View Article Online

Organic & Biomolecular Chemistry

View Journal

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: H. Gotfredsen, L. Broløs, T. Holmstrøm, J. Sørensen, A. Viñas, M. D. Kilde, A. B. Skov, M. Santella, O. Hammerich and M. B. Nielsen, Org. Biomol. Chem., 2017, DOI: 10.1039/C7OB01907F. Volume 14 Number 1 7 January 2016 Pages 1–372

Organic & Biomolecular Chemistry www.rsc.org/obc

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the author guidelines.

ISSN 1477-0520

COMMUNICATION Takeharu Haino et al. Solvent-induced emission of organogels based on tris(phenylisoxazolyl) benzene

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

Please   do  not  adjust  mChemistry argins   Organic & Biomolecular

View Article Online

Organic  and  Biomolecular  Chemistry  

DOI: 10.1039/C7OB01907F

 

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

ARTICLE  

Received  00th  January  20xx,   Accepted  00th  January  20xx   DOI:  10.1039/x0xx00000x   www.rsc.org/  

Acetylenic   scaffolding   with   subphthalocyanines   –   synthetic   scope   and   elucidation   of   electronic   interactions   in   dimeric   structures   a

a

a

a

a

Henrik  Gotfredsen,    Line  Broløs,  Thomas  Holmstrøm,  Jacob  Sørensen,  Alberto  Viñas  Muñoz,   a   a a a Martin  Drøhse  Kilde,  Anders  B.  Skov ,  Marco  Santella,  Ole  Hammerich  and  Mogens  Brøndsted   a, Nielsen *   Boron   subphthalocyanines   (SubPcs)   are   powerful   chromophoric   heterocycles   that   can   be   synthetically   modified   at   both   axial   and   peripheral   positions.   Acetylenic   scaffolding   offers   the   possibility   of   building   large,   unsaturated   carbon-­‐rich   frameworks   that   can   exhibit   excellent   electron-­‐accepting   properties,   and   when   combined   with   SubPcs   it   poses   a   convenient  way  of  preparing  interesting  chromophore-­‐acceptor  architectures.  Here  we  present  synthetic  methodologies   for  post-­‐functionalization  of  the  relatively  sensitive  SubPc  chromophore  via  acetylenic  coupling  reactions.  By  gentle  AlCl3-­‐ mediated   alkynylation   at   the   axial   boron   position,   we   managed   to   anchor   two   SubPcs   to   the   geminal   positions   of   a   tetraethynylethene  (TEE)  acceptor.  Convenient  conditions  that  allow  for  stepwise  desilylations  of  trimethylsilyl  (TMS)  and   triisopropylsilyl  (TIPS)  protected  SubPc-­‐decorated  acetylenes  using  silver(I)  fluoride  were  developed.  The  resulting  terminal   alkynes   were   successfully   used   as   coupling   partners   in   metal-­‐catalyzed   couplings,   providing   access   to   larger   acetylenic   SubPc   scaffolds   and   multiple   chromophore   systems.   Moreover,   conditions   allowing   for   conversion   of   a   terminal   alkyne   into  an  iodoalkyne  in  the  presence  of  SubPc  were  developed,  and  the  product  was  subjected  to  cross-­‐coupling  reactions   affording   unsymmetrical   1,3-­‐butadiynes.   The   degree   of   interactions   between   two   SubPc   units   as   a   function   of   the   acetylenic  bridge  was  studied  by  UV-­‐Vis  absorption  spectroscopy  and  cyclic  voltammetry.  A  TEE  bridging  unit  was  found  to   strongly  influence  the  reductions  and  oxidations  of  the  two  SubPc  units,  while  a  more  flexible  bridge  had  no  influence.  

Introduction   Boron  subphthalocyanines  (SubPcs)  are  14π-­‐electron  aromatic   heterocycles   made   up   from   three   isoindole   units   fused   3 together  by  aza-­‐bridges  around  a  central  sp -­‐hybridized  boron   atom   (Fig.   1a).   The   result   of   this   arrangement   is   a   characteristic  bowl-­‐like  geometry  giving  SubPcs  both  a  concave   1 and  a  convex  surface.  Since  their  discovery  in  1972  by  Meller   2 and   Ossko,   the   interest   in   this   class   of   dyes   has   increased   significantly   over   the   years   due   to   their   potential   applications   within   areas   such   as   photovoltaics,   artificial   photosynthesis   1 and   photodynamic   therapy.   The   properties   of   SubPcs   are   tunable   via   both   axial   and   peripheral   modifications,   and   development  of  suitable  synthetic  methodologies  have  been  of   3-­‐7 paramount   importance   to   the   advancement   of   the   field.   However,   SubPcs   are   also   known   for   their   tendency   to   decompose   in   the   presence   of   strong   nucleophiles,   rendering   the   conditions   for   many   desirable   transformations   1 troublesome  or  incompatible  with  this  class  of  dyes.    

                                     

a)

Axial Cl N N

N B

N

Peripheral

N

R

N SubPc-Cl b)

D hv

C A

E.T.

C*

C A

A

c)

   

D

D

C60

H

H

H

H TEE

Fig.   1   a)   Boron   subphthalocyanine   chloride   (SubPc-­‐Cl);   b)   Principle   of   photoinduced   electron   transfer   in   donor   (D)   -­‐   chromophore   (C)   -­‐   acceptor   (A)   systems;  c)  Two  electron-­‐accepting  units:  C60  and  tetraethynylethene  (TEE).  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

J.  Name.,  2013,  00,  1-­‐3  |  1    

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

Page 1 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Journal  Name  

Multi-­‐component   systems   combining   SubPcs   with   suitable   redox-­‐active   donors   and   acceptors   have   been   prepared   and   studied   for   their   ability   to   undergo   photoinduced   charge-­‐ 8-­‐13 separation  (Fig.  1b).  As  acceptor  unit,  Buckminsterfullerene,   8,11-­‐13   C60,   is   a   popular   choice. Another   intriguing   acceptor   moiety   for   donor-­‐chromophore-­‐acceptor   conjugates   could   be   based  on  unsaturated  carbon-­‐rich  frameworks  constructed  via   acetylenic   scaffolding.   The   tetraethynylethene   (TEE;   Fig.   1c)   unit  has  been  used  as  a  versatile  building  block  to  access  many   large,   unsaturated   macrocycles   like   expanded   radialenes   or   radiaannulenes   that   electrochemically   have   been   14,15 demonstrated  to  behave  as  potent  electron  acceptors.  We   recently   initiated   a   pursuit   on   how   to   combine   SubPc   6,16 chemistry   and   acetylenic   scaffolding.   This   combination   is   challenging   due   to   the   sensitivity   of   the   SubPc   core.   Here   we   present   strategies   for   stepwise   acetylenic   coupling   reactions   along  the  peripheral  and  axial  positions.  We  also  demonstrate   how  electronic  interactions  between  two  SubPc  units  strongly   depend  on  the  acetylenic  bridge  separating  them.      

Results  and  discussion   Our   first   objective   was   to   explore   the   possibility   of   incorporating   two   SubPcs   at   a   TEE   scaffold   by   employing   our   6 recently   reported   AlCl3-­‐mediated   protocol   for   alkynylation   at   the   axial   boron   position.   Thus,   we   carried   out   a   double   17   2 alkynylation   with   the   known   TEE   derivative   1 and   SubPc-­‐Cl   furnishing   the   valuable   SubPc-­‐TEE-­‐SubPc   building   block   2   (Scheme   1).   Only   reactions   at   the   trimethylsilyl   (TMS)   end-­‐ capped   alkyne   units   were   achieved,   while   no   reactions   occurred  at  the  triisopropylsilyl  (TIPS)  sites.         SubPc-Cl (2.3 equiv.)    

TIPS

TIPS AlCl3

   

o-DCB, rt TMS

       

N N

TMS

1

N B

TIPS

TIPS

N

N

N

N

N

 

N B

N N

N 2 (63%)

Scheme  1  Synthesis  of  building  block  2.  o-­‐DCB  =  ortho-­‐dichlorobenzene.    

The   molecular   structure   of   2   was   confirmed   by   X-­‐ray   crystallography,   as   suitable   crystals   were   obtained   from   a   1:2   mixture   of   CH2Cl2   and   MeOH   (Fig.   2).   The   structure   clearly   shows   the   cone   shape   of   each   SubPc   unit.   The   distance   between   the   two   boron   atoms   is   6.16   Å.   While   the   C-­‐C≡C-­‐Si   moieties   are   close   to   linear,   the   C-­‐C≡C-­‐B   moieties   deviate   o significantly   from   linearity   with   C-­‐C≡C   angles   of   171 .   Despite   the   apparent   crowdedness   at   the   geminal   TEE   positions,   the   product   2   was   isolated   in   a   good   yield   of   63%   under   the   gentle   reaction  conditions.  

 

View Article Online

                   

DOI: 10.1039/C7OB01907F

    Fig.   2   Molecular   structure   of   2;   hydrogen   atoms   were   omitted   in   the   optimization  (CCDC  1550013).    

With   2   in   hand,   we   wanted   to   demonstrate   its   possible   use   for   incorporating   SubPcs   into   larger   acetylenic   scaffolds   via   18 19,20 either   Sonogashira   or   modified   Cadiot-­‐Chodkiewicz   coupling   reactions.   Initially,   the   TIPS-­‐desilylation   of   2   was   attempted   using   tetrabutylammonium   fluoride   (TBAF),   which,   however,  led  to  decomposition  of  the  SubPc  unit.  Then,  acidic   conditions   combining   TBAF   and   acetic   acid   were   attempted   and   later   the   use   of   potassium   fluoride   as   another   fluoride   source.   In   these   cases,   decomposition   did   not   occur   but   neither   did   desilylations.   Finally,   with   inspiration   from   a   21 method   by   Kim   et   al.   we   successfully   achieved   complete   desilylation   of   2   using   silver   fluoride   and   acetic   acid   in   a   mixture   of   acetonitrile/dichloromethane   followed   by   protonation   with   aqueous   hydrochloric   acid.   Presumably,   the   deprotection   proceeds   via   the   double   silver   acetylide   of   2   obtained   from   displacement   of   both   TIPS   groups   by   Ag(I).   Attempts  of  isolating  the  doubly  deprotected,  terminal  alkyne   of  2  were  unsuccessful,  but  it  is  known  from  literature  that  the   TEE  unit  can  become  unstable  when  the  silyl  protection  groups   17 are   removed.   For   that   reason,   we   decided   to   follow   up   the   desilylation   of   2   directly   by   Sonogashira   couplings   with   4-­‐ iodonitrobenzene   and   1,2-­‐diiodo-­‐4,5-­‐bis(octyloxy)benzene,   providing   scaffolds   3   and   4,   respectively   (Scheme   2).   The   latter   product   may   be   further   elaborated   synthetically   via   the   aryl   iodides   to   extend   the   conjugation.   For   other   Sonogashira   16 reactions   with   SubPc   derivatives   we   have   previously   experienced   improvements   in   reaction   time   and   yields   by   employing   Pd2dba3/AsPh3   rather   than   more   commonly   used   catalysts   such   as   Pd(PPh3)4   or   PdCl2(PPh3)2.   Gratifyingly,   compound   2   also   turned   out   to   be   a   suitable   precursor   for   modified   Cadiot-­‐Chodkiewicz   couplings   under   Pd   catalysis   for   achieving   asymmetrical   alkyne-­‐alkyne   couplings.   When   the   product   of   the   desilylation   was   subjected   directly   to   the   22 iodoalkyne  coupling  partners  1-­‐(iodoethynyl)-­‐4-­‐nitrobenzene   23 and   1-­‐(iodoethynyl)-­‐4-­‐cyanobenzene ,   the   SubPc-­‐scaffolds   5   and   6   were   formed,   respectively   (Scheme   2).   It   should   be   noted  that  the  purification  of  the  TEE  scaffolds  was  somewhat   tedious;   analytically   pure   samples   required   repeated   chromatographic  purifications  and  recrystallizations.      

