research papers Accidental formation of Gd4(SiO4)2OTe: crystal structure and spectroscopic properties ISSN 2053-2296

Marek Daszkiewicza* and Lubomir D. Gulayb a

Received 25 March 2015 Accepted 16 June 2015 Edited by F. A. Almeida Paz, University of Aveiro, Portugal Keywords: rare-earth compounds; silicates; tellurides; UV–vis spectra; crystal structure; optical material. CCDC reference: 1407063 Supporting information: this article has supporting information at journals.iucr.org/c

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, Wrocław 50-950, Poland, and bDepartment of Ecology and Protection of Environment, Eastern European National University, Voli Ave 13, Lutsk 43009, Ukraine. *Correspondence e-mail: [email protected]

Designing new functional materials with increasingly complex compositions is of current interest in science and technology. Complex rare-earth-based chalcogenides have specific thermal, electrical, magnetic and optical properties. Tetragadolinium bis[tetraoxidosilicate(IV)] oxide telluride, Gd4(SiO4)2OTe, was obtained accidentally while studying the Gd2Te3–Cu2Te system. The crystal structure was determined by means of single-crystal X-ray diffraction. The compound crystallizes in the space group Pnma. Three symmetry-independent gadolinium sites were determined. The excitation and emission spectra were collected at room temperature and at 10 K. Gd4(SiO4)2OTe appears to be a promising optical material when doped with rare-earth ions.

1. Introduction Designing new functional materials with increasingly complex compositions has become a primary direction in modern science and technology. Complex rare-earth-based chalcogenides are interesting due to their specific thermal, electrical, magnetic and optical properties (Mitchell & Ibers, 2002; Gulay & Daszkiewicz, 2011). For example, some chalcogenide materials have specific applications in the fields of IR and nonlinear optics. Systematic investigations of various chalcogenide systems is an important way towards finding materials with tailored physical properties (Kong et al., 2008). So far, there have been several reports on mixed oxide/telluride compounds, most recently La2(Si6O13)(TeO3)2 (space group P21/c; Kong et al., 2008), the monoclinic form of R2SiO4Te (R = Pr, Nd, Sm; space group P21/c) (Deng et al., 2004; Gulay et al., 2012; Urland et al., 2000; Weber & Schleid, 1999; Yang & Ibers, 2000) and the orthorhombic form of R2SiO4Te (R = Ce, Pr, Nd, Sm, Gd, Dy, Ho; space group Pbcm) (ICSD, 2012; Weber & Schleid, 1999; Yang & Ibers, 2000). We report here the crystal structure of new compound Gd4(SiO4)2OTe {tetragadolinium bis[tetraoxidosilicate(IV)] oxide telluride}, which was obtained as an unexpected product during the preparation of GdCuTe2 single crystals from the Gd2Te3–Cu2Te system (Gulay et al., 2012).

2. Experimental 2.1. Synthesis and crystallization

# 2015 International Union of Crystallography

598

The starting sample was prepared as a mixture of the elemental constituents Gd (0.3304 g, 2.1 mmol), Cu (0.1335 g, 2.1 mmol) and Te (0.5361 g, 4.2 mmol) of a purity greater than 99.9 wt% in a 1:1:2 molar ratio to obtain GdCuTe2. The sample

http://dx.doi.org/10.1107/S2053229615011651

Acta Cryst. (2015). C71, 598–601

research papers Table 1

record the emission and excitation spectra in the UV–vis spectral region. A detailed description of the experimental station SUPERLUMI can be found in Zimmerer (2007).

Experimental details. Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters ˚ 3) max, min (e A

Gd4(SiO4)2OTe 956.78 Orthorhombic, Pnma 295 12.4953 (10), 10.8683 (8), 6.8075 (5) 924.48 (12) 4 Mo K 31.70 0.06  0.05  0.04

Kuma KM-4 diffractometer with a CCD area detector Numerical (CrysAlis CCD; Oxford Diffraction, 2007) 0.085, 0.214 9582, 1201, 1062 0.064 0.666

3. Results and discussion 3.1. Crystal structure

The unit cell and coordination polyhedra in Gd4(SiO4)2OTe are shown in Fig. 1(a). Each of atoms Gd1, Gd2, O1 and Te1 lies on the mirror plane (Wyckoff position 4c). The other atoms lie in general positions. The interatomic distances are presented in Table 2. Each of atoms Gd1 and Gd2 is surrounded by seven O and one Te atom, creating a bicapped trigonal prism. Atom Gd3 is surrounded by seven O and two Te atoms, forming a tricapped trigonal prism. The bondvalence sums for atoms Gd1, Gd2 and Gd3 are 2.870, 2.939 and 3.009, respectively (Brown, 1996). These values confirm the +3 oxidation state of the Gd atoms, however, it appears that the Gd1 atom is slightly underbonded. The Si atom has a

0.020, 0.039, 1.10 1201 80 1.36, 1.48

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

was sintered in an evacuated quartz ampoule. The synthesis was carried out in a tube resistance furnace. The ampoule was heated with a rate of 30 K h1 to 1420 K and then kept at this temperature for 3 h. Afterwards, the sample was cooled slowly (rate 10 K h1) to 870 K and annealed at this temperature for 720 h. The furnace was turned off and the ampoule was cooled to room temperature. Eight colourless single crystals of Gd4(SiO4)2OTe were found in the prepared sample. One crystal was selected for the diffraction experiment and seven crystals were used for EDX and spectroscopic measurements. The recently published compound Gd2SiO4Te was prepared in a similar way (Ijjaali & Ibers, 2001). 2.2. Refinement and spectroscopic analysis

