organic compounds Acta Crystallographica Section C

Crystal Structure Communications ISSN 0108-2701

Absolute configuration determination of the anti-head-to-head photocyclodimer of anthracene-2-carboxylic acid through cocrystallization with L-prolinol Yuko Kawanami,a Hidekazu Tanaka,a Jun-ichi Mizoguchi,a Nobuko Kanehisa,a Gaku Fukuhara,a Masaki Nishijima,b Tadashi Moria and Yoshihisa Inouea* a

Department of Applied Chemistry, Osaka University, Yamadaoka, Suita 565-0871, Japan, and bOffice for University–Industry Collaboration, Osaka University, Yamadaoka, Suita 565-0871, Japan Correspondence e-mail: [email protected] Received 9 August 2013 Accepted 16 October 2013

The absolute configuration has been established of the enantiopure anti-head-to-head cyclodimer of anthracene-2carboxylic acid (AC) cocrystallized with l-propinol and dichloromethane [systematic name: (S)-2-(hydroxymethyl)pyrrolidin-1-ium (5R,6S,11R,12S)-8-carboxy-5,6,11,12-tetrahydro-5,12:6,11-bis([1,2]benzeno)dibenzo[a,e][8]annulene-2carboxylate dichloromethane monosolvate], C5H12NO+C30H19O4CH2Cl2. In the crystal structure, the AC dimer interacts with l-prolinol through a nine-membered hydrogenbonded ring [R22(9)], while the dichloromethane molecule is incorporated to fill the void space. The absolute configuration determined in this study verifies a recent assignment made by comparing theoretical versus experimental circular dichroism spectra. Keywords: crystal structure; absolute configuration; anti-headto-head cyclodimer; anthracene-2-carboxylic acid; circular dichroism spectra; L-prolinol.

1. Introduction [4+4]-Photocyclodimerization of anthracene is one of the most investigated photoreactions (for reviews, see Becker, 1993; Bouas-Laurent et al., 2000, 2001). Unsymmetrical anthracenes substituted at the 1- or 2-position afford four stereoisomeric photocyclodimers, two of which are inherently chiral. We have recently assigned the absolute configurations of the chiral syn-head-to-tail (syn-HT) and anti-head-to-head (anti-HH) cyclodimers (Fig. 1) of anthracene-2-carboxylic acid (AC) through comparison of the theoretical versus experimental circular dichroism (CD) spectra (Wakai et al., 2012), which are crucial in elucidating the enantiodifferentiation Acta Cryst. (2013). C69, 1411–1413

Figure 1 Chemical structures of the (M)-syn-HT cyclodimer and (P)-anti-HH cyclodimer, AC2, of anthracene-2-carboxylic acid.

mechanism of AC photocyclodimerization mediated by chiral supramolecular hosts, such as hydrogen-bonding templates (Mizoguchi et al., 2006; Kawanami et al., 2009), cyclodextrins (Nakamura & Inoue, 2003; Qui et al., 2009; Yang et al., 2011) and serum albumins (Wada et al., 2003; Nishijima et al., 2007). The theoretical CD spectra calculated using the state of the art RI–CC2 method reproduced, nearly perfectly, the experimental CD spectrum of the syn-HT dimer but showed appreciable deviations in the relative intensities of the major CD extrema for the anti-HH dimer, although the signs and alternating pattern of the experimental Cotton effects were reproduced satisfactorily. This ambiguity prompted us to investigate further and confirm the absolute configuration of the anti-HH dimer by X-ray crystallography.

The title cyclodimer, denoted AC2, prepared by the photocyclodimerization of AC and subsequent chiral HPLC separation (see x2.1), was totally insoluble in nonpolar and less polar solvents. Hence the more polar acetonitrile, methanol and ethanol were employed as solvents for recrystallization in our first attempts to obtain a single crystal, but all endeavours under a variety of conditions proved unsuccessful. In this connection, we recalled our experience in a related system, where the solubility of AC in dichloromethane was dramatically improved upon addition of a benzamide derivative of 4amino-l-prolinol (TKS159) as a hydrogen-bonding template (Mizoguchi et al., 2006). This experience enabled us to conceive the idea of employing l-prolinol as a complexing agent and dichloromethane as a solvent; the use of l-prolinol also allowed us to determine unequivocally the absolute configuration of AC2. Indeed, recrystallization of AC2 in the presence of an excess amount (5 equivalents) of l-prolinol in dichloromethane afforded platelet-shaped single crystals, (I), suitable for X-ray crystallographic analysis.

doi:10.1107/S0108270113028461

# 2013 International Union of Crystallography

1411

organic compounds Table 1

Table 2

Experimental details.