2  |  J.  Name.,  2012,  00,  1-­‐3  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

ARTICLE  

Page 2 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Journal  Name  

 ARTICLE  

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

   

                                             

                                                 

View Article Online

DOI: 10.1039/C7OB01907F

                                         

    Scheme  2  Functionalization  of  2  via  AgF-­‐mediated  desilylation  followed  by  either   Sonogashira  or  modified  Cadiot-­‐Chodkiewicz  couplings.  Reaction  conditions:  a:  1)   desilylation:   AgF   and   AcOH   in   CH2Cl2/MeCN   followed   by   HCl   (aq),   2)   4-­‐ iodonitrobenzene,  Pd2dba3,  AsPh3  and  CuI  in  Et3N/toluene;  b:  1)  desilylation  as  in   a,   2)   1,2-­‐diiodo-­‐4,5-­‐bis(octyloxy)benzene,   Pd2dba3,   AsPh3   and   CuI   in   Et3N/toluene;  c:  1)  desilylation  as  in  a,  2)  1-­‐ethynyl-­‐4-­‐nitrobenzene,  Pd(PPh3)2Cl2   and  CuI  in  Et3N/toluene;  d:  1)  desilylation  as  in  a,  2)  1-­‐ethynyl-­‐4-­‐cyanobenzene,   Pd2dba3,  AsPh3  and  CuI  in  Et3N/toluene.          

Acetylenic   scaffolding   in   two   directions   can   be   made   possible   via   SubPc   building   blocks   having   both   axial   and   peripheral   handles   that   allow   for   further   transformations.   24,25 Torres   and   co-­‐workers   have   shown   that   iodo-­‐ functionalized   SubPcs   can   be   alkynylated   at   the   peripheral   positions   via   Sonogashira   reactions,   and   we   have   recently   shown   that   having   an   axially   positioned   alkyne   works   well   for   16 coupling  reactions  along  this  direction.  As  peripheral  handles   we   decided   on   aryl   iodides   and   bromides.   Starting   from   phthalonitrile   and   either   4-­‐iodophthalonitrile   7   or   the   4-­‐(4-­‐ bromophenyl)   extended   phthalonitrile   8,   three   bifunctional   building   blocks   9,   10   and   11   were   synthesized   (Scheme   3).   Activation   of   the   formed   SubPc   chlorides   was   achieved   using   3 AgOTf   according   to   the   protocol   by   Guilleme   et   al.   Building   blocks   9   and   11   having   unprotected   terminal   alkynes   could   26 both   be   dimerized   when   subjected   to   oxidative   Glaser-­‐Hay   coupling  conditions  to  afford  the  SubPc  dimers  12  and  13  with   peripheral  aryl  iodide  and  bromide,  respectively  (Scheme  4).    

X O N N

N B

N N

I

N

I

9 (15%, X = H) 10 (3%, X = TMS)

1) 7, BCl 3,o-DCB, reflux 2) AgOTf X HO NEt(i-Pr)2, PhMe

CN CN

7

CN

(excess) CN

Br

     

1) 8, BCl 3, o-DCB, reflux 2) AgOTf H HO NEt(i-Pr)2, PhMe

CN

8

CN

 

H O

     

N N

N B N

N

11 (3%)

N

Br

Scheme   3   Synthesis   of   building   blocks   9,   10   and   11   in   a   two-­‐step   sequence   consisting   of   a   mixed   phthalonitrile   cyclotrimerization   followed   by   axial   functionalization.  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

J.  Name.,  2013,  00,  1-­‐3  |  3  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

Page 3 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Journal  Name  

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

 

          R                                            

O N N

N B

N N

N 9 or 11

CuCl, Et 3N CH 2Cl 2, 40 !C

2

O N N

N B

N

13: R =

N

O

N

Br (43%)

R TMS Pd 2dba3, AsPh3, CuI Et 3N/PhMe 1:3, rt

R=I

N

12: R = I (55%)

N

N B

2

N

Scheme   5   Synthesis   of   SubPc   scaffold   15   and   selective   TMS-­‐desilylation   to  

N

provide  16.      

N

14 (70%)

potential  building  block  for  stepwise  coupling  reactions  of  the   View Article Online DOI: 10.1039/C7OB01907F two  alkynes.       10   TIPS   92% Pd 2dba3, AsPh3, CuI   Et 3N/PhMe 1:3, rt     TMS   O   N N N   B N N   TIPS N   15     1) AgF, MeCN/PhMe 55% 2) HCl (aq)       O   N N N   B   N N   TIPS N   16  

 

TMS

Scheme   4   Synthesis   of   SubPc   dimers   12-­‐14   (mixture   of   diastereoisomers;   peripheral   substituent   groups   at   meta   positions).   TMEDA   =   N,N,N’,N’-­‐ tetramethylethylenediamine.    

Peripheral   functionalization   of   SubPc   dimer   12   was   next   accomplished   by   a   two-­‐fold   Sonogashira   coupling   with   TMS-­‐ acetylene,  again  employing  the  Pd2dba3/AsPh3  catalyst  system.   This   afforded   the   extended   SubPc   dimer   14   in   good   yield.   When   SubPc   dimer   13   with   peripheral   arylbromides   was   subjected   to   similar   conditions,   however,   no   reaction   occurred.   This   coupling   was   also   attempted   using   P(t-­‐Bu)3   as   ligand,   known   for   enabling   Sonogashira   couplings   to   aryl   27 bromides   at   room   temperature,   but   still   no   couplings   were   accomplished.  Finally  when  elevated  temperatures  (40–60  °C)   were   tried   to   promote   the   couplings,   unfortunately,   decomposition  of  the  SubPc  moiety  took  place.     The   axially   protected   building   block   10   could   be   reacted   directly   in   a   Sonogashira   reaction   with   TIPS-­‐acetylene   to   give   the   SubPc   15   in   excellent   yield   (Scheme   5).   Having   found   suitable  conditions  for  the  desilylation  of  SubPc  derivatives,  we   wanted   to   explore   whether   these   could   be   used   to   chemoselectively   remove   only   the   TMS   group   of   15,   leaving   the   sterically   hindered   TIPS   group   unreacted.   Indeed,   this   turned  out  to  be  possible  in  a  spot-­‐to-­‐spot  conversion  on  TLC.   When  only  one  equivalent  of  silver  fluoride  was  used,  15  was   selectively  deprotected  to  give  16  with  a  terminal  alkyne  at  the   axial   position   (Scheme   5).   Compound   15   thus   presents   a  

The   Cadiot-­‐Chodkiewicz   reaction   allows   synthesis   of   unsymmetrical   1,3-­‐butadiynes   from   1-­‐haloalkynes   and   terminal   acetylenes   and   thereby   constitutes   an   important   strategy   for   constructing   acetylenic   scaffolds.   Therefore   we   decided   to   explore   the   possibility   of   preparing   1-­‐haloalkyne   derivatives   of   SubPc.   After   several   attempts,   we   found   two   methods   compatible   with   the   SubPc   moiety   (Scheme   6).   Relying   on   the   hypervalent   iodine   source   PhI(OAc)2   and   a   28 16 procedure   by   Yan  et   al.,   we   managed   to  convert   the   known   alkyne   17   into   the   iodo-­‐alkyne   18,   albeit   only   in   20%   yield   (Method   A).  Significantly   better   yielding   conditions   (Method   B;   76%)  were  achieved  by  initial  formation  of  the  silver  acetylide,   which   was   then   iodinated   using   N-­‐iodosuccinimide   (NIS).   Typically,   1-­‐iodo-­‐   and   1-­‐bromoalkynes   can   be   prepared   from   either   the   alkyne   or   the   corresponding   TMS-­‐protected   alkyne   29 using   AgNO3   and   NIS   or   N-­‐bromosuccinimide,   respectively.   However,   when   terminal   alkyne   17   was   subjected   to   such   conditions,   the   SubPc   moiety   decomposed   immediately   upon   addition   of   AgNO3.   Preparation   of   a   1-­‐chloroalkyne   derivative   was   attempted   as   well   using   trichloroisocyanuric   acid   30 according  to  the  method  by  Vilhelmsen  et  al.  Unfortunately,   these  conditions  only  resulted  in  decomposition  of  the  SubPc.   Having   prepared   the   iodoalkyne   18,   we   turned   our   attention  to  explore  its  potential  as  a  coupling  partner  in  cross-­‐   coupling  reactions  (Scheme  7).  First,  18  was  coupled  with  TMS-­‐ acetylene,   providing   the   desired   1,3-­‐butadiyne   product   19   in   decent  yield.  We  then  tried  to  carry  out  the  coupling  with  the   16 more  complex  alkyne  20  incorporating  the  electron  acceptor   C60,  and  also  in  this  case  the  desired  asymmetrical  product,  21,   was  obtained.  

4  |  J.  Name.,  2012,  00,  1-­‐3  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

ARTICLE  

Page 4 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Page 5 of 14 Journal  Name  

 ARTICLE  

 

   

X O

N

N B

 

17 (X = H)

N

Method A or B

N

(A: 20%; B: 76%)

N

CH2Cl2/CH3CN;  Method  B:  1)  AgOTf  and  Et(i-­‐Pr)2N  in  CH2Cl2,  2)  NIS.        

   

10

5

   

TMS O N B

N

0

       

N

N

 

20, Pd 2dba3 CuI, Et 3N, PhMe, rt

N

 

N B

O

O

N

N

N

N

N

 

O

Fig.  4  SubPc  dimer  with  flexible  bridge.    

N

 

N

N

21

n-C8H17 O

20

Scheme  7  Pd-­‐catalyzed  Cadiot-­‐Chodkiewicz  couplings  of  iodoalkyne  18.    

  Optical  properties   The   UV-­‐Vis   absorption   spectra   of   selected   compounds,   9,   12,   and   2   (recorded   in   chloroform)   are   shown   in   Fig.   3.   The   compounds  exhibit  a  longest-­‐wavelength  absorption  maximum   at   567   nm   (9),   573   nm   (12),   and   568   nm   (2)   characteristic   for   the   SubPc   chromophore   and   close   to   that   of   the   previously   16 reported   dimer   22   (563   nm) .   This   absorption   is   about   twice   as   intense   for   12   and   2   as   that   for   9   in   accord   with   the   two   SubPc   units   present   in   12   and   2.   The   two   SubPc   units   in   the   dimers   seem   to   function   as   independent   chromophores   in   both   dimers.   We   shall   see,   however,   that   the   nature   of   the   bridge   plays   a   significant   role   for   the   electrochemical   properties.   Introducing   p-­‐nitrophenyl   substituents   at   the   TEE   core   (compound   3)   does   not   alter   the   longest-­‐wavelength   absorption   (570   nm;   see   ESI).   The   SubPc   absorptions   in   the   16 SubPc-­‐C60   dyad   21   (previously   studied)   are   not   strongly   influenced   either   by   the   presence   of   the   C60   unit,   and   it     exhibits  a  longest-­‐wavelength  absorption  at  563  nm.  

N B

N N

N

22

 

n-C8H17 O N B

600

chloroform.    

18

N

500

Fig.   3   UV-­‐Vis   absorption   spectra   of   9   (dotted),   12   (solid),   and   2   (dashed)   in  

TMS Pd 2dba3, CuI, AsPh3 Et 3N, PhMe, rt

20%

400

Wavelength (nm)

 

N

N 19

42%

300

 

N

The  fluorescence  properties  depend  on  the  other  hand  strongly  on   the  bridging  unit  or  the  presence  of  C60.  The  fluorescence  spectra  of   dimers   2   and   22   in   chloroform   are   shown   in   Fig.   5,   while   that   of  the   SubPc-­‐C60   dyad   21,   only   exhibiting   very   low   emission,   is   shown   in   the   ESI.   They   exhibit   emission   maxima   at   about   the   same   wavelength;   572   nm   (2),   574   nm   (21),   and   573   nm   (22),   while   the   emission   intensities   vary   significantly.   Compound   22   exhibits   the   highest  fluorescence  quantum  yield  of  39%.  It  is  well  known  that  C60   1 quenches   the   SubPc   fluorescence   in   SubPc-­‐C60   conjugates,   and,   indeed,   we   determine   the   quantum   yield   of   21   to   only   ca.   1%.   Compound   2   exhibits   a   quantum   yield   of   29%;   the   TEE   core   thus   reduces   the   fluorescence   relative   to   that   of   22.   The   fluorescence   lifetimes   were   determined   to   1.8   ns   and   1.9   ns   for   2   and   22,   respectively.   14

  12

           

10 8 6 4

 

2

 

0

 

Normalized Emission (a.u.)