Crystal data, data collection and structure refinement details are summarized in Table 1. The composition of the single crystal was confirmed by EDX analysis (EDAX PV9800 microanalyzer). Spectroscopic experiments were carried out at HASYLAB in the Deutsches Elektronen-Synchrotron (DESY, Hamburg). The excitation spectrum was measured applying the primary 2 m McPherson monochromator and a PMT (Hamamatsu R6358P) detector at the secondary ARC monochromator. The emission spectrum was recorded with a CCD detector (Princeton Instruments Inc.). The Dongwoo Scanning System, consisting of an excitation monochromator having a 150 mm focal length and an emission monochromator having a 750 mm focal length equipped with a photomultiplier, was employed to Acta Cryst. (2015). C71, 598–601

Figure 1 (a) The unit cell and coordination polyhedra of Gd4(SiO4)2OTe, and (b) a view of the packing of the Si-centred tetrahedra in the crystal structure (Brandenburg, 2009). Daszkiewicz and Gulay



Gd4(SiO4)2OTe

599

research papers tetrahedral environment composed of four O atoms and the bond-valence sum for the Si atom is 4.089. The packing of the Si-centred tetrahedra (shown in Fig. 1b) indicates that all the tetrahedra are separated from each other in the crystal structure of Gd4(SiO4)2OTe. The tetrahedra are connected to Gd trigonal prisms by atoms O2, O3, O4 and O5, creating Si— O—Gd bridges. Only atoms O1 and Te1 are bonded exclusively to Gd atoms. Thus, in the crystal structure, Gd–Te–Gd bridges are also present. The packing of the Si-centred tetrahedra in the structure of Gd4(SiO4)2OTe is similar to that in orthorhombic Gd2SiO4Te (Fig. 2a) and monoclinic Pr2SiO4Te (Fig. 2b). In these crystal structures, all the tetrahedra are separated from each other and are connected exclusively by O atoms to the gadolinium polyhedra. The Te atoms are bonded exclusively to Gd atoms. In summary, it is worth noting that only O atoms are bonded to Si atoms but Te atoms coordinate exclusively to rare earth atoms. It appears that the ionic radii of O2 and Te2 (i.e. 1.24

Table 2 ˚ ). Selected bond lengths (A Gd1—O1i Gd1—O2 Gd1—O3ii Gd1—O4 Gd1—Si1 Gd1—Te1 Gd1—Gd3i Gd2—O2iii Gd2—O5 Gd2—O1 Gd2—O3 Gd2—Si1 Gd2—Gd3 Gd3—O5 Gd3—O4iv

2.289 (5) 2.414 (4) 2.445 (4) 2.559 (4) 3.0844 (16) 3.3401 (7) 3.4321 (4) 2.383 (4) 2.414 (3) 2.447 (5) 2.523 (4) 3.1418 (16) 3.8155 (5) 2.360 (4) 2.366 (4)

Gd3—O5i Gd3—O1 Gd3—O3v Gd3—O4 Gd3—O2v Gd3—Si1 Gd3—Si1v Gd3—Te1i Gd3—Gd1iv Gd3—Te1 Te1—Gd2i Si1—O2 Si1—O4 Si1—O3 Si1—O5

2.367 (4) 2.370 (2) 2.427 (4) 2.552 (4) 2.901 (4) 3.0911 (16) 3.2459 (16) 3.3464 (5) 3.4321 (4) 3.4579 (4) 3.2473 (7) 1.616 (4) 1.627 (4) 1.639 (4) 1.646 (4)

Symmetry codes: (i) x þ 32; y þ 1; z  12; (ii) x þ 1; y þ 1; z; (iii) x þ 1; y  12, z þ 1; (iv) x þ 32; y þ 1; z þ 12; (v) x þ 12; y; z þ 12.

˚ , respectively) are the most important factors and 2.07 A affecting the coordination network. For instance, the crystal structure of silicon dioxide (SiO2) is well known, but silicon ditelluride does not exist. It is a reason why the Te atoms are not bonded with the four-valence Si atom. The above described quaternary rare earth silicon oxide tellurides can be described approximately as a mixture of ternary rare earth silicon oxides and rare earth silicon tellurides. The tellurium content is significantly smaller than the oxygen content in quaternary rare earth silicon oxide tellurides. Therefore, analyzing the Gd–Te–SiO2 phase diagram, it is reasonable to expect the formation of the quaternary rare earth silicon oxide tellurides at a region close to the rare earth silicon oxygen part. 3.2. Electronic spectra

Figure 2 The packing of Si-centred tetrahedra in the crystal structure of (a) orthorhombic Gd2SiO4Te and (b) monoclinic Pr2SiO4Te.