˚ ,  ). Selected geometric parameters (A

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm)

C5H12NO+C30H19O4CH2Cl2 630.57 Monoclinic, P21 123 11.4579 (2), 9.83146 (18), 13.8027 (3) 95.6581 (10) 1547.26 (5) 2 Cu K 2.25 0.80  0.20  0.10

Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [F 2 > 2(F 2)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters No. of restraints H-atom treatment

Rigaku R-AXIS RAPID diffractometer Part of the refinement model (F) (Walker & Stuart, 1983) 0.654, 0.798 17245, 5117, 4490 0.067 0.602

0.050, 0.137, 1.08 5117 413 1 H atoms treated by a mixture of independent and constrained refinement 0.27, 0.41 Flack (1983), with 2125 Friedel pairs 0.00 (2)

˚ 3)  max,  min (e A Absolute structure Absolute structure parameter

Computer programs: RAPID-AUTO (Rigaku, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008) and CrystalStructure (Rigaku, 2010).

O1—C1 O2—C1 O3—C30 O4—C30

1.278 (5) 1.256 (5) 1.228 (4) 1.311 (5)

O5—C36 N1—C34 N1—C35

1.418 (6) 1.504 (5) 1.499 (5)

C34—N1—C35 O1—C1—O2 O1—C1—C2 O2—C1—C2

106.0 (3) 123.0 (4) 118.4 (3) 118.5 (3)

O3—C30—O4 O3—C30—C26 O4—C30—C26

123.6 (4) 123.2 (4) 113.2 (3)

O1—C1—C2—C15 O2—C1—C2—C3

177.6 (3) 178.0 (3)

C27—C26—C30—O4 C33—C32—C35—C36

155.4 (3) 160.6 (3)

˚ and Uiso(H) = 1.2Ueq(C). The remaining C—H = 0.95 A aliphatic H atoms were found in a difference Fourier map and constrained to ride on their parent atoms, with C—H = 0.99– ˚ and Uiso(H) = 1.2Ueq(C). The ammonium, hydroxy and 1.00 A carboxylic acid H atoms were found in a difference Fourier map and refined isotropically. Five outlier reflections were omitted from the final refinement.

3. Results and discussion Fig. 2 illustrates the structure of (I) (Table 2), in which the AC2 and l-prolinol components are connected by a ninemembered hydrogen-bonded ring, graph-set motif R22 ð9Þ (Bernstein et al., 1995), as was the case with the AC–TKS159 complex reported previously (Mizoguchi et al., 2006), and the void space is filled with a dichloromethane molecule. The nine-membered hydrogen-bonding network seems to be a common motif formed upon interaction of a carboxylic acid

2. Experimental 2.1. Synthesis and crystallization

AC2 (97% chemical and 99% optical purity) was prepared by the photocyclodimerization of AC scaffolded on cyclic nigerosylnigerose (Fukuhara et al., 2012) and subsequent chiral high-performance liquid chromatography (HPLC) separation on a tandem ODS + Chiralcel OJ–R column eluting with a 35:65 acetonitrile–water mixture containing 0.1% trifluoroacetic acid, and was identified by 1H NMR as reported previously (Qui et al., 2009). AC2, which is the second-eluted anti-HH dimer under our chiral HPLC conditions (Fukuhara et al., 2012), was assigned as the (P)enantiomer by theoretical calculations (Wakai et al., 2012). AC2 (4.48 mg) thus obtained was dissolved in dichloromethane (15 ml) along with 5 equivalents of l-prolinol (5 ml), and the solvent was allowed to evaporate slowly to yield single crystals of (I) as colourless platelets. The data were collected on a single crystal coated with Paratone oil and mounted in a cryoloop. 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The aromatic H atoms of the AC2 dimer of (I) were placed in geometrically idealized positions and constrained to ride on their parent atoms, with

1412

Kawanami et al.



C5H12NO+C30H19O4CH2Cl2

Figure 2 The X-ray structure of the 1:1 complex, (I), of AC2 and l-prolinol cocrystallized with dichloromethane, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Acta Cryst. (2013). C69, 1411–1413

organic compounds Table 3 ˚ ,  ). Hydrogen-bond geometry (A D—H  A i

O4—H4O  O1 O5—H5O  O1 N1—H1NA  O3ii N1—H1NB  O2

D—H

H  A

D  A

D—H  A

0.83 (5) 0.84 (6) 0.99 (5) 1.03 (5)

1.72 (5) 1.90 (6) 1.90 (5) 1.68 (5)

2.534 (4) 2.695 (4) 2.886 (4) 2.708 (4)

167 (5) 156 (7) 172 (5) 173 (4)

Symmetry codes: (i) x; y  1; z; (ii) x; y þ 12; z þ 1.

Figure 3

K2 = 17000034000 M1, determined independently by CD spectroscopic titration in dichloromethane at 298 K. Probably, the free carboxylic acid group remaining in the 1:1 complex makes the complex less soluble and promotes its preferential crystallization through inter-lattice hydrogen-bond formation. On the basis of the known stereochemistry (i.e. S) of l-prolinol, the absolute configuration of AC2 was readily determined as P, which is in agreement with the prediction of our theoretical CD calculations (Wakai et al., 2012). The absolute structure was also confirmed by the value of the Flack (1983) parameter [0.00 (2)].