N

ε (104 M-1cm-1)

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

 

18 (X = I)

Scheme   6   Synthesis   of   iodoalkyne   18.   Method   A:   KI,   CuI,   PhI(OAc)2,   Et3N   in  

                                               

DOI: 10.1039/C7OB01907F

300

400

500

600

700

Wavelength (nm) Fig.   5   UV-­‐Vis   absorption   spectra   (full   line)   and   normalized   emission   spectra   (dashed   line)   of   compound   2   (black),   22   (red)   and   21   (blue)   in   chloroform.   The   emission   spectrum  of  21  is  not  shown  as  its  fluorescence  is  very  weak  (but  included  in  the  ESI).  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

J.  Name.,  2013,  00,  1-­‐3  |  5  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

N

View Article Online 15

ε (104 M-1cm-1)

           

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Journal  Name  

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

Redox  properties  and  HOMO-­‐LUMO  calculations   The   redox   properties   of   selected   SubPc   derivatives   were   investigated   by   cyclic   voltammetry   (in   CH2Cl2   with   0.1   M   Bu4NPF6  as  supporting  electrolyte).  The  cyclic  voltammograms   of   17,   22,   2   and   3   are   shown   in   Figures   6   and   7.   The   formal   o potentials,   E ’,   are   reported   for   reversible   electron   transfers   with   reverse   current   being   observed   during   the   back   scan.   When  follow-­‐up  reactions  are  so  fast  that  reverse  currents  are   not   clearly   observed,   and   the   potentials   for   that   reason   do   not   necessarily   have   a   thermodynamic   significance,   we   report   in   the  following  instead  the  peak  potential,   Ep.  All  potentials  are   + given  in  V  vs  Fc/Fc .   The   reduction   of   17   takes   place   in   two   steps.   First,   a   reversible   one-­‐electron   transfer   to   the   radical   anion   is   o observed   at   E ’   =   -­‐1.60   V   and   this   is   followed   by   further   o reduction   at   E ’   =   -­‐2.11   V   to   a   reactive   dianion   for   which   reverse   current   is   barely   seen   during   the   backward   scan.   Instead  one  major  oxidation  peak  with   Ep  =  -­‐0.94  V  and  three   minor   oxidation   peaks   corresponding   to   the   oxidation   of   intermediate   anions   formed   by   bond   cleavage   and/or   protonation   by   residual   water   of   the   dianion   are   observed.   One-­‐electron   oxidation   of   17   to   a   reactive   radical   cation   is   o observed  at  E ’  =  0.54  V  and  a  small  peak  corresponding  to  the   reduction   of   one   or   more   cations   formed   by   the   follow-­‐up   reaction   of   the   radical   cation   is   observed   at   Ep   =   -­‐0.02   V   during   the   backward   scan.   The   concentration-­‐normalized   peak   currents,   ip/c,   observed   for   the   first   reduction   and   oxidation   –1 peaks  were  found  to  be  19.7  and  20.8  μA  mM ,  respectively,   –1 and   in   the   following   the   average,   ~20   μA   mM ,   will   serve   as   the   expectation   value   for   a   simple   one-­‐electron   process   for   related   compounds   with   comparable   diffusion   coefficients,   D.   The   behavior   of   22   is   similar.   The   potentials   for   the   two   o o reductions   are   observed   at   E ’   =   -­‐1.57   V   and   E ’   =   -­‐2.08   V,   respectively,   and   the   potential   for   oxidation   at   Ep   =   0.54   V.   Product   peaks   of   a   similar   origin   as   those   resulting   from  17   are   observed  at  Ep  =  -­‐0.93  V  and  Ep  =  -­‐0.12  V.  By  comparison  of  the   results   obtained   for   17   and   22   it   is   seen   that   the   two   compounds   are   reduced   and   oxidized   at   nearly   the   same   potentials.  The  small  difference,  ~30  mV,  in  favor  of  22  for  the   reversible   reduction   agrees   well   with   the   statistical   factor,   31 (RT/F)ln4  =  35.6  mV  at  T=298  K,  caused  by  the  difference  in   •-­‐ 2-­‐ symmetry   between   22   (unsymmetrical)   and   22   and   22   (symmetrical).   Thus,   there   seems   to   be   only   negligible   electronic   interaction   between   the   two   halves   of   22   as   also   expected  considering  that  the  two  SubPc  units  in  22  are  linked   by   the   partly   saturated   -­‐O-­‐CH2CH2-­‐C≡C-­‐C≡C-­‐CH2CH2-­‐O-­‐   bridge.   This   is   further   substantiated   by   the   results   of   a   series   of   DFT   calculations   (B3LYP/cc-­‐pVDZ)   demonstrating   that   22   is   indeed   a   degenerate   system   with   two   independent   SubPc   units   as   illustrated  by  the  HOMO-­‐LUMO  pictures  in  Fig.  8.              

         

View Article Online

DOI: 10.1039/C7OB01907F

              Fig.   6   Cyclic   voltammograms   of   17   and   22   recorded   in   CH2Cl2   (0.1   M   Bu4NPF6)   at   a   -­‐1 glassy  carbon  electrode  (d  =  3  mm)  at  a  scan  rate  of  0.1  V  s .    

                  Fig.  7  Cyclic  voltammograms  of  2  and  3  recorded  in  CH2Cl2  (0.1  M  Bu4NPF6)  at  a  glassy   -­‐1 carbon  electrode  (d  =  3  mm)  at  a  scan  rate  of  0.1  V  s .      

6  |  J.  Name.,  2012,  00,  1-­‐3  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

ARTICLE  

Page 6 of 14

Page 7 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Journal  Name  

 ARTICLE  

 

View Article Online

DOI: 10.1039/C7OB01907F

     

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

  Fig.  8  Degenerate  HOMOs  (bottom)  and  LUMOs  (top)  of  22.  

The   values   of   ip/c   for   the   first   reduction   and   oxidation   –1 peaks   for   22   are   29.8   and   26.2   μA   mM ,   respectively,   values   that  are  larger  than  those  observed  for  the  monomer,  17,  but   still  less  than  twice  those  for  17.  This  reflects  that  the  diffusion   coefficients   for   22,   and   its   ions,   are   significantly   smaller   than   those   for   17,   and   its   ions,   owing   to   the   much   larger   structure   of  22.  The  reductions  of  2  and  3  proceed  similarly  to  those  for   17  and  22,  but  with  one  notable  exception.  For  2  a  reversible   o two-­‐electron  process  is  observed  at  E ’  =  -­‐1.57  V,  whereas  for   3   the   reduction   appears   as   two   closely   spaced   one-­‐electron   o o transfers   at   E ’   =   -­‐1.42   and   E ’   =   -­‐1.54   V.   It   should   be   noticed   o also  that  the  reduction  peak  for  2  at  E ’  =  -­‐1.57  V  is  unusually   sharp   indicating   that   the   two-­‐electron   process   may   include   potential   inversion,   that   is,   the   reduction   proceeds   as   an   eCe   process   with   the   chemical   step,   C,   being   an   internal   reorganization  of  the  structure  resulting  in  a  radical  anion  that   is   easier   to   reduce   than   the   substrate,   2.   It   is   tempting   to   suggest   that   the   reorganization   is   caused   by   the   steric   requirements   exerted   by   the   two   TIPS   groups   that   result   in   a   calculated  B-­‐B  distance  of  only  6.42  Å  (only  a  little  larger  than   the   one   found   by   crystallography;   6.16   Å)   as   shown   in   Fig.   9.   Also,   it   is   clearly   seen   that   the   C-­‐C≡C-­‐B   moiety   is   non-­‐linear.   For   comparison   the   B-­‐B   distance   of   the   relaxed   structure   3,   7.07   Å,   is   significantly   larger   and   in   addition   the   C-­‐C≡C-­‐B   moiety   is   perfectly   linear.   Potential   inversions   caused   by   the   release   of   steric   repulsion   have   been   reported   in   many   cases   32 including,  e.g.,  the  reduction  of  aromatic  dinitro  compounds   33 and   the   oxidation   of   an   extended   tetrathiafulvalene .   This   aspect   of   the   reduction   of   2   is   now   under   investigation.   Further   reduction   of   2   takes   place   at  Ep   =   -­‐2.15   V.   According   to   -­‐1 the   peak   height,   ~20   μA   mM ,   this   appears   to   be   a   one-­‐ electron  process  generating  a  reactive  radical  trianion  with,  as   before   for   17   and   22,   an   oxidation   peak   resulting   from   an   •3-­‐ anion  produced  by  reaction  of  2  being  observed  at  Ep  =  -­‐0.93   V.  

  Fig.  9  Structures  of  2  (top)  and  3  (bottom)  resulting  from  B3LYP/cc-­‐pVDZ  calculations.  

The  reduction  of  3  is  noticeably  different  in  the  sense  that   the   reduction   proceeds   as   two   closely   spaced   one   electron   – processes;  the  value  of  ip/c  for  the  combined  peak  is  31.7  mM 1 ,   which   is   only   slightly   smaller   than   that   for   2.   Here   it   is   of   interest   to   compare   the   HOMOs   and   LUMOs   for   the   two   compounds   (Fig.   10).   Compound   2,   that   owing   to   the   compression   of   the   two   SubPc   units   caused   by   the   TIPS   groups   is  not  completely  symmetrical,  has  a  set  of  nearly  degenerate   HOMOs  and  a  LUMO  that  encompass  both  SubPc  units  and  the   TEE   spacer.   Compound   3,   that   is   perfectly   symmetrical,   has   a   set  of  degenerate  HOMOs,  but  in  contrast  to  2  a  LUMO  that  is   almost   entirely   centered   on   the   two   electron-­‐withdrawing   p-­‐ nitrophenyl   groups   and   the   acetylenic   spacer   and   only   marginally   on   the   SubPc   units.   This   may   explain   why   3   is   reduced  ~150  mV  more  easily  than  2.  The  oxidations  of  2  and  3   are   complicated   processes,   indicating   interactions   between   the   two   SubPc   units,   and   appear   as   double   peaks   of   low   intensity,  for  2  at  Ep  =  0.54  V  and  0.65  V  and  for  3  at  Ep  =  0.58  V   and  0.66  V.  The  value  of  ip/c  for  3,  for  example,  is  as  low  as  18   –1 μA   mM .   This   cannot   possibly   be   related   to   diffusion   coefficient   differences   and   the   origin   is   presently   unknown.   However,   further   research   into   this   behavior   was   deemed   to   be  beyond  the  scope  of  this  study.                        

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

J.  Name.,  2013,  00,  1-­‐3  |  7  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

 

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Journal  Name  

           

when   the   TEE   contains   geminally   substituted   p-­‐nitrophenyl   View Article Online DOI: 10.1039/C7OB01907F groups.   With   the   more   flexible   1,8-­‐di( λ1-­‐oxidanyl)octa-­‐3,5-­‐ diyne   linker   the   two   SubPc   units   instead   behaved   as   independent   redox   centers,   both   in   regard   to   oxidations   and   reductions.   Fluorescence   studies   revealed   that   the   TEE   linker   reduces  the  SubPc  fluorescence,  but  not  to  the  same  degree  as   a  C60  unit  that  strongly  quenches  it.    

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

           

Experimental  Section   General  procedures  

                    Fig.   10.   Frontier   orbital   pictures   of   a)   2   (top:   LUMO;   bottom:   nearly   degenerate   HOMOs);  b)  3  (top:  LUMO;  bottom:  degenerate  HOMOs).  