600

Daszkiewicz and Gulay



Gd4(SiO4)2OTe

The ground state of Gd3+ is characterized by ineffective crystal-field splitting; therefore, a single zero-phonon line is observed in the 6P7/2 ! 8S7/2 gadolinium emission spectrum at 312 nm (Lisiecki, 2013). The excitation spectrum related to the 6 P7/2 ! 8S7/2 emission of gadolinium consists of two bands (Fig. 3). The spectral characteristic of these bands is different between the spectra measured at 10 and 300 K. The spectral position of the band located at 275 nm is consistent with the 8 S7/2 ! 6IJ transitions of gadolinium. The intensity of this band drops insignificantly at room temperature and, on the other hand, the spectral broadening may be the result of experimental peculiarities concerning the moderate Gd3+ emission at 312 nm. The reduction of the gadolinium emission due to an ion–ion interaction is highly probable since the shortest Gd— ˚ (Table 2). In Gd distance in Gd4(SiO4)2OTe is 3.4321 (4) A contrast, the assignment of the second band at around 140– 200 nm is inconclusive. At room temperature, an inefficient band at 190 nm is observed which might be attributed to transitions from the 8S7/2 ground state of gadolinium to 6GJ multiplets. The broad band registered at 10 K seems to possess an unlikely nature since it is shifted towards shorter wavelengths and covers an extensive spectral range. The oxide crystal was studied and the origin of the excitation band for Acta Cryst. (2015). C71, 598–601

research papers the 312 nm Gd3+ emission may be due to charge-transfer transitions (CT) from O2 to Gd3+. The absorption of UV–Vis radiation by the host can give rise to effective energy transfer to the 6PJ levels of gadolinium as well. Moreover, the contribution of host excitons in the activation of the gadolinium emission may be considered. Further study is needed to explain this phenomenon. It is worth noting that doping Gd4(SiO4)2OTe with other rare-earth ions can change the emission line. For example, a green emission is observed when the Tb3+ ion is doped in the gadolinium compound, because the 6GJ level of the Gd3+ ion lies near the 5D3 level of the Tb3+ ion and energy transfer between the ions is possible (Lisiecki, 2013). Therefore, Gd4(SiO4)2OTe can be used as a matrix for laser materials.

4. Conclusion The title compound, Gd4(SiO4)2OTe, was obtained accidentally as a colourless crystalline product from a synthesis carried out in a quartz ampoule. It crystallizes in the centrosymmetric space group Pnma. The shortest Gd—Gd distance ˚ ]. This occurs between the Gd1 and Gd3 sites [3.4321 (4) A value appears to be important if Gd4(SiO4)2OTe is doped by Tb3+ and Er3+ ions, for instance. The shortest distance between the Gd1 and Gd3 sites seems to be responsible for the energy transfer from Gd3+ to the other rare-earth ion through the Gd—O—R pathway. It is worth noting that although there is a ˚ ], long distance between the Gd3 and Gd3 sites [3.8475 (4) A 2 this appears to be caused by the presence of the Te ion bridging between neighbouring Gd3 ions. Since the electron cloud around the Te2 ion is greater than that around the O2 ˚ ion [compare, for example, the ionic radii, r(Te2) = 2.21 A 2 ˚ and r(O ) = 1.38 A; Shannon, 1976], the Gd—Te—R pathway can also be taken into account when considering the energy transfer between neighbouring Gd3 sites in the hypothetical doped Gd4(SiO4)2OTe:Tb,Er material.

Acknowledgements The authors would like to thank Dr R. Lisiecki, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, for carrying out the spectral measurements.

References Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brown, I. D. (1996). J. Appl. Cryst. 29, 479–480. Deng, B., Yao, J. & Ibers, J. A. (2004). Acta Cryst. C60, i110–i112. Gulay, L. D. & Daszkiewicz, M. (2011). Handbook on the Physics and Chemistry of Rare Earths, Vol. 41, ch. 250, edited by K. A. Gschneidner Jr, J.-C. G. Bu¨nzli & V. K. Pecharsky, pp. 157–273. Amsterdam: Elsevier Science Publishers. Gulay, L. D., Daszkiewicz, M. & Shemet, V. Ya. (2012). J. Solid State Chem. 186, 142–148.

Acta Cryst. (2015). C71, 598–601

Figure 3 (a) The excitation spectrum of Gd4(SiO4)2OTe monitored at 312 nm and recorded at 10 and 300 K, and (b) the emission spectrum collected at 10 K and excited at 280 nm.

ICSD (2012). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany. http://icsd.fiz-karlsruhe.de/icsd/. Ijjaali, I. & Ibers, J. A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 487–488. Kong, F., Jiang, H.-L. & Mao, J.-G. (2008). J. Solid State Chem. 181, 263–268. Lisiecki, R. (2013). J. Lumin. 143, 293–297. Mitchell, K. & Ibers, J. A. (2002). Chem. Rev. 102, 1929–1953. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Shannon, R. D. (1976). Acta Cryst. A32, 751–767. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Urland, W., Person, H. & Grupe, M. (2000). Z. Anorg. Allg. Chem. 626, 280–283. Weber, F. A. & Schleid, Th. (1999). Z. Anorg. Allg. Chem. 625, 2071– 2076. Yang, Y.-T. & Ibers, J. A. (2000). J. Solid State Chem. 155, 433–440. Zimmerer, G. (2007). Radiat. Meas. 42, 859–864.