A packing diagram of the 1:1 complex, (I), of AC2 with l-prolinol cocrystallized with dichloromethane, illustrating the intermolecular and inter-lattice hydrogen bonds (dashed lines). H atoms, except for those involved in hydrogen bonds, have been omitted for clarity. The diagram shows that the inter-lattice hydrogen-bonding network promotes crystallization. [Symmetry codes: (i) x, y  1, z; (ii) x, y + 12, z + 1.]

This work was supported by the Japan Society for the Promotion of Science (Grants-in-Aid for Scientific Research No. 23750129 for GF, 24655029 and 23350018 for TM, and 21245011 for YI), which is gratefully acknowledged.

with a -amino alcohol, although this is not well documented in the literature. It is of interest to note that recrystallization of AC2 in the presence of l-prolinol in chloroform under comparable conditions did not yield any appropriate crystals, indicating that dichloromethane has the right size and shape to fill the space in the lattice (Fig. 2). As illustrated in Fig. 3 (with full geometric details given in Table 3), one of the carboxylic acid H atoms in AC2 is transferred to the prolinol N atom to form a carboxylate–ammonium pair, and the hydroxy H atom of prolinol forms a hydrogen bond to carboxylate atom O1 of AC2. In addition, two inter-lattice hydrogen bonds are formed to promote crystallization; one of these connects the free H atom (H1NA) on the prolinol N atom to carboxylic acid atom O3 related by the 21 screw axis along the b axis, and the other connects carboxylic acid atom H4O to carboxylate atom O1 of AC2 related by translation along the b axis. The hydrogen bonds thus link the AC2–prolinol complex into an infinite chain running parallel to the b axis. These two inter-complex hydrogen bonds are likely to be responsible for the preferential crystallization as the 1:1, rather than the 1:2, AC2–prolinol complex in the presence of an excess amount (5 equivalents) of prolinol. Indeed, the initial population of 1:1 and 1:2 complexes in the dichloromethane solution used for recrystallization ([AC2]0 = 0.67 mM and [prolinol]0 = 3.4 mM) are calculated as 0.3 and 99.7% from the stepwise association constants: K1 = 33500015000 M1 and

Acta Cryst. (2013). C69, 1411–1413

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3506). Services for accessing these data are described at the back of the journal.

References Becker, H.-D. (1993). Chem. Rev. 93, 145–172. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Bouas-Laurent, H., Castellan, A., Desvergne, J.-P. & Lapouyade, R. (2000). Chem. Soc. Rev. 29, 43–55. Bouas-Laurent, H., Castellan, A., Desvergne, J.-P. & Lapouyade, R. (2001). Chem. Soc. Rev. 30, 248–263. Flack, H. D. (1983). Acta Cryst. A39, 876–881. Fukuhara, G., Nakamura, T., Kawanami, Y., Yang, C., Mori, T., Hiramatsu, H., Dan-oh, Y., Tsujimoto, K. & Inoue, Y. (2012). Chem. Commun. 48, 9156– 9158. Kawanami, Y., Pace, C. S. T., Mizoguchi, J., Yanagi, T., Nishijima, M., Mori, T., Wada, T., Bohne, C. & Inoue, Y. (2009). J. Org. Chem. 74, 7908–7921. Mizoguchi, J., Kawanami, Y., Wada, T., Kodama, K., Anzai, K., Yanagi, T. & Inoue, Y. (2006). Org. Lett. 8, 6051–6054. Nakamura, A. & Inoue, Y. (2003). J. Am. Chem. Soc. 125, 966–972. Nishijima, M., Wada, T., Mori, T., Pace, C. S. T., Bohne, C. & Inoue, Y. (2007). J. Am. Chem. Soc. 129, 3478–3479. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Qui, H., Yang, C., Inoue, Y. & Che, S. (2009). Org. Lett. 11, 1973–1976. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Wada, T., Nishijima, M., Fujisawa, T., Sugahara, N., Mori, T., Nakamura, A. & Inoue, Y. (2003). J. Am. Chem. Soc. 125, 7492–7493. Wakai, A., Fukasawa, H., Yang, C., Mori, T. & Inoue, Y. (2012). J. Am. Chem. Soc. 134, 4990–4997. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. Yang, C., Ke, C., Liang, W., Fukuhara, G., Mori, T., Liu, Y. & Inoue, Y. (2011). J. Am. Chem. Soc. 133, 13786–13789.

Kawanami et al.