Conclusions   To   summarize,   we   have   successfully   synthesized   several   new   acetylenic   scaffolds   containing   SubPcs   by   employing   reaction   conditions   compatible   with   this   sensitive   chromophore.   Protodesilylation   of   silyl-­‐protected   alkynes   turned   out   particularly  challenging  in  the  presence  of  the  SubPc  unit,  but   we   found   that   desilylation   of   both   TMS-­‐   and   TIPS-­‐protected   scaffolds   could   be   accomplished   using   AgF   followed   by   aqueous   HCl.   Moreover,   the   more   labile   TMS   group   could   be   removed   selectively   in   the   presence   of   the   TIPS   group.   This   result   is   particularly   important   for   the   ability   to   perform   stepwise  acetylenic  scaffolding  along  for  example  the  axial  and   peripheral  positions.  Protocols  for  iodination  of  alkynes  in  the   presence   of   the   SubPc   unit   were   also   developed.   Thus,   we   managed   to   achieve   this   conversion   by   the   action   of   either   AgOTf/Hünig’s   base/NIS   or   PhI(OAc)2/KI/CuI/Et3N,   the   former   method   being   highest   yielding.   The   resulting   SubPc   –   iodoalkyne   was   then   subjected   to   cross-­‐couplings   to   yield   unsymmetrical  1,3-­‐butadiyne  SubPc  derivatives.       While   no   interactions   between   the   two   SubPc   units   in   the   dimeric   structures   were   evidenced   by   UV-­‐Vis   absorption   spectroscopy,   electrochemical   studies   revealed   that   a   short   TEE  linker  has  a  strong  influence  on  the  redox  properties.  The   SubPc   oxidations   occur   stepwise,   and   so   do   the   reductions  

All   reagents   and   solvents   were   obtained   from   commercial   suppliers   and   used   as   received   unless   otherwise   stated.   The   following   compounds   were   prepared   according   to   reported   2,16 17 literature   procedures:   SubPc-­‐Cl,   1,   1-­‐(bromoethynyl)-­‐4-­‐ 22 23 nitrobenzene,   4-­‐(iodoethynyl)benzonitrile,   1,2-­‐ 34 16 16 dioctyloxybenzene,   20,   and   17.   Anhydrous   THF   was   obtained   by   distillation   from   a   Na/benzophenone   couple.   Anhydrous   pyridine   was   obtained   from   storage   over   KOH.   Purification   by   column   chromatography   was   carried   out   on   silica   gel   (SiO2,   60   Å,   40−63   μm).   Thin-­‐layer   chromatography   (TLC)   was   carried   out   using   commercially   available   aluminum   sheets   precoated   with   silica   gel   with   fluorescence   indicator     1 13 and   visualized   under   UV   light   at   254   or   360   nm. H   and   C   NMR  spectra  were  recorded  on  a  500  MHz  instrument  at  500   11 MHz   and   126   MHz,   respectively.   B   NMR   spectra   were   recorded   on   a   500   MHz   instrument   equipped   with   a   broad-­‐ band   probe.   Chemical   shift   values   are   quoted   in   ppm   and   1 13 coupling   constants   (J)   in   Hz.   H   and   C   NMR   spectra   are   referenced   against   the   residual   solvent   peak   (CDCl3   δH   =   7.26   ppm,   δC   =   77.16   ppm;   C6D6   δH   =   7.16   ppm,   δC   =   128.06   ppm).   11 B   NMR   spectra   are   referenced   against   an   external   standard   of   BF3   diethyl   etherate   (BF3·∙(OC2H5)2;   δB   =   0   ppm).   HRMS   MALDI   spectra   were   recorded   on   an   ESP-­‐MALDI-­‐FT-­‐ICR   instrument   equipped   with   a   7T   magnet   (prior   to   the   experiments,   the   instrument   was   calibrated   using   NaTFA   cluster   ions).   Crystallographic   analysis:   Bruker   D8-­‐venture   diffractometer   using   Kα   (M0)   radiation.   Data   reduced   with   35 Apex  and  solved  with  OLEX2.  Cyclic  voltammetry  was  carried   out  at  room  temperature  in  CH2Cl2  containing  Bu4NPF6  (0.1  M)   as   the   supporting   electrolyte   using   an   Autolab   PGSTAT12   instrument   driven   by   the   Nova   1.11   software.   The   working   electrode   was   a   circular   glassy   carbon   disk   (d   =   3   mm),   the   counter   electrode   was   a   platinum   wire   and   the   reference   electrode  was  a  silver  wire  immersed  in  the  solvent-­‐supporting   electrolyte  mixture  and  physically  separated  from  the  solution   containing  the  substrate  by  a  ceramic  frit.  The  potential  of  the   reference   electrode   was   determined   vs   the   + ferrocene/ferrocenium   (Fc/Fc )   redox   system   in   separate   -­‐1 experiments.   The   voltage   sweep   rate   was   0.1   Vs .   iR-­‐ Compensation   was   used   in   all   experiments.   Solutions   were   purged   with   argon   saturated   with   CH2Cl2   for   at   least   ten   min   before  the  measurements  were  made  after  which  a  stream  of   argon   was   maintained   over   the   solutions.   UV−Vis   absorption   measurements  were  performed  in  a  1  cm  path-­‐length  cuvette,   and   the   neat   solvent   was   used   as   baseline;   sh   =   shoulder.   All  

8  |  J.  Name.,  2012,  00,  1-­‐3  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

ARTICLE  

Page 8 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

Journal  Name  

 ARTICLE  

fluorescence   quantum   yields   were   measured   using   a   Lambda   1050   (PerkinElmer)   instrument   for   absorption   measurements   and   a   Fluotime   300   (PicoQuant)   instrument   for   fluorescence   measurements.   For   all   quantum   yield   determinations,   cresyl   violet   perchlorate   in   absolute   ethanol   was   used   as   reference   36 dye.   All   melting   points   are   uncorrected.   The   computations   were   carried   out   at   the   DFT   B3LYP/cc-­‐pVDZ   level   of   theory   using   either   a   local   HP   ML350   workstation   or   computers   hosted   by   the   High   Performance   Computing   Center   at   the   University  of  Copenhagen.  The  Gaussian  G09  suite  of  programs   37 (Revs.   B.01   or   E.01)   were   used   throughout.   The   initial   structures   were   generated   by   GaussView   5.0   except   for   2   for   which   the   X-­‐ray   structure   was   used   as   input   in   order   to   have   the   same   orientation   and   conformation   of   the   TIPS   groups.   True  minima  resulted  in  all  cases  as  evidenced  by  the  absence   of  negative  frequencies.       1,2-­‐Diiodo-­‐4,5-­‐bis(octyloxy)benzene.   1,2-­‐Dioctyloxybenzene   (22.3   g,   63.7   mmol),   iodine   (15.2   g,   59.9   mmol)   and   periodic   acid  (5.95  g,  26.1  mmol)  were  dissolved  in  a  mixture  of  AcOH   (250   mL),   H2O   (50   mL)   and  95%   H2SO4   (8   mL),   and  the  reaction   mixture  was  heated  to  80  °C  for  18  h,  whereupon  the  color  of   the   reaction   mixture   changed   from   purple   to   dark   red.   After   cooling  to  rt  the  reaction  mixture  was  quenched  with  a  sat.  aq.   solution  of  Na2S2O3  (200  mL)  giving  a  white  slurry  with  a  brown   precipitate.   The   brown   solids   were   filtered   off,   and   the   filter   was   washed   with   CH2Cl2   (500   mL).   The   organic   phase   was   separated  and  the  aq.  phase  washed  with  CH2Cl2  (3  x  100  mL).   The  combined  organics  were  washed  with  water  (500  mL)  and   brine   (500   mL),   dried   with   MgSO4,   filtered,   and   the   solvents   were   removed   in   vacuo.   Purification   by   flash   column   chromatography   (SiO2,   10%   CH2Cl2/heptanes)   gave   the   title   compound   (29.4   g,   79%)   as   a   white   solid.   Rf   =   0.40   (10%   1 CH2Cl2/heptanes).   M.p.   47-­‐48   °C.   H   NMR   (500   MHz,   CDCl3)   δ   7.25   (s,   2H),   3.92   (t,   J   =   6.6   Hz,   4H),   1.82-­‐1.74   (m,   4H),   1.47-­‐ 13 1.41   (m,   4H),   1.38-­‐1.23   (m,   16H),   0.88   (m,   6H)   ppm.   C   NMR   (126  MHz,  CDCl3)  δ  149.92,  123.94,  96.11,  69.63,  31.94,  29.43,   29.38,   29.19,   26.06,   22.81,   14.24   ppm.   HRMS   (MALDI+):   m/z   • + • + [M ]  calcd  for  [C22H36I2O2 ]  586.0799,  found  586.0754.     Compound  2.  SubPc-­‐Cl  (775  mg,  1.80  mmol,  2.3  equiv.)  and  1   (455  mg,  0.78  mmol)  were  suspended  in  o-­‐dichlorobenzene  (4   mL)  and  stirred  at  rt  for  1.5  h,  after  which  AlCl3  (379  mg,  2.84   mmol,   3.6   equiv.)   was   added,   and   the   reaction   mixture   was   stirred   for   an   additional   2.5   h.   The   reaction   mixture   was   quenched   with   pyridine  (0.5  mL)  and  filtered  through  a  plug  of   neutral   Brockman   I   Al2O3   (0–100%   EtOAc/toluene),   and   the   filtrate  was  concentrated  in  vacuo.  Purification  by  flash  column   chromatography  (SiO2,  5–50%  EtOAc/toluene)  gave  compound   2   as   pink,   metallic   crystals   (600   mg,   63%).   Rf   =   0.59   (30%   ◦ EtOAc/toluene).   Mp.   >230   C.   Crystals   suitable   for   X-­‐ray   1 crystallography   were   grown   from   CH2Cl2/MeOH   1:2.   H   NMR   (500  MHz,  CDCl3)  δ  8.61  (dd,  J  =  6.0,  3.0  Hz,  12H),  7.56  (dd,  J  =   13 6.0,  3.0  Hz,  12H),  0.82  (s,  42H)  ppm.   C  NMR  (126  MHz,  CDCl3)   δ   150.54,   130.73,   129.44,   122.06,   117.63,   115.43,   103.12,   101.27,   18.64,   11.03   ppm   (two   signals   missing   due   to   overlap).   11 B  NMR  (160  MHz,  CDCl3)  δ  -­‐21.0  ppm.  HRMS  (MALDI+):  m/z  

+

+

[M+H]   calcd   for   [C76H67B2N12Si2]   1225.5331,   View Articlefound   Online 4 -­‐1 -­‐1 1225.5403.  UV-­‐vis  (CHCl3):  λ  [nm]  (ε  [10 DOI:  M 10.1039/C7OB01907F cm ])  568  (14.6),   520sh,  341sh,  307  (11.5),  270  (7.3).     Compound  3.  Compound  2  (76  mg,  0.062  mmol)  was  dissolved   in   CH2Cl2   (5   mL)   using   sonication   for   15   min,   and   the   suspension   was   flushed   with   Ar.   After   addition   of   AcOH   (0.5   mL,   0.7   M   in   CH2Cl2),   AgF   (80   mg,   0.63   mmol,   10   equiv.)   and   MeCN  (2  mL),  the  mixture  was  stirred  at  rt  for  14  h  under  an  Ar   atm.   The   solution   was   washed   with   0.05   M   HCl   (200   mL)   and   subjected  to  numerous  extractions  with  CH2Cl2  (a  total  volume   of   500   mL),   dried   over   MgSO4,   and   concentrated   to   near   dryness  under  reduced  pressure.  Toluene  (20  mL)  was  added,   and   residual   CH2Cl2   was   removed   in   vacuo.   To   the   solution   were   added   4-­‐iodonitrobenzene   (158   mg,   0.70   mmol,   11   equiv.),   CuI   (6.1   mg,   0.032   mmol,   52   mol%),   Pd2dba3   (18   mg,   0.020   mmol,   32   mol%)   and   AsPh3   (47   mg,   0.15   mmol,   2.7   equiv.).   The   mixture   was   flushed   with   Ar   for   30   min,   after   which   Et3N   (0.5   mL)   was   added   and   the   resulting   reaction   mixture   was   stirred   vigorously   at   room   temperature   for   22   h.   The   reaction   mixture   was   filtered   through   a   plug   of   silica   (1.   CH2Cl2   (500   mL),   2.   EtOAc   (300   mL)),   and   the   purple   filtrate   was   collected   and   purified   by   flash   column   chromatography   (SiO2,   10–20%   EtOAc/toluene).   Concentration   under   reduced   pressure   resulted   in   compound   3   as   a   purple   solid   (22   mg,   ◦ 1 33%).   Rf   =   0.44   (20%   EtOAc/toluene).   M.p.   >230   C.   H   NMR   (500  MHz,  CDCl3)  δ  8.66  (dd,  J  =  6.0,  3.0  Hz,  12H),  7.92  (d,  J  =   9.1  Hz,  4H),  7.73  (dd,  J  =  6.0,  3.0  Hz,  12H),  7.11  (d,  J  =  9.1  Hz,   13 4H)  ppm.   C  NMR  (126  MHz,  CDCl3)  δ  150.31,  147.17,  132.20,   130.50,  129.69,  128.49,  123.42,  122.01,  119.36,  115.76,  95.78,   11 90.03  ppm  (two  signals  missing  due  to  overlap).   B  NMR  (160   + MHz,   CDCl3)   δ   -­‐21.0   ppm.   HRMS   (MALDI+):   m/z   [M+H]   calcd   + for  [C70H32B2N14O4]  1155.2990,  found  1155.2959.       Compound   4.   Compound   2   (39.9   mg,   0.032   mmol)   was   dissolved   in   CH2Cl2   (5   mL)   using   sonication   for   35   min   after   which  AcOH  (0.5  mL,  0.7  M  in  CH2Cl2),  AgF  (44  mg,  0.35  mmol,   11   equiv.)   and   MeCN   (2   mL)   were   added,   and   the   reaction   mixture   was   stirred   for   13   h   at   rt.   The   solution   was   washed   with   0.1   M   HCl   (100   mL)   and   subjected   to   numerous   extractions  with  CH2Cl2  (a  total  volume  of  300  mL),  dried  over   MgSO4   and   concentrated   to   near   dryness   under   reduced   pressure.   Toluene   (5   mL)   was   added   and   residual   CH2Cl2   removed  in  vacuo.  The  solution  was  added  dropwise  to  an  Ar-­‐ purged  solution  of  1,2-­‐diiodo-­‐4,5-­‐bis(octyloxy)benzene  (142.4,   0.24   mmol,   7.6   equiv.),   Pd2dba3   (9.1   mg,   0.009   mmol,   30   mol%),  CuI  (5.2  mg,  0.027  mmol,  90  mol%)  and  AsPh3  (17.6  mg,   0.057   mmol,   180   mol%)   in   toluene   (1   mL)   and   Et3N   (0.7   mL)   during  the  course  of  20  min,  and  the  mixture  was  stirred  at  rt   for  2  h.  The  reaction  mixture  was  washed  with  water  (100  mL),   extracted  with  CH2Cl2,  dried  over  MgSO4,  and  concentrated  in   vacuo.  Purification  by  flash  column  chromatography  (SiO2,  10%   EtOAc/toluene)   yielded   the   title   compound   4   as   a   dark   pink   solid  (17  mg,  29%).  Rf  =  0.36  (20%  CH2Cl2/toluene).  M.p.  >230   ◦ 1 C.   H  NMR  (500  MHz,  CDCl3)  δ  8.50  (dd,  J  =  5.9,  3.1  Hz,  12H),   7.44   (dd,   J   =   5.9,   3.1   Hz,   12H),   7.11   (s,   2H),   6.80   (s,   2H),   4.15   (t,   J  =  6.6  Hz,  4H),  4.02  (t,  J  =  6.6  Hz,  4H),  1.98-­‐1.10  (m,  48H),  1.01-­‐