Daszkiewicz and Gulay



Gd4(SiO4)2OTe

601

supporting information

supporting information Acta Cryst. (2015). C71, 598-601

[doi:10.1107/S2053229615011651]

Accidental formation of Gd4(SiO4)2OTe: crystal structure and spectroscopic properties Marek Daszkiewicz and Lubomir D. Gulay Computing details Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009). Tetragadolinium bis[tetraoxidosilicate(IV)] oxide telluride Crystal data Gd4(SiO4)2OTe Mr = 956.78 Orthorhombic, Pnma a = 12.4953 (10) Å b = 10.8683 (8) Å c = 6.8075 (5) Å V = 924.48 (12) Å3 Z=4 F(000) = 1632

Dx = 6.874 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 1062 reflections θ = 3.3–25.4° µ = 31.70 mm−1 T = 295 K Prism, colourless 0.06 × 0.05 × 0.04 mm

Data collection Kuma KM-4 with a CCD area detector diffractometer Radiation source: fine-focus sealed tube Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1 ω scan Absorption correction: numerical (CrysAlis CCD; Oxford Diffraction, 2007) Tmin = 0.085, Tmax = 0.214

9582 measured reflections 1201 independent reflections 1062 reflections with I > 2σ(I) Rint = 0.064 θmax = 28.3°, θmin = 3.3° h = −16→16 k = −14→14 l = −9→9

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.020 wR(F2) = 0.039 S = 1.10 1201 reflections 80 parameters 0 restraints Acta Cryst. (2015). C71, 598-601

w = 1/[σ2(Fo2) + (0.0125P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 1.36 e Å−3 Δρmin = −1.48 e Å−3 Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.00510 (11)

sup-1

supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Gd1 Gd2 Gd3 Te1 Si1 O1 O2 O3 O4 O5

x

y

z

Uiso*/Ueq

0.56570 (3) 0.59704 (3) 0.80750 (2) 0.76034 (4) 0.56382 (12) 0.7812 (4) 0.4889 (3) 0.4893 (3) 0.6387 (3) 0.6505 (3)

0.7500 0.2500 0.45060 (3) 0.7500 0.49794 (15) 0.2500 0.6168 (3) 0.3742 (3) 0.5303 (3) 0.4604 (3)

0.04367 (6) 0.48120 (6) 0.23151 (4) 0.37997 (8) 0.2519 (2) 0.3591 (8) 0.2898 (6) 0.2384 (5) 0.0633 (6) 0.4237 (5)

0.00719 (11) 0.00691 (11) 0.00745 (9) 0.01052 (14) 0.0052 (3) 0.0068 (12) 0.0086 (8) 0.0060 (8) 0.0074 (8) 0.0051 (8)

Atomic displacement parameters (Å2)

Gd1 Gd2 Gd3 Te1 Si1 O1 O2 O3 O4 O5

U11

U22

U33

U12

U13

U23

0.0103 (2) 0.0092 (2) 0.00635 (16) 0.0132 (3) 0.0046 (8) 0.011 (3) 0.010 (2) 0.0052 (19) 0.0079 (19) 0.0036 (19)

0.0057 (2) 0.0054 (2) 0.01098 (16) 0.0090 (3) 0.0059 (7) 0.005 (3) 0.006 (2) 0.006 (2) 0.0069 (18) 0.0087 (18)

0.0056 (2) 0.0061 (2) 0.00501 (16) 0.0094 (3) 0.0052 (8) 0.004 (3) 0.010 (2) 0.007 (2) 0.007 (2) 0.0032 (18)

0.000 0.000 0.00141 (11) 0.000 −0.0003 (6) 0.000 0.0036 (16) −0.0002 (15) 0.0004 (16) 0.0000 (15)

0.00099 (16) 0.00067 (16) 0.00041 (11) 0.0017 (2) 0.0003 (6) 0.001 (2) 0.0046 (18) −0.0022 (16) 0.0017 (17) 0.0000 (16)

0.000 0.000 0.00164 (11) 0.000 0.0005 (6) 0.000 0.0022 (16) 0.0004 (15) 0.0022 (15) −0.0016 (15)

Geometric parameters (Å, º) Gd1—O1i Gd1—O2 Gd1—O2ii Gd1—O3iii Gd1—O3iv Gd1—O4 Gd1—O4ii Gd1—Si1 Gd1—Si1ii Gd1—Te1 Gd1—Gd3i Gd1—Gd3v

Acta Cryst. (2015). C71, 598-601

2.289 (5) 2.414 (4) 2.414 (4) 2.445 (4) 2.445 (4) 2.559 (4) 2.559 (4) 3.0844 (16) 3.0844 (16) 3.3401 (7) 3.4321 (4) 3.4321 (4)

Gd3—O1 Gd3—O3x Gd3—O4 Gd3—O2x Gd3—Si1 Gd3—Si1x Gd3—Te1i Gd3—Gd1ix Gd3—Te1 Te1—Gd2i Te1—Gd3xi Te1—Gd3ix

2.370 (2) 2.427 (4) 2.552 (4) 2.901 (4) 3.0911 (16) 3.2459 (16) 3.3464 (5) 3.4321 (4) 3.4579 (4) 3.2473 (7) 3.3464 (5) 3.3464 (5)

sup-2

supporting information Gd2—O2vi Gd2—O2vii Gd2—O5 Gd2—O5viii Gd2—O1 Gd2—O3 Gd2—O3viii Gd2—Si1viii Gd2—Si1 Gd2—Te1ix Gd2—Gd3viii Gd2—Gd3 Gd3—O5 Gd3—O4ix Gd3—O5i