C5H12NO+C30H19O4CH2Cl2

1413

supplementary materials

supplementary materials Acta Cryst. (2013). C69, 1411-1413

[doi:10.1107/S0108270113028461]

Absolute configuration determination of the anti-head-to-head photocyclodimer of anthracene-2-carboxylic acid through cocrystallization with L-prolinol Yuko Kawanami, Hidekazu Tanaka, Jun-ichi Mizoguchi, Nobuko Kanehisa, Gaku Fukuhara, Masaki Nishijima, Tadashi Mori and Yoshihisa Inoue Computing details Data collection: RAPID-AUTO (Rigaku, 2010); cell refinement: RAPID-AUTO (Rigaku, 2010); data reduction: RAPIDAUTO (Rigaku, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010). (S)-2-(Hydroxymethyl)pyrrolidin-1-ium 5carboxyheptacyclo[8.6.6.62,9.03,8.011,16.017,22.023,28]octacosa-2,4,6,8,11 (16),12,14,17 (22),18,20,23 (28),24,26tridecaene-13-carboxylate dichloromethane monosolvate Crystal data C5H12NO+·C30H19O4−·CH2Cl2 Mr = 630.57 Monoclinic, P21 Hall symbol: P 2yb a = 11.4579 (2) Å b = 9.83146 (18) Å c = 13.8027 (3) Å β = 95.6581 (10)° V = 1547.26 (5) Å3 Z=2

F(000) = 660.00 Dx = 1.353 Mg m−3 Cu Kα radiation, λ = 1.54187 Å Cell parameters from 11621 reflections θ = 3.2–68.2° µ = 2.25 mm−1 T = 123 K Platelet, colourless 0.80 × 0.20 × 0.10 mm

Data collection Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm-1 ω scans Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) Tmin = 0.654, Tmax = 0.798

17245 measured reflections 5117 independent reflections 4490 reflections with F2 > 2σ(F2) Rint = 0.067 θmax = 68.2° h = −13→13 k = −11→11 l = −16→15

Refinement Refinement on F2 R[F2 > 2σ(F2)] = 0.050 wR(F2) = 0.137 S = 1.08 5117 reflections

Acta Cryst. (2013). C69, 1411-1413

413 parameters 1 restraint Primary atom site location: structure-invariant direct methods

sup-1

supplementary materials Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.0586P)2 + 0.8448P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.27 e Å−3 Δρmin = −0.41 e Å−3 Absolute structure: Flack (1983), with 2125 Friedel pairs Absolute structure parameter: −0.00 (2)

Special details Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Cl1 Cl2 O1 O2 O3 O4 O5 N1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26

x

y

z

Uiso*/Ueq

0.38528 (10) 0.38727 (10) 0.0495 (2) −0.1128 (3) 0.1828 (3) 0.1568 (3) 0.0631 (3) −0.1817 (3) −0.0166 (3) 0.0226 (3) 0.1306 (3) 0.1642 (3) 0.2781 (3) 0.2482 (3) 0.2921 (4) 0.2607 (4) 0.1867 (4) 0.1436 (3) 0.1736 (3) 0.1288 (3) 0.0887 (3) −0.0175 (3) −0.0498 (3) 0.3764 (3) 0.4136 (3) 0.5172 (3) 0.5465 (3) 0.4735 (3) 0.3689 (3) 0.3386 (3) 0.2247 (3) 0.2563 (3) 0.2111 (3) 0.2430 (3)

0.53288 (15) 0.70849 (13) 0.4902 (3) 0.3644 (3) −0.2102 (3) −0.3293 (3) 0.4727 (4) 0.4939 (4) 0.3973 (4) 0.3242 (4) 0.3533 (4) 0.2875 (4) 0.3211 (4) 0.3403 (4) 0.4484 (4) 0.4605 (5) 0.3664 (5) 0.2571 (5) 0.2445 (4) 0.1298 (4) 0.1915 (4) 0.1608 (4) 0.2259 (4) 0.2049 (4) 0.1407 (4) 0.1742 (5) 0.1077 (5) 0.0080 (5) −0.0247 (4) 0.0427 (4) 0.0140 (4) −0.0025 (4) −0.1057 (4) −0.1141 (4)

0.42094 (8) 0.59280 (8) 0.32584 (15) 0.31536 (17) 0.37657 (16) 0.23795 (17) 0.52146 (19) 0.4732 (3) 0.2857 (3) 0.1990 (3) 0.1641 (3) 0.0815 (3) 0.0384 (3) −0.0701 (3) −0.1206 (3) −0.2208 (3) −0.2687 (3) −0.2189 (3) −0.1188 (3) −0.0587 (3) 0.0328 (3) 0.0687 (3) 0.1514 (3) 0.0596 (3) −0.0327 (3) −0.0717 (3) −0.1549 (3) −0.1985 (3) −0.1610 (3) −0.0779 (3) −0.0331 (2) 0.0761 (3) 0.1292 (3) 0.2300 (3)