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

J.  Name.,  2013,  00,  1-­‐3  |  9  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

Page 9 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Journal  Name   13

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

0.72   (m,   12H).   C   NMR   (126   MHz,   CDCl3)   δ   150.37,   148.93,   130.57,   129.24,   122.81,   121.93,   121.11,   117.86,   117.33,   114.49,  100.19,  91.08,  87.86,  69.71,  69.45,  32.00,  29.86,  29.64,   29.54,   29.51,   29.46,   29.32,   26.34,   26.21,   22.84,   14.27   (six   + signals   missing   due   to   overlap).   HRMS   (MALDI+):   m/z   [M+H]   + calcd  for  [C102H99B2I2N12O4]  1830.6059,  found  1830.6026.     Compound   5.   Compound   2   (69.6   mg,   0.053   mmol)   was   dissolved   in   CH2Cl2   (5   mL)   using   sonication   for   10   min   after   which   AcOH   (0.5   mL,   0.7   M   in   CH2Cl2),   AgF   (71.1   mg,   0.56   mmol,  11  equiv.)  and  MeCN  (2  mL)  were  added  under  stirring,   and   the   mixture   was   stirred   for   15   h   at   rt.   The   solution   was   washed  with  0.05  M  HCl  (200  mL)  and  subjected  to  numerous   extractions  with  CH2Cl2  (a  total  volume  of  500  mL),  dried  over   MgSO4,   and   concentrated   to   near   dryness   under   reduced   pressure.  Toluene  (3.5  mL)  was  added  and  residual  CH2Cl2  was   removed   in   vacuo.   The   solution   was   purged   with   Ar   after   which   1-­‐ethynyl-­‐4-­‐nitrobenzene   (36.5   mg,   0.16   mmol,   3   equiv.),   Pd2dba3   (10   mg,   0.011   mmol,   21   mol%)   and   CuI   (8.6   mg,  0.045  mmol,  85  mol%)  were  added,  and  the  solution  was   stirred  for  7  h  at  rt  under  an  Ar  atm.  The  reaction  mixture  was   washed   with   water   (200   mL),   extracted   with   CH2Cl2   (500   mL),   dried   over   MgSO4   and   concentrated   under   reduced   pressure.   Purification  by  repeated  flash  column  chromatography  (SiO2,  1.   column:   10–20%   EtOAc/toluene,   2.   column:   20–100%   EtOAc/heptane)   gave   compound   5   as   a   pink   solid   (11.9   mg,   1 19%).   Rf   =   0.31   (20%   EtOAc/toluene).   M.p.   >230   °C.   H   NMR   (500  MHz,  CDCl3)  δ  8.69  (dd,  J  =  5.9,  3.1  Hz,  12H),  8.33  (d,  J  =   13 9.0   Hz,   4H),   7.80-­‐7.72   (m,   16H)   ppm.   C   NMR   (126   MHz,   CDCl3)   δ   150.42,   133.74,   130.84,   129.74,   123.82,   122.16   ppm   (ten   signals   missing,   5   was   only   slightly   soluble   in   the   NMR   + solvent).   HRMS   (MALDI+):   m/z   [M+H]   calcd   for   +   [C74H33B2N14O4] 1203.2990,  found  1203.2935.     Compound  6.  Compound  2  (70  mg,  0.057  mmol)  was  dissolved   in  CH2Cl2  (5  mL)  using  sonication  for  20  min  after  which  AcOH   (0.5   mL,   0.7   M   in   CH2Cl2)   and   AgF   (83   mg,   0.65   mmol,   11.4   equiv.)   were   added   under   stirring.   After   5   min,   MeCN   (2   mL)   was  added,  and  the  reaction  mixture  was  stirred  for  13   h  at  rt.   The   solution   was   washed   with   0.01   M   HCl   (100   mL)   and   subjected  to  numerous  extractions  with  CH2Cl2  (a  total  volume   of   300   mL),   dried   over   MgSO4,   and   concentrated   to   near   dryness   under   reduced   pressure.   Toluene   (5   mL)   was   added,   and   residual   CH2Cl2   was   removed   in   vacuo.   4-­‐ (iodoethynyl)benzonitrile   (50   mg,   0.20   mmol,   3.5   equiv.),   Pd2dba3   (13   mg,   0.014   mmol,   25   mol%),   CuI   (6.0   mg,   0.035   mmol,   60   mol%)   and   AsPh3   (38   mg,   0.13   mmol,   220   mol%)   were   added,   and   the   solution   was   degassed   with   Ar   for   30   min   before   addition   of   Et3N   (0.5   mL)   under   stirring.   The   reaction   mixture   was   vigorously   stirred   at   rt   for   3   h,   after   which   the   crude   mixture   was   washed   with   water   (100   mL),   extracted   with   CH2Cl2   (500   mL),   dried   over   MgSO4   and   concentrated   under   reduced   pressure.   The   resulting   dark   solid   was   purified   by   repeated   flash   column   chromatography   (SiO2,   1.   column:   10–20%   EtOAc/toluene,   2.   column:   50%   EtOAc/heptanes)   yielding  the  title  compound  as  purple  crystals  (11  mg,  17%).  Rf   ◦ 1 =  0.26  (50%  EtOAc/heptane).  M.p.  >230   C.   H  NMR  (500  MHz,  

CDCl3)  δ  8.53  (dd,  J  =  5.9,  3.1  Hz,  12H),  7.68  (d,  J  =  8.5  Hz,  4H),   View Article Online 13 10.1039/C7OB01907F 7.64   (d,   J   =   8.5   Hz,   4H),   7.57   (dd,  J   =   5.9,  DOI: 3.1   H z,   12H).   C   NMR   (126   MHz,   CDCl3)   δ   150.39,   133.43,   132.23,   130.80,   129.67,   126.83,   123.30,   122.11,   118.48,   115.11,   112.82,   83.89,   82.07,   78.42   (three   signals   missing   due   to   overlap).   HRMS   (MALDI+):   + + m/z   [M+H]   calcd   for   [C76H33B2N14]   1163.3121,   found   1163.3207.     Compound   9   (racemic   mixture).   To   a   mixture   of   4-­‐ iodophthalonitrile  (1.52  g,  6.00  mmol)  and  phthalonitrile  (3.84   g,  30.0  mmol,  5  equiv.)  in  dry  o-­‐dichlorobenzene  (200  mL)  in  a   three-­‐necked   flask   under   a   nitrogen   atmosphere   was   slowly   added  BCl3  (100  mL,  1  M  in  hexane,  100  mmol).  A  color  change   from   white-­‐yellow   to   dark   red   was   observed.   The   suspension   was   heated   to   reflux   temperature   (64   °C)   for   0.5   h,   whereafter   the   hexane   was   removed   by   distillation.   The   reaction   mixture   was  heated  to  reflux  temperature  again  (180  °C)  for  2  h,  after   which   time   no   more   of   the   starting   materials   could   be   detected   by   TLC.   The   reaction   mixture   was   transferred   to   a   one-­‐necked   flask   and   concentrated   to   dryness   under   reduced   pressure  to  yield  a  dark  purple  solid  (8.21  g).  A  fraction  of  this   solid   (3.99   g)   was   washed   with   methanol   (200   mL)   using   a   Soxhlet   extraction   apparatus   for   22   h,   and   the   remains   were   dried   in   vacuo   to   yield   a   purple   solid   mixture   (1.72   g).   The   mixture   (1.62   g)   and   AgOTf   (527   mg,   2.05   mmol)   were   transferred   to   a   dry   250   mL   round-­‐bottomed   flask   fitted   with   an   argon   balloon.   Dry   toluene   (70   mL)   was   added   and   the   mixture   was   stirred   for   1   h   at   rt.   Additional   AgOTf   (264   mg,   1.03   mmol)   was   added   as   residual   starting   material   could   be   detected   by   TLC.   Stirring   was   continued   for   1   h,   after   which   time  all  starting  material  was  consumed  judged  from  TLC.  After   an   additional   1   h   of   stirring,   NEt(i-­‐Pr)2   (0.85   mL,   4.9   mmol)   and   3-­‐butyn-­‐1-­‐ol  (1.7  mL,  23  mmol)  were  added,  and  the  reaction   mixture   was   stirred   for   20   h   at   room   temperature.   The   reaction   mixture   was   passed   through   a   short   plug   of   silica,   eluting   with   EtOAc   (300   mL),   and   the   filtrate   was   concentrated   to   dryness   under   reduced   pressure   to   yield   a   dark   purple   oil   (1.96   g)   with   a   golden   shiny   surface.   The   oil   was   dissolved   in   toluene   (10   mL)   and   subjected   to   flash   column   chromatography   (gradient   elution:   10–50%   EtOAc/toluene)   to   obtain  9  (254  mg,  16%;  based  on  the  fractions  carried  on  in  the   synthesis)  as  a  thin  purple  film  with  a  golden  shiny  surface.  Rf  =   1 0.5   (10%   EtOAc/toluene).   M.p.   >230   °C.   H   NMR   (CDCl3,   500   MHz)  δ  9.21  (d,  J  =  1.0  Hz,  1H),  8.80–8.86  (m,  4H),  8.57  (d,  J  =   8.4   Hz,   1H),   8.16   (dd,   J   =   8.4,   1.0   Hz,   1H),   7.89-­‐7.94   (m,   4H),   1.59  (t,  J  =  7.7  Hz,  2H),  1.56  (t,  J  =  2.7  Hz,  1H),  1.36  (td,  J  =  7.7,   13 2.7  Hz,  2H)  ppm.   C  NMR  (CDCl3,  126  MHz)  δ  152.62,  152.42,   151.94,   151.75,   150.62,   149.48,   138.26,   132.27,   131.33,   131.29,   131.18,   131.12,   130.20,   130.10,   130.08,   129.80,   123.46,   122.39,   122.38,   122.31,   122.27,   95.53,   80.98,   68.94,   11 57.92,   20.97   ppm   (two   signals   missing   due   to   overlap).   B   NMR   (CDCl3,   160   MHz)   δ   -­‐15.1   ppm.   HRMS   (MALDI+):   m/z   • + • + [M ]  calcd  for  [C28H16BIN6O ]  590.0518,  found  590.0525.  UV-­‐ 4 -­‐1 -­‐1 vis   (CHCl3):   λ   [nm]   (ε   [10   M cm ])   567   (8.9),   530sh,   514sh,   307  (4.4),  270  (4.2).    

