044) Nocardiopsis terrae YIM 90022T (DQ387958) Nocardiopsis lucentensis DSM 44048T (ANBC01000932) Nocardiopsis aegyptia DSM 44442T (AJ539401) Nocardiopsis halotolerans DSM 44410T (ANAX01000410) 99 Nocardiopsis sinuspersici HM 6T (EU410476) T 100 Nocardiopsis arvandica HM 7 (EU410477) Nocardiopsis nikkonensis YU 1183-22T (AB491226) Nocardiopsis salina YIM 90010T (AY373031) 60 Nocardiopsis composta KS 9T (AF360734) Nocardiopsis trehalosi VKM Ac-942T (AF105972) Nocardiopsis rosea YIM 90094T (AY619713) Streptomonospora halophila YIM 91355T (EF423989) Streptomonospora flavalba YIM 91394 T (EU442553) CA15-2T Salinactinospora qingdaonensis CXB 832T (GU253338) Haloactinospora alba YIM 90648T (DQ923130) Marinactinospora thermotolerans SCSIO 00652T (EU698029) Murinocardiopsis flavida 14-Be-013 T (FN393755) Spinactinospora alkalitolerans CXB 654T (GU112453) Thermobifida cellulosilytica TB 100 T (AJ298058) Thermobifida fusca ATCC 27730T (AF002264) Thermobifida halotolerans YIM 90462T (EU250489) Thermobifida alba JCM 3077T (AF002260) 72 53 53 73

52

50

92 95

56 70 67 99 79 0.005

54

Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil.

A novel actinomycete, designated strain CA15-2(T), was isolated from a soil sample collected from the rhizosphere of tamarisk in the Lop Nor region, X...
212KB Sizes 0 Downloads 8 Views