0.0555 (4) 0.0498 (3) 0.0272 (6) 0.0306 (6) 0.0321 (6) 0.0275 (6) 0.0403 (8) 0.0271 (7) 0.0236 (8) 0.0235 (8) 0.0227 (8) 0.0227 (8) 0.0221 (8) 0.0241 (8) 0.0276 (8) 0.0326 (9) 0.0331 (9) 0.0286 (9) 0.0223 (8) 0.0232 (8) 0.0212 (7) 0.0258 (8) 0.0239 (8) 0.0230 (8) 0.0242 (8) 0.0290 (9) 0.0311 (9) 0.0306 (9) 0.0285 (9) 0.0234 (8) 0.0218 (7) 0.0216 (8) 0.0229 (8) 0.0228 (8)

Acta Cryst. (2013). C69, 1411-1413

sup-2

supplementary materials C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 H1NA H1NB H3 H5 H5O H7 H8 H9 H10 H12 H14 H15 H16 H18 H19 H20 H21 H23 H25 H27 H28 H31A H31B H32A H32B H33A H33B H34A H34B H35 H36A H36B H4O

0.3226 (3) 0.3681 (3) 0.3342 (3) 0.1919 (3) 0.3220 (6) −0.1955 (4) −0.3099 (4) −0.3038 (4) −0.1099 (4) −0.0007 (4) −0.182 (4) −0.149 (4) 0.1815 0.3095 0.066 (5) 0.3427 0.2905 0.1649 0.0941 0.0594 −0.0682 −0.1220 0.4471 0.5676 0.6170 0.4952 0.3185 0.1922 0.1588 0.3455 0.4228 0.2387 0.3234 −0.1700 −0.2038 −0.3166 −0.3781 −0.3625 −0.3195 −0.0870 0.0500 −0.0227 0.129 (5)

−0.0213 (4) 0.0807 (4) 0.0923 (4) −0.2218 (4) 0.5753 (7) 0.7025 (5) 0.6868 (5) 0.5455 (5) 0.6161 (4) 0.5733 (5) 0.431 (5) 0.449 (5) 0.4183 0.4087 0.501 (7) 0.5134 0.5337 0.3763 0.1915 0.0876 0.0950 0.2032 0.2474 0.2420 0.1306 −0.0383 −0.0922 −0.0743 −0.1706 −0.0281 0.1434 0.5988 0.4939 0.7988 0.6691 0.7575 0.6941 0.4844 0.5504 0.6653 0.6538 0.5372 −0.385 (5)

0.2752 (3) 0.2213 (3) 0.1218 (3) 0.2890 (3) 0.5259 (4) 0.5548 (3) 0.4895 (4) 0.4447 (3) 0.5055 (3) 0.5676 (3) 0.529 (4) 0.414 (4) 0.1968 0.0671 0.464 (4) −0.0874 −0.2559 −0.3366 −0.2528 −0.0969 0.0365 0.1757 0.0958 −0.0417 −0.1819 −0.2545 −0.1914 −0.0596 0.0977 0.3431 0.2522 0.5075 0.5682 0.5584 0.6214 0.4382 0.5280 0.4700 0.3730 0.4469 0.5819 0.6302 0.274 (4)

0.0264 (8) 0.0261 (8) 0.0226 (8) 0.0250 (8) 0.0719 (18) 0.0379 (9) 0.0428 (11) 0.0369 (10) 0.0286 (8) 0.0359 (10) 0.053 (14)* 0.049 (13)* 0.0272* 0.0265* 0.076 (19)* 0.0331* 0.0391* 0.0398* 0.0343* 0.0278* 0.0310* 0.0287* 0.0275* 0.0348* 0.0373* 0.0368* 0.0342* 0.0261* 0.0275* 0.0317* 0.0314* 0.0863* 0.0863* 0.0455* 0.0455* 0.0514* 0.0514* 0.0442* 0.0442* 0.0344* 0.0430* 0.0430* 0.051 (15)*

Atomic displacement parameters (Å2)

Cl1 Cl2 O1

U11

U22

U33

U12

U13

U23

0.0492 (6) 0.0527 (6) 0.0375 (14)

0.0680 (9) 0.0477 (7) 0.0261 (15)

0.0505 (7) 0.0473 (6) 0.0182 (11)

0.0079 (6) −0.0038 (6) −0.0059 (12)

0.0107 (5) −0.0028 (5) 0.0040 (10)

−0.0041 (6) 0.0032 (6) −0.0001 (11)

Acta Cryst. (2013). C69, 1411-1413

sup-3

supplementary materials O2 O3 O4 O5 N1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36