10  |  J.  Name.,  2012,  00,  1-­‐3  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

ARTICLE  

Page 10 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

Journal  Name  

 ARTICLE  

Compound   10.   A   solution   of   BCl3  in   hexane   (1.0   M,   120   mL,   120   mmol)   was   added   to   a   stirring   mixture   of   4-­‐ iodophthalonitrile  (2.16  g,  8.50  mmol)  and  phthalonitrile  (5.45   g,  42.5  mmol,  5  equiv.)  in  dry  o-­‐dichlorobenzene  (150  mL),  and   o the  resulting  suspension  was  heated  to  reflux  (ca.  68   C)  for  30   min.   Hexane   was   removed   by   distillation   and   the   reaction   o mixture   was   heated   to   reflux   once   more   (ca.   180   C)   for   2   h.   Residual  BCl3  was  removed  by  a  stream  of  N2  and  the  reaction   mixture   concentrated   in   vacuo.   The   crude   residue   was   transferred   to   a   thimble   and   washed   with   MeOH   using   a   Soxhlet   extraction   apparatus   for   48   h   and   dried   in   vacuo   to   yield   a   purple   solid   residue   (984   mg).  The   residue   was   dissolved   in   dry   toluene   (50   mL),   and   AgOTf   (584   mg,   2.27   mmol)   was   added   before   the   reaction   mixture   was   stirred   at   rt   for  1  h  under  argon.  Trimethylsilyl-­‐3-­‐butyn-­‐1-­‐ol  (1.1  mL,  0.97  g,   6.8  mmol,  3.0  equiv.)  and  NEt(i-­‐Pr)2  (0.50  mL,  0.37  g,  2.9  mmol,   1.3  equiv.)  were  added,  and  the  reaction  mixture  was  stirred  at   rt   for   48   h   after   which   it   was   passed   through   a   short   plug   of   SiO2  eluting   with   EtOAc/toluene   (1:1).   The   filtrate   was   concentrated   to   dryness   and   subjected   to   flash   column   chromatography   (SiO2,   5%   EtOAc/toluene)   followed   by   size-­‐ exclusion   chromatography   (Biobeads   SX-­‐3,   CH2Cl2)   to   yield   a   purple  residue.  The  residue  was  dried  by  a  stream  for  N2  for  20   h   at   75   °C   and   subjected   to   flash   column   chromatography   (SiO2,  5%  EtOAc/toluene)  to  yield  the  title  compound  (161  mg,   3%   over   two   steps)   as   a   purple   solid.   M.p.   >230  °C.  Rf   =   0.45   1 (5%   EtOAc/toluene).   H   NMR   (CDCl3,   500   MHz)   δ   9.21   (d,  J  =   1.0   Hz,   1H),   8.86-­‐8.83   (m,   4H),   8.56   (d,  J  =   8.5   Hz,   1H),   8.16   (dd,  J  =   1.5,   8.5   Hz,   1H),   7.93-­‐7.89   (m,   4H),   1.56   (t,  J  =   7.4   Hz,   13 2H)   1.40   (t,  J  =   7.4   Hz,   1H)   ppm.   C   NMR   (CDCl3,   126   MHz)   δ   152.65,   152.45,   151.96,   151.78,   150.64,   149.50,   138.25,   133.72,   133.23,   132.25,   131.31,   131.17,   131.10,   130.20,   130.10,   130.08,   129.79,   123.47,   122.55,   122.40,   122.39,   122.32,   122.28,   103.11,   95.52,   85.36,   57.87,   22.28,   0.11   ppm.   + + HRMS   (MALDI+):   m/z   [M+H]   calcd   for   [C31H25BIN6Si]   663.0991,  found  663.0993.    

Compound   11   (racemic   mixture).   To   a   stirring   solution   of   View Article Online DOI: 10.1039/C7OB01907F phthalonitrile  (3.16  g,  24.7  mmol)  and  8  (1.40  g,  4.93  mmol)  in   dry   1,2-­‐dichlorobenzene   (200   mL)   was   added   BCl3   (100   mL,   100   mmol,   1   M   in   hexane),   and   the   reaction   mixture   was   heated  to  reflux  point  (ca.  64  °C)  for  30  min.   The   hexane   was   distilled   off,   and   the   reaction   mixture   was   once   more   heated   to   reflux   (180   °C).   After   1.5   h,   the   reaction   mixture   was   allowed   to   cool   to   rt   and   concentrated   under   reduced   pressure.   The   remaining   brown   solids   were   transferred   to   a   thimble   and   washed   continuously   with   MeOH   using   a   Soxhlet   extraction   apparatus   for   30   h.   The   Soxhlet   retentate   was   washed   with   diethylether   and   dried   in   vacuo   to   give   a   brown   powder   (1.4   g)   consisting   of   different   subphthalocyanine   chlorides.  To  an  Ar-­‐purged  round-­‐bottomed  flask  charged  with   this   mixture   and   AgOTf   (767   mg,   2.99   mmol)   was   added   toluene  (70  mL),  and  the  reaction  mixture  was  stirred  for  2  h.   Hünig’s  base  (0.53  mL,  3.0  mmol)  and  3-­‐butyn-­‐1-­‐ol  (1.1  mL,  14   mmol)  were  added,  and  a  color  change  from  purple  to  dark  red   immediately   took   place.   After   20   h,   the   reaction   mixture   was   filtered   through   a   plug   of   SiO2   (EtOAc)   and   concentrated   in   vacuo.   Purification   by   flash   column   chromatography   (SiO2,   1.   column:   5%   EtOAc/toluene,   2.   column:   25%   EtOAc/heptane)   afforded  the  title  compound  (105  mg,  3%)  as  a  purple  solid.  Rf   1 =   0.38   (30%   EtOAc/heptane).   M.p.   169-­‐170   °C.   H   NMR   (500   MHz,   CDCl3)   δ   9.04   (dd,   J   =   1.6,   0.7   Hz,   1H),   8.89   (dd,   J   =   8.2,   0.7   Hz,   1H),   8.87-­‐8.82   (m,   4H),   8.09   (dd,   J   =   8.2,   1.6   Hz,   1H),   7.94-­‐7.86  (m,  4H),  7.73  (d,  J  =  8.6  Hz,  2H),  7.68  (d,   J  =  8.6  Hz,   2H),   1.62   (t,   J   =   7.1   Hz,   2H),   1.57   (t,   J   =   2.7   Hz,   1H),   1.38   (td,   J   =   13 7.1,   2.7   Hz,   2H)   ppm.   C   NMR   (126   MHz,   CDCl3)   δ   152.01,   151.91,   151.87,   151.63,   151.43,   151.23,   141.81,   139.62,   132.38,   131.84,   131.23,   131.19,   131.18,   131.14,   130.02,   130.00,   130.00,   129.96,   129.42,   128.71,   122.72,   122.67,   122.33,   122.29,   122.24,   120.38,   81.02,   68.94,   57.94,   21.00   + ppm  (two  signals  missing).  HRMS  (MALDI+):  m/z  [M+H]  calcd   + for  [C34H20BBrN6O]  619.1050,  found  619.1048.     Compound   12   (mixture   of   diastereoisomers).   CuCl   (10   mg,   Compound   8.   To   a   mixture   of   degassed   toluene   (80   mL)   and   0.10  mmol,  3  equiv.)  and  TMEDA  (0.05  mL,  0.3  mmol,  9  equiv.)   aqueous   0.32   M   Na2CO3   (30   mL)   were   added   4-­‐ were   added   to   CH2Cl2   (4   mL)   in   an   open   flask.   Compound   9   (20   bromophenylboronic   acid   (2.4   g,   11.8   mmol),   4-­‐ mg,   0.03   mmol)   was   added   and   the   reaction   mixture   was   iodophthalonitrile   (2.3   g,   9.1   mmol)   and   Pd(PPh3)4   (523   mg,   stirred  vigorously  for  3  h  at  40  °C.  Additional  CH2Cl2  was  added   0.45   mmol),   and   the   reaction   mixture   was   heated   to   80   °C   to   the   flask   during   the   course   of   the   reaction   due   to   under   Ar.   The   reaction   mixture   was   allowed   to   cool   to   rt   and   evaporation.  The  reaction  mixture  was  passed  through  a  small   concentrated  under  reduced  pressure.  The  remaining  solid  was   plug  of  SiO2  eluting  with  EtOAc.  The  filtrate  was  concentrated   dissolved  in  EtOAc  (150  mL),  washed  with  aqueous  2  M  Na2CO3   in  vacuo  and  subjected  to  flash  column  chromatography  (SiO2,   (3  x  90  mL),  dried  over  MgSO4,  filtered  and  concentrated  under   20%   EtOAc/toluene)   to   yield   12   as   a   purple   solid   (11   mg,   55%).   1 reduced   pressure.   Purification   by   flash   column   Rf   =   0.3   (15%   EtOAc/toluene).   M.p.   >230   °C.   H   NMR   (CDCl3,   chromatography   (SiO2,   1%   EtOAc/toluene)   afforded   the   title   500  MHz)  δ  9.20  (d,  J  =  1.0  Hz,  2H),  8.80-­‐8.85  (m,  8H),  8.55  (d,  J   compound   (1.14   g,   45%)   as   a   white   powder.   Rf   =   0.36   (1%   =  8.4  Hz,  2H),  8.13  (dd,  J  =  8.4,  1.0  Hz,  2H),  7.86-­‐7.90  (m,  8H),   13 1 EtOAc/toluene).  M.p.  200-­‐201  °C.   H  NMR  (500  MHz,  CDCl3)  δ   1.51   (t,   J   =   7.0   Hz,   4H),   1.35   (t,   J   =   7.0   Hz,   4H)   ppm.   C   NMR   7.98   (dd,   J   =   1.6,   0.8   Hz,   1H),   7.90   (dd,   J   =   8.2,   1.6   Hz,   1H),   7.88   (CDCl3,   126   MHz)   δ   152.58,   152.38,   151.91,   151.73,   150.61,   (dd,  J  =  8.2,  0.8  Hz,  1H),  7.67  (d,  J  =  8.8  Hz,  2H),  7.45  (d,  J  =  8.8   149.47,   138.21,   132.27,   131.32,   131.29,   131.17,   131.11,   13 Hz,  2H)  ppm.   C    NMR    (126    MHz,    CDCl3)    δ  145.27,    135.82,     130.16,   130.07,   130.04,   129.80,   123.50,   122.42,   122.41,   134.09,     132.77,     131.75,     131.20,     128.70,     124.57,     116.73,   122.34,   122.31,   95.51,   73.69,   65.57,   57.71,   21.76   ppm   (two   + 115.30,   115.22,   114.41   ppm.   HRMS   (ESI+):   m/z   [M+H]   calcd   signals   missing   due   to   overlap   –   assuming   that   the   + diastereoisomers   have   overlapping   signals).   HRMS   (MALDI+):   for  [C14H8BrN2]  282.9865,  found  282.9868.   + +   m/z   [M+Na]   calcd   for   [C56H30B2I2N12O2Na]   1201.0782,   found  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