2.383 (4) 2.383 (4) 2.414 (3) 2.414 (3) 2.447 (5) 2.523 (4) 2.523 (4) 3.1418 (16) 3.1418 (16) 3.2473 (7) 3.8155 (5) 3.8155 (5) 2.360 (4) 2.366 (4) 2.367 (4)

Te1—Gd3ii Si1—O2 Si1—O4 Si1—O3 Si1—O5 Si1—Gd3xii O1—Gd1ix O1—Gd3viii O2—Gd2vi O2—Gd3xii O3—Gd3xii O3—Gd1iii O4—Gd3i O5—Gd3ix

3.4579 (4) 1.616 (4) 1.627 (4) 1.639 (4) 1.646 (4) 3.2459 (16) 2.289 (5) 2.370 (2) 2.383 (4) 2.901 (4) 2.427 (4) 2.445 (4) 2.366 (4) 2.367 (4)

O1i—Gd1—O2 O1i—Gd1—O2ii O2—Gd1—O2ii O1i—Gd1—O3iii O2—Gd1—O3iii O2ii—Gd1—O3iii O1i—Gd1—O3iv O2—Gd1—O3iv O2ii—Gd1—O3iv O3iii—Gd1—O3iv O1i—Gd1—O4 O2—Gd1—O4 O2ii—Gd1—O4 O3iii—Gd1—O4 O3iv—Gd1—O4 O1i—Gd1—O4ii O2—Gd1—O4ii O2ii—Gd1—O4ii O3iii—Gd1—O4ii O3iv—Gd1—O4ii O4—Gd1—O4ii O1i—Gd1—Si1 O2—Gd1—Si1 O2ii—Gd1—Si1 O3iii—Gd1—Si1 O3iv—Gd1—Si1 O4—Gd1—Si1 O4ii—Gd1—Si1 O1i—Gd1—Si1ii O2—Gd1—Si1ii O2ii—Gd1—Si1ii O3iii—Gd1—Si1ii

135.52 (12) 135.52 (12) 73.74 (17) 78.67 (14) 95.87 (12) 139.86 (13) 78.67 (14) 139.86 (13) 95.87 (12) 66.99 (17) 74.39 (9) 62.98 (12) 131.71 (12) 68.05 (12) 130.98 (12) 74.39 (9) 131.71 (12) 62.99 (12) 130.98 (12) 68.05 (12) 137.79 (17) 104.99 (6) 31.26 (9) 102.18 (9) 82.45 (9) 148.08 (9) 31.81 (9) 143.84 (9) 104.99 (6) 102.18 (9) 31.26 (9) 148.08 (9)

O4ix—Gd3—O1 O5i—Gd3—O1 O5—Gd3—O3x O4ix—Gd3—O3x O5i—Gd3—O3x O1—Gd3—O3x O5—Gd3—O4 O4ix—Gd3—O4 O5i—Gd3—O4 O1—Gd3—O4 O3x—Gd3—O4 O5—Gd3—O2x O4ix—Gd3—O2x O5i—Gd3—O2x O1—Gd3—O2x O3x—Gd3—O2x O4—Gd3—O2x O5—Gd3—Si1 O4ix—Gd3—Si1 O5i—Gd3—Si1 O1—Gd3—Si1 O3x—Gd3—Si1 O4—Gd3—Si1 O2x—Gd3—Si1 O5—Gd3—Si1x O4ix—Gd3—Si1x O5i—Gd3—Si1x O1—Gd3—Si1x O3x—Gd3—Si1x O4—Gd3—Si1x O2x—Gd3—Si1x Si1—Gd3—Si1x

76.72 (15) 136.99 (15) 138.27 (12) 71.54 (13) 90.41 (12) 77.52 (15) 63.03 (13) 129.33 (11) 69.35 (13) 111.23 (15) 158.08 (12) 130.45 (11) 76.76 (12) 61.85 (12) 134.37 (14) 59.09 (11) 114.33 (11) 31.68 (9) 102.87 (10) 100.96 (9) 90.00 (13) 167.15 (9) 31.72 (9) 131.92 (8) 142.53 (9) 70.87 (10) 75.36 (10) 105.66 (13) 29.30 (9) 141.03 (9) 29.81 (8) 160.74 (6)

Acta Cryst. (2015). C71, 598-601

sup-3

supporting information O3iv—Gd1—Si1ii O4—Gd1—Si1ii O4ii—Gd1—Si1ii Si1—Gd1—Si1ii O1i—Gd1—Te1 O2—Gd1—Te1 O2ii—Gd1—Te1 O3iii—Gd1—Te1 O3iv—Gd1—Te1 O4—Gd1—Te1 O4ii—Gd1—Te1 Si1—Gd1—Te1 Si1ii—Gd1—Te1 O1i—Gd1—Gd3i O2—Gd1—Gd3i O2ii—Gd1—Gd3i O3iii—Gd1—Gd3i O3iv—Gd1—Gd3i O4—Gd1—Gd3i O4ii—Gd1—Gd3i Si1—Gd1—Gd3i Si1ii—Gd1—Gd3i Te1—Gd1—Gd3i O1i—Gd1—Gd3v O2—Gd1—Gd3v O2ii—Gd1—Gd3v O3iii—Gd1—Gd3v O3iv—Gd1—Gd3v O4—Gd1—Gd3v O4ii—Gd1—Gd3v Si1—Gd1—Gd3v Si1ii—Gd1—Gd3v Te1—Gd1—Gd3v Gd3i—Gd1—Gd3v O2vi—Gd2—O2vii O2vi—Gd2—O5 O2vii—Gd2—O5 O2vi—Gd2—O5viii O2vii—Gd2—O5viii O5—Gd2—O5viii O2vi—Gd2—O1 O2vii—Gd2—O1 O5—Gd2—O1 O5viii—Gd2—O1 O2vi—Gd2—O3 O2vii—Gd2—O3 O5—Gd2—O3 O5viii—Gd2—O3