0.0326 (14) 0.0519 (16) 0.0390 (14) 0.0475 (17) 0.0344 (16) 0.0290 (18) 0.0302 (18) 0.0297 (18) 0.0238 (17) 0.0268 (17) 0.0287 (18) 0.0287 (18) 0.044 (3) 0.044 (3) 0.0283 (18) 0.0189 (16) 0.0241 (17) 0.0217 (16) 0.0292 (18) 0.0220 (16) 0.0208 (16) 0.0248 (18) 0.0275 (18) 0.0215 (18) 0.0352 (19) 0.0330 (19) 0.0258 (17) 0.0284 (17) 0.0236 (16) 0.0212 (17) 0.0281 (18) 0.0289 (18) 0.0280 (18) 0.0228 (17) 0.0289 (18) 0.089 (4) 0.042 (3) 0.037 (3) 0.033 (2) 0.0309 (19) 0.036 (2)

0.0301 (16) 0.0267 (15) 0.0216 (15) 0.053 (2) 0.0256 (18) 0.024 (2) 0.021 (2) 0.0197 (19) 0.0237 (19) 0.0190 (19) 0.025 (2) 0.028 (3) 0.029 (3) 0.035 (3) 0.038 (3) 0.027 (2) 0.027 (2) 0.0226 (19) 0.024 (2) 0.024 (2) 0.027 (2) 0.026 (2) 0.032 (3) 0.040 (3) 0.036 (3) 0.031 (3) 0.027 (2) 0.0187 (19) 0.023 (2) 0.027 (2) 0.023 (2) 0.032 (3) 0.027 (3) 0.024 (2) 0.0209 (19) 0.073 (5) 0.027 (3) 0.038 (3) 0.043 (3) 0.026 (2) 0.044 (3)

0.0309 (13) 0.0187 (12) 0.0231 (12) 0.0192 (13) 0.0211 (14) 0.0178 (15) 0.0190 (16) 0.0185 (16) 0.0198 (16) 0.0204 (16) 0.0182 (16) 0.0272 (18) 0.0267 (19) 0.0202 (18) 0.0192 (16) 0.0204 (16) 0.0179 (16) 0.0184 (15) 0.0234 (16) 0.0259 (16) 0.0204 (15) 0.0219 (17) 0.0275 (17) 0.0330 (19) 0.0208 (17) 0.0207 (17) 0.0175 (15) 0.0176 (15) 0.0174 (16) 0.0202 (16) 0.0173 (16) 0.0174 (16) 0.0224 (17) 0.0205 (16) 0.0256 (17) 0.059 (4) 0.046 (3) 0.054 (3) 0.033 (2) 0.0289 (18) 0.0271 (18)

−0.0047 (12) 0.0004 (13) −0.0039 (11) 0.0162 (15) −0.0010 (14) 0.0022 (15) 0.0030 (15) 0.0004 (15) 0.0027 (15) −0.0013 (14) 0.0040 (16) −0.0010 (16) 0.0010 (18) 0.0070 (19) 0.0041 (16) 0.0030 (14) −0.0023 (15) 0.0012 (15) −0.0006 (16) 0.0019 (15) −0.0055 (16) 0.0002 (15) −0.0023 (17) 0.0070 (17) 0.0121 (19) 0.0057 (17) 0.0045 (16) −0.0025 (15) −0.0007 (15) −0.0002 (15) 0.0058 (15) −0.0002 (16) −0.0025 (16) −0.0022 (15) 0.0020 (16) −0.044 (4) −0.0081 (19) 0.009 (2) 0.0036 (19) −0.0040 (16) 0.0005 (19)

0.0116 (11) 0.0081 (11) 0.0084 (11) −0.0013 (12) 0.0024 (12) 0.0014 (13) 0.0020 (13) 0.0015 (13) −0.0009 (13) 0.0017 (13) 0.0006 (13) 0.0064 (14) 0.0092 (16) 0.0011 (15) −0.0002 (14) 0.0008 (12) −0.0010 (13) −0.0021 (12) −0.0015 (14) 0.0003 (13) −0.0016 (12) 0.0007 (13) 0.0031 (14) 0.0078 (15) 0.0049 (14) −0.0006 (14) 0.0010 (13) −0.0008 (13) −0.0002 (13) −0.0008 (13) 0.0030 (13) −0.0041 (13) −0.0038 (14) 0.0021 (13) 0.0044 (14) 0.033 (3) 0.0125 (17) 0.0086 (19) −0.0010 (16) 0.0039 (14) 0.0009 (15)

−0.0060 (12) −0.0007 (11) 0.0013 (11) −0.0010 (13) −0.0027 (13) 0.0003 (15) 0.0028 (14) −0.0010 (14) 0.0038 (15) −0.0002 (14) 0.0025 (15) 0.0021 (15) 0.0063 (16) 0.0076 (17) −0.0022 (15) 0.0017 (14) −0.0002 (15) −0.0007 (15) −0.0003 (15) 0.0009 (15) 0.0002 (16) 0.0039 (15) 0.0057 (17) 0.0139 (18) 0.0026 (17) 0.0029 (16) 0.0039 (15) 0.0007 (14) 0.0013 (14) −0.0027 (15) 0.0015 (14) −0.0007 (15) −0.0011 (15) 0.0003 (15) 0.0014 (15) −0.013 (3) −0.012 (2) −0.005 (3) −0.0054 (19) −0.0048 (15) −0.0089 (18)