J.  Name.,  2013,  00,  1-­‐3  |  11  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

Page 11 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Journal  Name  

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

4

-­‐1

-­‐1

1201.0721.  UV-­‐vis  (CHCl3):  λ  [nm]  (ε  [10  M cm ])  573  (16.1),   535sh,  517sh,  307  (8.2),  272  (9.9).     Compound   13   (mixture   of   diastereoisomers).   Et3N   (0.5   mL)   was  added  to  a  suspension  of  11  (75  mg,  0.12  mmol)  and  CuCl   (14   mg,   0.14   mmol,   1.2   equiv.)   in   CH2Cl2   (3   mL),   and   the   reaction   mixture   was   stirred   vigorously   in   an   open   vessel.   Additional   CuCl   (51   mg,   0.51   mmol,   4.3   equiv.)   was   added   portion-­‐wise   during   the   course   of   the   reaction.   After   7   h,   the   reaction   mixture   was   diluted   with   EtOAc   (2   mL)   and   filtered   through   a   plug   of   SiO2   (EtOAc/CH2Cl2   1:1).   The   filtrate   was   concentrated  in  vacuo,  redissolved  in  a  small  volume  of  CH2Cl2   and   subjected   to   flash   column   chromatography   (SiO2,   5–10%   EtOAc/CH2Cl2)  to  afford  the  title  compound  (32  mg,  43%)  as  a   golden-­‐brown   solid.   Rf  =   0.38   (5%   EtOAc/CH2Cl2).   M.p.   >230   °C.   1 H   NMR   (500   MHz,   CDCl3)   δ   9.05-­‐8.99   (m,   2H),   8.89-­‐8.77   (m,   10H),  8.05  (dd,  J  =  8.2,  1.6  Hz,  2H),  7.89-­‐7.81  (m,  8H),  7.71  (d,  J   =   8.6   Hz,   4H),   7.66   (d,   J   =   8.6   Hz,   4H),   1.54   (t,   J   =   7.0   Hz,   4H),   13 1.35   (t,   J   =   7.0   Hz,   4H)   ppm.   C   NMR   (126   MHz,   CDCl3)   δ   151.81,   151.70,   151.66,   151.43,   151.23,   151.03,   141.58,   139.46,   132.21,   131.67,   131.05,   131.01,   130.99,   130.95,   129.86,   129.80,   129.78,   129.77,   129.74,   129.25,   128.50,   122.59,   122.49,   122.18,   122.15,   122.09,   120.25,   73.57,   65.48,   57.56,   21.61   ppm   (one   signal   missing   –   assuming   that   the   11 diastereomers   have   overlapping   signals).   B   NMR   (160   MHz,   • + CDCl3)   δ   -­‐15.2   ppm.   HRMS   (MALDI+):   m/z   [M ]   calcd   for   • + [C68H38B2Br2N12O2 ]  1234.1790,  found  1234.1791.     Compound   14   (mixture   of   diastereoisomers).   To   a   degassed   solution  of  Et3N/toluene  1:3  (3  mL)  was  added  TMS-­‐acetylene   (60  mg,  0.085  mL,  0.61  mmol,  40  equiv.),  and  the  mixture  was   degassed  for  1  min.  The  mixture  was  transferred  to  an  argon-­‐ purged  flask  containing  12  (18  mg,  0.015  mmol),  Pd2dba2  (3.4   mg,   0.0037   mmol,   25   mol%),   CuI   (0.7   mg,   0.004   mmol,   25   mol%),   and   AsPh3   (9.3   mg,   0.031   mmol,   2   equiv.).   The   suspension   was   stirred   for   3   h   at   rt   after   which   the   reaction   mixture   was   diluted   with   EtOAc   (3   mL)   and   passed   through   a   short  plug  of  silica  eluting  with  EtOAc/toluene  1:1.  The  filtrate   was   concentrated   to   dryness,   redissolved   in   CH2Cl2,   and   subjected   to   flash   column   chromatography   (SiO2,   10%   EtOAc/toluene)   to   yield   14   as   a   brown   shiny   solid   (12   mg,   1 70%).   Rf   =   0.3   (10%   EtOAc/toluene).   M.p.   >230   °C.   H   NMR   (CDCl3,  500  MHz)   δ  8.95  (br  s,  2H),  8.84-­‐7.78  (m,  8H),  8.74  (dd,   J  =  8.2,  0.7  Hz,  2H),  7.91  (dd,  J  =  8.3,  1.5  Hz,  2H),  7.90-­‐7.86  (m,   8H),  1.51  (t,  J  =  7.0  Hz,  4H),  1.30  (t,  J  =  7.0  Hz,  4H),  0.30  (s,  18H)   13 ppm.   C   NMR   (CDCl3,   126   MHz)   δ   152.27,   152.26,   151.76,   150.77,   150.75,   132.82,   131.29,   131.26,   131.15,   131.11,   130.80,   130.04,   130.03,   129.95,   126.12,   124.52,   122.36,   122.31,   122.31,   122.27,   122.01,   105.07,   97.28,   73.70,   65.58,   57.70,  21.75,  0.11  ppm  (three  signals  missing  due  to  overlap  –   assuming  that  the  diastereoisomers  have  overlapping  signals).   11 B  NMR  (CDCl3,  160  MHz)  δ  -­‐15.1  ppm.  HRMS  (MALDI+):  m/z   • + • + [M ]   calcd   for   [C66H48B2N12O2Si2 ]   1118.3742,   found   1118.3663.     Compound  15  (racemic  mixture).  To  an  argon-­‐flushed  mixture   of   Et3N/toluene   (1:3)   was   added   TIPS-­‐acetylene   (0.50   mL,   2.3  

mmol,   40   equiv.),   and   the   resulting   mixture   was  View flushed   with   Article Online DOI: 10.1039/C7OB01907F argon  under  sonication  for  1  min.  The  mixture   was  added  to  an   argon-­‐purged  flask  containing  10  (38  mg,  0.05  mmol),  Pd2dba3   (13   mg,   0.01   mmol,   25   mol%),   CuI   (2.7   mg,   0.01   mmol,   25   mol%)  and  AsPh3  (35  mg,  0.11  mmol,  200  mol%).  The  reaction   mixture   was   stirred   for   30   min   after   which   the   mixture   was   passed  through  a  small  plug  of  SiO2  eluting  with  EtOAc/toluene   (1:1),   concentrated   in   vacuo   and   subjected   to   flash   column   chromatography   (SiO2,   10%   EtOAc/toluene)   followed   by   size-­‐ exclusion   chromatography   (Biobeads   SX-­‐3,   CH2Cl2)   to   yield   15   (38   mg,   92%)   as   a   purple   solid.   Rf   =   0.4   (5%   EtOAc/toluene).   1 M.p.   >230   °C.   H   NMR   (CDCl3,   500   MHz)   δ   8.96   (s,   1H),   8.86-­‐ 8.83  (m,  4H),  8.75  (d,  J  =  8.3  Hz,  1H),  7.95  (dd,  J  =  1.4,  8.3  Hz,   1H),  7.91  (dd,  J  =  5.9,  3.0  Hz,  4H),  1.57  (t,  J  =  7.4  Hz,  2H),  1.40   13 (t,   J   =   7.4   Hz,   2H),   1.20   (s,   21H),   -­‐0.01   (s,   9H)   ppm.   C   NMR   (CDCl3,   126   MHz)   δ   152.26,   152.22,   151.82,   151.74,   150.81,   150.76,   133.07,   131.29,   131.22,   131.17,   131.11,   130.82,   130.08,   130.01,   129.86,   125.99,   124.99,   122.35,   122.35,   122.97,   121.97,   107.01,   103.12,   93.98,   85.34,   57.88,   22.29,   18.90,  11.54,  0.11  ppm  (three  signals  missing  due  to  overlap).   + + HRMS   (MALDI+):   m/z   [M+H]   calcd   for   [C42H44BN6OSi2]   717.3359,  found  717.3353.     Compound  16  (racemic  mixture).  AgF  (5.3  mg,  0.008  mmol,  1   equiv.)  was  added  to  a  solution  of   15  (28  mg,  0.008  mmol)  in   MeCN/toluene  1:1  (1  mL),  and  the  reaction  mixture  was  stirred   for  30  min,  after  which  the  reaction  mixture  was  washed  with   0.1   M   HCl   (3   x   20   mL).   The   organic   phase   was   dried   over   MgSO4,  concentrated  in  vacuo,  and  subjected  to  flash  column   chromatography   (SiO2,   10%   EtOAc/toluene)   to   afford   11   (14   mg,   55%)   as   a   purple   solid.   Rf   =   0.3   (5%   EtOAc/toluene).   M.p.   1 >230  °C.   H  NMR  (CDCl3,  500  MHz)  δ  8.96  (s,  1H),  8.86-­‐8.84  (m,   4H),   8.75   (d,   J   =   8.2   Hz,   1H),   7.95   (dd,  J   =   1.4,   8.2   Hz,   1H),   7.92-­‐ 7.90   (m,   4H),   1.60   (t,   J   =   7.0   Hz,   2H),   1.56   (t,   J   =   2.7   Hz,   1H),   13 1.36   (td,   J   =   7.0,   2.7   Hz,   2H),   1.20   (m,   21H)   ppm.   C   NMR   (CDCl3,   126   MHz)   δ   152.25,   152.21,   151.82,   151.73,   150.81,   150.75,   133.08,   131.31,   131.25,   131.21,   131.14,   130.85,   130.09,   130.02,   129.89,   129.86,   127.14,   125.99,   125.00,   123.66,   122.36,   122.34   122.31,   121.97,   107.01,   94.00,   81.00,   68.93,   57.94,   20.99,   18.90,   11.55   ppm.   HRMS   (MALDI+):   m/z   + + [M+H]  calcd  for  [C42H44BN6OSi2]  717.3359,  found  717.3353.     Compound   18.   Method   A:   To   an   argon-­‐flushed   mixture   of   MeCN/CH2Cl2  1:1  (5  mL)  were  added  17  (100  mg,  0.215  mmol),   PhI(OAc)2   (208   mg,   0.646   mmol,   3   equiv.),   KI   (358   mg,   2.15   mmol,   10   equiv.),   CuI   (8.2   mg,   0.04   mmol,   0.20   equiv.),   and   Et3N   (2.5   mL).   The   reaction   mixture   was   stirred   for   2   h   at   rt   after  which  it  was  partitioned  between  CH2Cl2  (20  mL)  and  H2O   (20  mL).  The  aqueous  phase  was  extracted  with  CH2Cl2  (2  x  20   mL).   The   combined   organic   phases   were   dried   over   MgSO4,   concentrated   to   dryness,   and   subjected   to   flash   column   chromatography   (SiO2,   5%   EtOAc/toluene)   to   yield   18   as   a   purple   solid   (24   mg,   20%).   Method   B:   To   a   stirring   solution   of   17   (50   mg,   0.11   mmol)   and   Et(i-­‐Pr)2N   (0.10   mL)   in   dry   CH2Cl2   (2.5  mL)  was  added  AgOTf  (49  mg,  0.19  mmol),  whereupon  an   immediate   color   change   from   red   to   dark   purple   took   place.   After   20   min,   N-­‐iodosuccinimide   (37   mg,   0.16   mmol)   was  

12  |  J.  Name.,  2012,  00,  1-­‐3  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