Acta Cryst. (2015). C71, 598-601

82.45 (9) 143.84 (9) 31.81 (9) 125.29 (6) 76.57 (13) 79.28 (10) 79.28 (10) 137.96 (9) 137.96 (9) 72.83 (9) 72.83 (9) 71.98 (3) 71.98 (3) 43.47 (5) 103.43 (9) 174.01 (10) 45.00 (9) 89.66 (9) 43.55 (8) 117.41 (9) 73.97 (3) 148.45 (3) 95.062 (14) 43.47 (5) 174.01 (10) 103.43 (9) 89.66 (9) 45.00 (9) 117.41 (9) 43.55 (9) 148.45 (3) 73.97 (3) 95.062 (14) 78.873 (14) 74.84 (18) 69.83 (12) 143.73 (12) 143.73 (12) 69.83 (12) 142.59 (17) 130.23 (12) 130.23 (12) 71.62 (9) 71.62 (9) 82.14 (12) 120.87 (13) 62.29 (12) 123.23 (12)

O5—Gd3—Te1i O4ix—Gd3—Te1i O5i—Gd3—Te1i O1—Gd3—Te1i O3x—Gd3—Te1i O4—Gd3—Te1i O2x—Gd3—Te1i Si1—Gd3—Te1i Si1x—Gd3—Te1i O5—Gd3—Gd1ix O4ix—Gd3—Gd1ix O5i—Gd3—Gd1ix O1—Gd3—Gd1ix O3x—Gd3—Gd1ix O4—Gd3—Gd1ix O2x—Gd3—Gd1ix Si1—Gd3—Gd1ix Si1x—Gd3—Gd1ix Te1i—Gd3—Gd1ix O5—Gd3—Te1 O4ix—Gd3—Te1 O5i—Gd3—Te1 O1—Gd3—Te1 O3x—Gd3—Te1 O4—Gd3—Te1 O2x—Gd3—Te1 Si1—Gd3—Te1 Si1x—Gd3—Te1 Te1i—Gd3—Te1 Gd1ix—Gd3—Te1 Gd2i—Te1—Gd1 Gd2i—Te1—Gd3xi Gd1—Te1—Gd3xi Gd2i—Te1—Gd3ix Gd1—Te1—Gd3ix Gd3xi—Te1—Gd3ix Gd2i—Te1—Gd3 Gd1—Te1—Gd3 Gd3xi—Te1—Gd3 Gd3ix—Te1—Gd3 Gd2i—Te1—Gd3ii Gd1—Te1—Gd3ii Gd3xi—Te1—Gd3ii Gd3ix—Te1—Gd3ii Gd3—Te1—Gd3ii O2—Si1—O4 O2—Si1—O3 O4—Si1—O3

102.43 (9) 144.28 (8) 71.90 (9) 68.13 (12) 94.27 (8) 71.99 (8) 124.59 (8) 83.74 (3) 112.22 (3) 93.96 (9) 48.19 (9) 134.86 (9) 41.64 (13) 45.43 (8) 151.06 (8) 93.77 (7) 122.19 (3) 67.89 (3) 98.387 (12) 69.76 (8) 71.75 (9) 84.95 (8) 137.31 (12) 117.19 (9) 70.78 (8) 64.02 (7) 70.27 (3) 90.50 (3) 141.163 (14) 119.701 (14) 80.016 (17) 137.461 (10) 107.801 (15) 137.461 (10) 107.801 (15) 81.309 (16) 70.255 (10) 85.627 (11) 149.911 (17) 68.844 (6) 70.255 (10) 85.627 (11) 68.844 (6) 149.911 (17) 140.45 (2) 106.6 (2) 109.6 (2) 117.4 (2)

sup-4

supporting information O1—Gd2—O3 O2vi—Gd2—O3viii O2vii—Gd2—O3viii O5—Gd2—O3viii O5viii—Gd2—O3viii O1—Gd2—O3viii O3—Gd2—O3viii O2vi—Gd2—Si1viii O2vii—Gd2—Si1viii O5—Gd2—Si1viii O5viii—Gd2—Si1viii O1—Gd2—Si1viii O3—Gd2—Si1viii O3viii—Gd2—Si1viii O2vi—Gd2—Si1 O2vii—Gd2—Si1 O5—Gd2—Si1 O5viii—Gd2—Si1 O1—Gd2—Si1 O3—Gd2—Si1 O3viii—Gd2—Si1 Si1viii—Gd2—Si1 O2vi—Gd2—Te1ix O2vii—Gd2—Te1ix O5—Gd2—Te1ix O5viii—Gd2—Te1ix O1—Gd2—Te1ix O3—Gd2—Te1ix O3viii—Gd2—Te1ix Si1viii—Gd2—Te1ix Si1—Gd2—Te1ix O2vi—Gd2—Gd3viii O2vii—Gd2—Gd3viii O5—Gd2—Gd3viii O5viii—Gd2—Gd3viii O1—Gd2—Gd3viii O3—Gd2—Gd3viii O3viii—Gd2—Gd3viii Si1viii—Gd2—Gd3viii Si1—Gd2—Gd3viii Te1ix—Gd2—Gd3viii O2vi—Gd2—Gd3 O2vii—Gd2—Gd3 O5—Gd2—Gd3 O5viii—Gd2—Gd3 O1—Gd2—Gd3 O3—Gd2—Gd3 O3viii—Gd2—Gd3