Geometric parameters (Å, º) Cl1—C31 Cl2—C31 O1—C1 O2—C1 O3—C30 O4—C30 Acta Cryst. (2013). C69, 1411-1413

1.733 (6) 1.730 (6) 1.278 (5) 1.256 (5) 1.228 (4) 1.311 (5)

C26—C27 C26—C30 C27—C28 C28—C29 C32—C33 C32—C35

1.393 (5) 1.491 (5) 1.381 (6) 1.395 (5) 1.524 (6) 1.509 (6)

sup-4

supplementary materials O5—C36 N1—C34 N1—C35 C1—C2 C2—C3 C2—C15 C3—C4 C4—C5 C4—C13 C5—C6 C5—C16 C6—C7 C6—C11 C7—C8 C8—C9 C9—C10 C10—C11 C11—C12 C12—C13 C12—C23 C13—C14 C14—C15 C16—C17 C16—C29 C17—C18 C17—C22 C18—C19 C19—C20 C20—C21 C21—C22 C22—C23 C23—C24 C24—C25 C24—C29 C25—C26

1.418 (6) 1.504 (5) 1.499 (5) 1.502 (5) 1.401 (5) 1.396 (5) 1.397 (5) 1.522 (5) 1.406 (5) 1.515 (5) 1.611 (5) 1.392 (6) 1.399 (5) 1.399 (5) 1.379 (6) 1.393 (6) 1.396 (5) 1.518 (5) 1.513 (5) 1.598 (5) 1.392 (5) 1.390 (5) 1.520 (5) 1.509 (5) 1.390 (5) 1.396 (5) 1.391 (6) 1.387 (6) 1.390 (6) 1.397 (5) 1.525 (5) 1.523 (5) 1.382 (5) 1.397 (5) 1.406 (5)

C33—C34 C35—C36 O4—H4O O5—H5O N1—H1NA N1—H1NB C3—H3 C5—H5 C7—H7 C8—H8 C9—H9 C10—H10 C12—H12 C14—H14 C15—H15 C16—H16 C18—H18 C19—H19 C20—H20 C21—H21 C23—H23 C25—H25 C27—H27 C28—H28 C31—H31A C31—H31B C32—H32A C32—H32B C33—H33A C33—H33B C34—H34A C34—H34B C35—H35 C36—H36A C36—H36B

1.525 (7) 1.505 (6) 0.83 (5) 0.84 (6) 0.99 (5) 1.03 (5) 0.950 1.000 0.950 0.950 0.950 0.950 1.000 0.950 0.950 1.000 0.950 0.950 0.950 0.950 1.000 0.950 0.950 0.950 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 1.000 0.990 0.990

O1···C3 O2···C15 O3···C27 O4···C25 O4···C27 O5···N1 C2···C13 C3···C14 C3···C16 C3···C29 C4···C11 C4···C15 C4···C23

2.842 (5) 2.797 (5) 2.901 (5) 2.768 (5) 3.585 (5) 2.826 (4) 2.808 (5) 2.785 (5) 3.597 (5) 3.554 (5) 2.809 (5) 2.789 (5) 3.229 (5)

C6···H14ix C7···H14ix C7···H15ix C8···H15ix C8···H31Bviii C9···H31Bviii C9···H33Avi C9···H35vi C9···H36Bviii C10···H35vi C10···H4Oix C13···H25ix C14···H23ix

3.3055 3.2539 3.2181 2.9667 3.0853 3.1281 3.0857 3.2719 3.1407 3.2761 3.43 (5) 3.4807 3.2794

Acta Cryst. (2013). C69, 1411-1413

sup-5

supplementary materials C4···C24 C4···C28 C4···C29 C5···C12 C5···C18 C5···C22 C5···C23 C5···C24 C5···C28 C6···C9 C6···C13 C6···C17 C6···C18 C6···C22 C6···C23 C7···C10 C7···C16 C7···C17 C8···C11 C10···C22 C10···C23 C11···C16 C11···C17 C11···C21 C11···C22 C12···C16 C12···C17 C12···C21 C12···C25 C12···C29 C13···C16 C13···C24 C13···C25 C13···C29 C14···C23 C14···C24 C16···C23 C17···C20 C17···C24 C18···C21 C19···C22 C22···C29 C24···C27 C25···C28 C26···C29 Cl1···O3i Cl1···C34ii Cl2···C34iii O1···O3i