ARTICLE  

Page 12 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

Journal  Name  

 ARTICLE  

added,   and   stirring   was   continued   for   1   h.   The   reaction   mixture  was  diluted  with  EtOAc  (3  mL),  filtered  through  a  short   plug   of   SiO2   (EtOAc/CH2Cl2   1:1),   and   concentrated   under   reduced   pressure.   The   remaining   purple   solid   was   repeatedly   washed   with   MeOH,   dried,   redissolved   in   CH2Cl2,   filtered   and   concentrated   in   vacuo   to   afford   the   title   compound   as   a   golden-­‐brown   crystalline   solid   (48   mg,   76%).   Characterization   1 of   18:   Rf   (10%   EtOAc/toluene)   =   0.4.   M.p.   >230   °C.   H-­‐NMR   (C6D6,   500   MHz)   δ   8.77   (dd,   J   =   5.8,   3.0   Hz,   6H),   7.40   (dd,   J   =   5.8,  3.0  Hz,  6H),  1.46  (t,  J  =  7.0  Hz,  2H),  1.29  (t,  J  =  7.0  Hz,  2H)   13 ppm.   C   NMR   (C6D6,   126   MHz)   δ   151.65,   131.90,   129.63,   122.30,   91.53,   57.88,   23.46,   -­‐5.48   ppm.   HRMS   (MALDI+):   m/z   + + [M+H]  calcd  for  [C28H17BIN6O]  591.0596,  found  591.0586.       Compound   19.   An   argon-­‐flushed   solution   of   Et3N   in   toluene   1:4   (8   mL)   was   added   to   an   argon-­‐purged   flask   containing   18   (20   mg,   0.03   mmol),   TMS-­‐acetylene   (0.14   mL,   1.0   mmol,   30   equiv.),   CuI   (1.3   mg,   0.007   mmol,   20   mol%),   Pd2dba3   (7.8   mg,   0.008   mmol,   25   mol%)   and   AsPh3   (10   mg,   0.03   mmol,   100   mol%).   The   reaction   mixture   was   stirred   for   1   h,   passed   through  a  short  plug  of  silica  eluting  with  EtOAc,  concentrated   in  vacuo  and  subjected  to  flash  column  chromatography  (SiO2,   10%  EtOAc/toluene)  to  yield  19  as  a  purple  solid  (8  mg,  42%).   1 Rf   =   0.3   (8%  EtOAc/toluene).  M.p.  >230  °C.   H  NMR  (CDCl3,  500   MHz)  δ  8.84  (dd,  J  =  5.9,  3.0  Hz,  6H),  7.89  (dd,  J  =  5.9,  3.0  Hz,   6H),  1.58  (t,  J  =  7.3  Hz,  2H)  1.44  (t,  J  =  7.3  Hz,  2H),  0.14  (s,  9H)   13 ppm.   C   NMR   (CDCl3,   126   MHz)   δ   151.63,   131.10,   129.88,   11 122.27,  88.12,  83.49,  76.20,  66.13,  57.45,  21.76,  -­‐0.22  ppm.   B   NMR   (CDCl3,   160   MHz)   δ   -­‐15.2   ppm.   HRMS   (MALDI+):   m/z   + + [M+Na]   calcd   for   [C33H25BN6OSiNa]   583.1844,   found   583.1849.     Compound   21.   An   argon-­‐flushed   solution   of   Et3N   in   toluene   1:4   (8   mL)   was   added   to   an   argon-­‐purged   flask   containing   18   (25  mg,  0.04  mmol),  20  (45  mg,  0.05  mmol,  1.2  equiv.),  CuI  (1.6   mg,   0.008   mmol,   20   mol%)   and   Pd2dba3   (9.7   mg,   0.01   mmol,   25   mol%).   The   reaction   mixture   was   stirred   for   48   h,   passed   through   a   short   plug   of   silica   eluting   with   CS2,   concentrated   and   subjected   to   flash   column   chromatography   (SiO2,   10%   EtOAc/toluene)  to  yield  21  as  a  purple  solid  (11  mg,  20%).  Rf   =   1 0.3   (5%   EtOAc/toluene).   M.p.   >230   °C.   H   NMR   (CDCl3,   500   MHz)  δ  8.84  (dd,  J  =  5.9,  3.0  Hz,  6H),  7.88  (dd,  J  =  5.9,  3.0  Hz,   6H),  5.18  (s,  2H),  3.91  (t,  J  =  6.5  Hz,  2H),  1.79-­‐1.74  (m,  4H)  1.66   (t,   J   =   6.2   Hz,   2H),   1.40   (p,   J   =   6.5   Hz,   2H),   1.37-­‐1.25   (m,   8H),   13 0.84   (t,   J   =   7.0   Hz,   3H)   ppm.   C   NMR   (CDCl3,   126   MHz)   δ   153.07,   151.95,   151.68,   147.65,   147.47,   146.54,   146.22,   146.08,   146.01,   145.89,   145.53,   145.34,   145.27,   145.22,   145.06,   144.83,   144.66,   144.47,   143.99,   143.90,   142.66,   142.45,   142.05,   141.60,   141.46,   141.42,   141.26,   140.73,   139.59,   135.21,   134.21,   131.24,   130.05,   122.44,   78.75,   78.18,   74.77,   72.51,   68.93,   66.72,   65.89,   57.53,   31.97,   29.86,   29.60,   29.44,  26.45,  22.85,  22.22,  14.32  ppm  (one  signal  missing  due   + to   overlap).   HRMS   (MALDI+):   m/z   [M+H]   calcd   for   + [C99H36BN6O2]  1351.2987,  found  1351.2932.  

We  thank  University  of  Copenhagen  for  financial  sView upport.   Article Online DOI: 10.1039/C7OB01907F

Notes  and  references   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Acknowledgements  

C.   G.   Claessens,   D.   González-­‐Rodríguez,   M.   S.   Rodríguez-­‐ Morgade,   A.   Medina   and   T.   Torres,   Chem.   Rev.,   2014,   114,   2192-­‐2277.   A.  Meller  and  A.  Ossko,  Monatsh.  Chem.,  1972,  103,  150-­‐155.   J.   Guilleme,   D.   González-­‐Rodríguez   and   T.   Torres,   Angew.   Chem.  Int.  Ed.,  2011,  50,  3506-­‐3509.   J.   Guilleme,   L.     Martínez-­‐Fernández,   I.   Corral,   M.   Yáñez,   D.   González-­‐Rodríguez   and   T.   Torres,   Org.   Lett.,   2015,   17,   4722-­‐ 4725.   G.  E.  Morse  and  T.  P.  Bender,  Inorg.  Chem.,  2012,  51,  6460-­‐ 6467.   H.  Gotfredsen,  M.  Jevric,  S.  L.  Broman,  A.  U.  Petersen  and  M.   B.  Nielsen,  J.  Org.  Chem.,  2016,  81,  1-­‐5.   M.   V.   Martínez-­‐Díaz,   M.   Quintiliani   and   T.   Torres,   Synlett,   2008,  1-­‐20.   D.  González-­‐Rodríguez,  T.  Torres,  D.  M.  Guldi,  J.  Rivera,  M.  Á.   Herranz   and   L.   Echegoyen,   J.   Am.   Chem.   Soc.,   2004,   126,   6301-­‐6313.   B.   C.   Kc,   G.   N.   Lim,   M.   E.   Zandler   and   F.   D’Souza,   Org.   Lett.,   2013,  15,  4612-­‐4615.   M.   E.   El-­‐Khouly,   J.   B.   Ryu,   K.-­‐Y.   Kay,   O.   Ito   and   S.   Fukuzumi,   J.   Phys.  Chem.  C,  2009,  113,  15444-­‐15453.   R.   S.   Iglesias,   C.   G.   Claessens,   T.   Torres,   G.   M.   A.   Rahman   and   D.  M.  Guldi,  Chem.  Comm.,  2005,  2113-­‐2115.   D.   González-­‐Rodríguez,   E.   Carbonell,   D.   M.   Guldi   and   T.   Torres,  Angew.  Chem.  Int.  Ed.,  2009,  48,  8032-­‐8036.   D.   González-­‐Rodríguez,   E.   Carbonell,   G.   d.   M.   Rojas,   C.   A.     Castellanos,   D.   M.   Guldi   and   T.   Torres,   J.   Am.   Chem.   Soc.,   2010,  132,  16488-­‐16500.   J.-­‐P.  Gisselbrecht,  N.  N.  P.  Moonen,  C.  Boudon,  M.  B.  Nielsen,   F.   Diederich   and   M.   Gross,   Eur.   J.   Org.   Chem.,   2004,   2959-­‐ 2972.   F.  Diederich  and  M.  Kivala,  Adv.  Mater.,  2010,  22,  803-­‐812.     H.  Gotfredsen,  M.  Jevric,  A.  Kadziola  and  M.  B.  Nielsen,  Eur.  J.   Org.  Chem.,  2016,  17-­‐21.   J.  Anthony,  A.  M.  Boldi,  Y.  Rubin,  M.  Hobi,  V.  Gramlich,  C.  B.   Knobler,   P.   Seiler   and   F.   Diederich,   Helv.   Chim.   Acta.,   1995,   78,  13-­‐45.   K.  Sonogashira,  Y.  Tohda  and  N.  Hagihara,  Tetrahedron  Lett.,   1975,  50,  4467-­‐4470.   W.  Chodkiewicz  and  P.  Cadiot,  C.  R.  Hebd.  Seances  Acad.  Sci.,   1955,  241,  1055-­‐1057.   K.  S.  Sindhu,  A.  P.  Thankachan,  P.  S.  Sajitha  and  G.  Anilkumar,   Org.  Biomol.  Chem.,  2015,  13,  6891-­‐6905.   S.  Kim  and  B.  Kim,  Synthesis,  2009,  1963-­‐1968.   B.   Witulski,   T.   Schweikert,   D.   Schollmeyer   and   N.   A.   Nemkovich,  Chem.  Commun.,  2010,  46,  2953-­‐2955.   O.   Dumele,   D.   Wu,   N.   Trapp,   N.   Goroff   and   F.   Diederich,   Org.   Lett.,  2014,  16,  4722-­‐4725.     B.   del   Rey   and   T.   Torres,   Tetrahedron   Lett.,   1997,   38,   5351-­‐ 5354.   R.   S.   Iglesias,   C.   G.   Claessens,   M.   Á.   Herranz   and   T.   Torres,   Org.  Lett.,  2007,  9,  5381-­‐5384.   A.  S.  Hay,  J.  Org.  Chem.,  1962,  27,  3320-­‐3321.   T.  Hundertmark,  A.  F.  Littke,  S.  L.  Buchwald  and  G.  C.  Fu,  Org.   Lett.,  2000,  2,  1729-­‐1731.   J.  Yan,  J.  Li  and  D.  Cheng,  Synlett,  2007,  2442-­‐2444.   W.  Wu  and  H.  Jiang,  Acc.  Chem.  Res.,  2014,  47,  2483-­‐2504.   M.   H.   Vilhelmsen,   A.   S.   Andersson   and   M.   B.   Nielsen,   Synthesis,  2009,  1469-­‐1472.   J.   M.   Savéant,   Elements   of   Molecular   and   Biomolecular   Electrochemistry,  Wiley,  2006.  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

J.  Name.,  2013,  00,  1-­‐3  |  13  

Please  do  not  adjust  margins  

Organic & Biomolecular Chemistry Accepted Manuscript

Page 13 of 14

Organic & Biomolecular Please   do  not  adjust  mChemistry argins  

Journal  Name  

32 C.   Kraiya   and   D.   H.   Evans,   J.   Electroanal.   Chem.,   2004,   565,   29-­‐35.   33 N.   E.   Gruhn,   N.   A.   Macías-­‐Ruvalcaba   and   D.   H.   Evans,   Langmuir,  2006,  22,  10683-­‐10688.   34 K.   A.   Hope-­‐Ross,   P.   A.   Heiney   and   J.   F.   Kadla,   Can.   J.   Chem.,   2010,  88,  639-­‐649.   35 O.  V.  Dolomanov,  L.  J.  Bourhis,  R.  J.  Gildea,  J.  A.  K.  Howard  and   H.  Puschmann,  J.  Appl.  Cryst.,  2009,  42,  339-­‐341.     36 R.  Sems  and  K.  H.  Drexhage,  J.  Lumin.,  1981,  24-­‐25,  709-­‐712.   37 M.   J.   Frisch,   G.   W.   Trucks,   H.   B.   Schlegel,   G.   E.   Scuseria,   M.   A.   Robb,  J.  R.  Cheeseman,  G.  Scalmani,  V.  Barone,  B.  Mennucci,   G.   A.   Petersson,   H.   Nakatsuji,   M.   Caricato,   X.   Li,   H.   P.   Hratchian,   A.   F.   Izmaylov,   J.   Bloino,   G.   Zheng,   J.   L.   Sonnenberg,   M.   Hada,   M.   Ehara,   K.   Toyota,   R.   Fukuda,   J.   Hasegawa,   M.   Ishida,   T.   Nakajima,   Y.   Honda,   O.   Kitao,   H.   Nakai,   T.   Vreven,   J.   A.   Montgomery,   Jr.,   J.   E.   Peralta,   F.   Ogliaro,  M.  Bearpark,  J.  J.  Heyd,  E.  Brothers,  K.  N.  Kudin,  V.  N.   Staroverov,   T.   Keith,   R.   Kobayashi,   J.   Normand,   K.   Raghavachari,  A.  Rendell,  J.  C.  Burant,  S.  S.  Iyengar,  J.  Tomasi,   M.   Cossi,   N.   Rega,   J.   M.   Millam,   M.   Klene,   J.   E.   Knox,   J.   B.   Cross,   V.   Bakken,   C.   Adamo,   J.   Jaramillo,   R.   Gomperts,   R.   E.   Stratmann,  O.  Yazyev,  A.  J.  Austin,  R.  Cammi,  C.  Pomelli,  J.  W.   Ochterski,  R.  L.  Martin,  K.  Morokuma,  V.  G.  Zakrzewski,  G.  A.   Voth,   P.   Salvador,   J.   J.   Dannenberg,   S.   Dapprich,   A.   D.   Daniels,   O.   Farkas,   J.   B.   Foresman,   J.   V.   Ortiz,   J.   Cioslowski   and   D.   J.   Fox,   Gaussian,   Inc.,   Versions   B.01   or   E.01,   Wallingford  CT,  2000.    

14  |  J.  Name.,  2012,  00,  1-­‐3  

View Article Online

DOI: 10.1039/C7OB01907F

Organic & Biomolecular Chemistry Accepted Manuscript

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 08/10/2017 13:20:06.

ARTICLE  

Page 14 of 14

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Acetylenic scaffolding with subphthalocyanines - synthetic scope and elucidation of electronic interactions in dimeric structures.

Boron subphthalocyanines (SubPcs) are powerful chromophoric heterocycles that can be synthetically modified at both axial and peripheral positions. Ac...
2MB Sizes 1 Downloads 12 Views