Acta Cryst. (2015). C71, 598-601

106.22 (14) 120.87 (13) 82.14 (12) 123.23 (12) 62.29 (12) 106.22 (14) 64.65 (16) 141.88 (10) 75.19 (9) 140.21 (9) 31.08 (9) 87.44 (7) 93.59 (9) 31.28 (9) 75.19 (9) 141.88 (10) 31.08 (9) 140.21 (9) 87.44 (7) 31.27 (9) 93.59 (9) 118.12 (6) 72.56 (10) 72.56 (10) 89.07 (9) 89.07 (9) 76.58 (13) 147.20 (8) 147.20 (8) 119.20 (3) 119.20 (3) 161.63 (10) 104.75 (9) 106.16 (9) 36.47 (9) 36.91 (4) 112.43 (8) 76.73 (9) 51.65 (3) 111.09 (3) 89.665 (13) 104.75 (9) 161.63 (10) 36.47 (9) 106.16 (9) 36.91 (4) 76.73 (9) 112.43 (8)

O2—Si1—O5 O4—Si1—O5 O3—Si1—O5 O2—Si1—Gd1 O4—Si1—Gd1 O3—Si1—Gd1 O5—Si1—Gd1 O2—Si1—Gd3 O4—Si1—Gd3 O3—Si1—Gd3 O5—Si1—Gd3 Gd1—Si1—Gd3 O2—Si1—Gd2 O4—Si1—Gd2 O3—Si1—Gd2 O5—Si1—Gd2 Gd1—Si1—Gd2 Gd3—Si1—Gd2 O2—Si1—Gd3xii O4—Si1—Gd3xii O3—Si1—Gd3xii O5—Si1—Gd3xii Gd1—Si1—Gd3xii Gd3—Si1—Gd3xii Gd2—Si1—Gd3xii Gd1ix—O1—Gd3viii Gd1ix—O1—Gd3 Gd3viii—O1—Gd3 Gd1ix—O1—Gd2 Gd3viii—O1—Gd2 Gd3—O1—Gd2 Si1—O2—Gd2vi Si1—O2—Gd1 Gd2vi—O2—Gd1 Si1—O2—Gd3xii Gd2vi—O2—Gd3xii Gd1—O2—Gd3xii Si1—O3—Gd3xii Si1—O3—Gd1iii Gd3xii—O3—Gd1iii Si1—O3—Gd2 Gd3xii—O3—Gd2 Gd1iii—O3—Gd2 Si1—O4—Gd3i Si1—O4—Gd3 Gd3i—O4—Gd3 Si1—O4—Gd1 Gd3i—O4—Gd1

117.8 (2) 103.7 (2) 102.14 (19) 50.81 (14) 56.01 (13) 135.04 (15) 122.82 (14) 135.32 (16) 55.55 (14) 114.89 (15) 48.87 (13) 96.88 (4) 133.05 (15) 120.11 (15) 53.05 (13) 49.24 (13) 171.52 (6) 75.49 (4) 63.20 (15) 128.98 (16) 46.44 (14) 125.82 (15) 99.46 (4) 161.29 (6) 88.69 (4) 94.89 (14) 94.89 (14) 133.9 (2) 126.8 (2) 104.77 (13) 104.77 (13) 148.3 (2) 97.94 (18) 105.58 (14) 86.99 (16) 93.38 (12) 130.51 (15) 104.25 (18) 131.04 (19) 89.57 (12) 95.67 (17) 128.84 (15) 111.67 (14) 159.4 (2) 92.73 (17) 102.90 (14) 92.18 (17) 88.27 (12)

sup-5

supporting information Si1viii—Gd2—Gd3 Si1—Gd2—Gd3 Te1ix—Gd2—Gd3 Gd3viii—Gd2—Gd3 O5—Gd3—O4ix O5—Gd3—O5i O4ix—Gd3—O5i O5—Gd3—O1

111.09 (3) 51.65 (3) 89.665 (13) 69.696 (12) 72.74 (14) 131.04 (8) 138.27 (13) 73.92 (14)

Gd3—O4—Gd1 Si1—O5—Gd3 Si1—O5—Gd3ix Gd3—O5—Gd3ix Si1—O5—Gd2 Gd3—O5—Gd2 Gd3ix—O5—Gd2

129.39 (15) 99.45 (18) 132.37 (19) 108.95 (15) 99.68 (17) 106.09 (13) 107.76 (14)

O4—Si1—O2—Gd2vi O3—Si1—O2—Gd2vi O5—Si1—O2—Gd2vi Gd1—Si1—O2—Gd2vi Gd3—Si1—O2—Gd2vi Gd2—Si1—O2—Gd2vi Gd3xii—Si1—O2—Gd2vi O4—Si1—O2—Gd1 O3—Si1—O2—Gd1 O5—Si1—O2—Gd1 Gd3—Si1—O2—Gd1 Gd2—Si1—O2—Gd1 Gd3xii—Si1—O2—Gd1 O4—Si1—O2—Gd3xii O3—Si1—O2—Gd3xii O5—Si1—O2—Gd3xii Gd1—Si1—O2—Gd3xii Gd3—Si1—O2—Gd3xii Gd2—Si1—O2—Gd3xii O2—Si1—O3—Gd3xii O4—Si1—O3—Gd3xii O5—Si1—O3—Gd3xii Gd1—Si1—O3—Gd3xii Gd3—Si1—O3—Gd3xii Gd2—Si1—O3—Gd3xii O2—Si1—O3—Gd1iii O4—Si1—O3—Gd1iii O5—Si1—O3—Gd1iii Gd1—Si1—O3—Gd1iii Gd3—Si1—O3—Gd1iii Gd2—Si1—O3—Gd1iii Gd3xii—Si1—O3—Gd1iii O2—Si1—O3—Gd2 O4—Si1—O3—Gd2 O5—Si1—O3—Gd2 Gd1—Si1—O3—Gd2

−142.7 (4) 89.3 (4) −26.8 (5) −137.9 (5) −85.2 (5) 32.0 (5) 91.6 (4) −4.7 (2) −132.76 (17) 111.1 (2) 52.8 (2) 169.96 (9) −130.49 (17) 125.78 (16) −2.26 (18) −118.36 (19) 130.49 (17) −176.73 (11) −59.5 (2) 2.8 (2) −119.0 (2) 128.43 (17) −50.9 (2) 178.50 (7) 132.50 (19) 105.0 (3) −16.8 (4) −129.4 (3) 51.3 (4) −79.3 (3) −125.3 (3) 102.2 (3) −129.71 (18) 108.5 (2) −4.07 (19) 176.65 (10)

O2—Si1—O4—Gd3i O3—Si1—O4—Gd3i O5—Si1—O4—Gd3i Gd1—Si1—O4—Gd3i Gd3—Si1—O4—Gd3i Gd2—Si1—O4—Gd3i Gd3xii—Si1—O4—Gd3i O2—Si1—O4—Gd3 O3—Si1—O4—Gd3 O5—Si1—O4—Gd3 Gd1—Si1—O4—Gd3 Gd2—Si1—O4—Gd3 Gd3xii—Si1—O4—Gd3 O2—Si1—O4—Gd1 O3—Si1—O4—Gd1 O5—Si1—O4—Gd1 Gd3—Si1—O4—Gd1 Gd2—Si1—O4—Gd1 Gd3xii—Si1—O4—Gd1 O2—Si1—O5—Gd3 O4—Si1—O5—Gd3 O3—Si1—O5—Gd3 Gd1—Si1—O5—Gd3 Gd2—Si1—O5—Gd3 Gd3xii—Si1—O5—Gd3 O2—Si1—O5—Gd3ix O4—Si1—O5—Gd3ix O3—Si1—O5—Gd3ix Gd1—Si1—O5—Gd3ix Gd3—Si1—O5—Gd3ix Gd2—Si1—O5—Gd3ix Gd3xii—Si1—O5—Gd3ix O2—Si1—O5—Gd2 O4—Si1—O5—Gd2 O3—Si1—O5—Gd2 Gd1—Si1—O5—Gd2

−86.5 (6) 36.8 (7) 148.5 (6) −90.9 (6) 139.5 (7) 98.0 (6) −17.8 (7) 134.02 (17) −102.7 (2) 9.04 (17) 129.61 (16) −41.48 (16) −157.28 (9) 4.4 (2) 127.72 (18) −120.58 (16) −129.61 (16) −171.10 (7) 73.10 (17) −127.37 (19) −9.90 (19) 112.56 (17) −68.04 (16) 108.27 (17) 157.00 (8) −0.7 (4) 116.8 (3) −120.8 (3) 58.6 (3) 126.7 (3) −125.1 (3) −76.3 (3) 124.4 (2) −118.17 (17) 4.3 (2) −176.31 (7)

Acta Cryst. (2015). C71, 598-601

sup-6

supporting information Gd3—Si1—O3—Gd2 Gd3xii—Si1—O3—Gd2

46.01 (15) −132.50 (19)

Gd3—Si1—O5—Gd2 Gd3xii—Si1—O5—Gd2

−108.27 (17) 48.73 (19)

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x, −y+3/2, z; (iii) −x+1, −y+1, −z; (iv) −x+1, y+1/2, −z; (v) −x+3/2, y+1/2, z−1/2; (vi) −x+1, −y+1, −z+1; (vii) −x+1, y−1/2, −z+1; (viii) x, −y+1/2, z; (ix) −x+3/2, −y+1, z+1/2; (x) x+1/2, y, −z+1/2; (xi) −x+3/2, y+1/2, z+1/2; (xii) x−1/2, y, −z+1/2.

Acta Cryst. (2015). C71, 598-601

sup-7

Accidental formation of Gd₄(SiO₄)₂OTe: crystal structure and spectroscopic properties.

Designing new functional materials with increasingly complex compositions is of current interest in science and technology. Complex rare-earth-based c...
781KB Sizes 2 Downloads 14 Views