Acta Cryst. (2013). C69, 1411-1413

3.044 (6) 3.525 (5) 2.752 (5) 2.794 (5) 3.566 (5) 3.282 (5) 3.216 (5) 3.237 (6) 3.536 (5) 2.774 (5) 2.830 (5) 2.741 (5) 3.490 (5) 3.109 (6) 3.264 (6) 2.796 (6) 3.519 (5) 3.497 (6) 2.786 (6) 3.516 (5) 3.562 (5) 3.239 (5) 3.061 (5) 3.551 (6) 2.760 (5) 3.217 (5) 3.249 (5) 3.554 (6) 3.535 (5) 3.275 (5) 3.283 (5) 2.732 (5) 3.451 (6) 3.114 (5) 3.539 (5) 3.517 (5) 2.782 (5) 2.779 (5) 2.831 (5) 2.796 (6) 2.777 (5) 2.805 (5) 2.784 (5) 2.786 (5) 2.784 (5) 3.444 (3) 3.547 (4) 3.473 (5) 3.360 (4)

C14···H25ix C15···H23ix C15···H36Biv C17···H7xiv C18···H5xiv C18···H7xiv C19···H5xiv C19···H7xiv C20···H5xiv C20···H16xiv C20···H34Bvi C21···H16xiv C21···H34Bvi C22···H18xiv C24···H18xiv C25···H18xiv C25···H19xiv C26···H1NAiv C26···H19xiv C26···H32Biv C27···H1NAiv C27···H32Biv C27···H33Biv C27···H34Aiv C28···H32Biv C30···H1NAiv C30···H10vi C30···H19xiv C30···H31Av C30···H36Biv C31···H5O C31···H8vii C31···H9vii C31···H32Aiv C31···H33Aiv C31···H36A C32···H5Oiii C32···H9ix C32···H27iii C32···H31Biii C33···H9ix C33···H27iii C33···H31Biii C34···H20ix C34···H27iii C35···H9ix C35···H10ix C36···H9vii C36···H31A

3.1481 2.7776 3.5678 3.3463 3.2767 3.0331 2.7606 3.5793 3.0879 3.0246 2.8726 3.1468 3.0177 3.5029 3.2851 3.2759 3.2929 3.50 (5) 3.0851 3.5133 3.32 (5) 2.7882 3.4533 3.5014 3.1328 2.94 (5) 3.3751 3.1181 3.4888 3.4508 3.06 (6) 3.0960 3.3682 3.3729 3.1646 3.3737 3.31 (7) 3.5104 3.2504 3.5708 3.3732 3.1872 3.1229 3.3536 3.0994 3.4768 3.5884 2.9342 2.9538

sup-6

supplementary materials O1···O4i O1···O5 O1···N1 O1···C30i O1···C35 O1···C36 O2···O5 O2···N1 O2···C34 O2···C36iv O3···Cl1v O3···O1v O3···N1iv O3···C31v O4···O1v O4···C1v O4···C3v O4···C10vi O5···O1 O5···O2 O5···C1 O5···C9vii O5···C31 O5···C32iv O5···C35iv N1···O1 N1···O2 N1···O3iii N1···C1 C1···O4i C1···O5 C1···N1 C3···O4i C9···O5viii C9···C36viii C10···O4ix C30···O1v C31···O3i C31···O5 C32···O5iii C34···Cl1x C34···Cl2iv C34···O2 C35···O1 C35···O5iii C36···O1 C36···O2iii C36···C9vii O1···H3

Acta Cryst. (2013). C69, 1411-1413

2.534 (4) 2.695 (4) 3.495 (4) 3.331 (5) 3.451 (5) 3.537 (5) 3.487 (4) 2.708 (4) 3.453 (5) 3.475 (5) 3.444 (3) 3.360 (4) 2.886 (4) 3.254 (7) 2.534 (4) 3.444 (5) 3.288 (5) 3.529 (5) 2.695 (4) 3.487 (4) 3.375 (4) 3.267 (5) 3.127 (7) 3.283 (6) 3.571 (6) 3.495 (4) 2.708 (4) 2.886 (4) 3.485 (5) 3.444 (5) 3.375 (4) 3.485 (5) 3.288 (5) 3.267 (5) 3.592 (6) 3.529 (5) 3.331 (5) 3.254 (7) 3.127 (7) 3.283 (6) 3.547 (4) 3.473 (5) 3.453 (5) 3.451 (5) 3.571 (6) 3.537 (5) 3.475 (5) 3.592 (6) 2.5477

H1NA···Cl2iv H1NA···O2 H1NA···O3iii H1NA···C26iii H1NA···C27iii H1NA···C30iii H1NA···H27iii H1NA···H31Aiv H1NA···H36Aiv H1NB···O1 H1NB···O2 H1NB···O3iii H1NB···C1 H1NB···H10ix H1NB···H21ix H1NB···H36Aiv H3···O4i H3···H12ix H3···H19xi H3···H32Aiv H3···H32Biv H3···H4Oi H5···C18xi H5···C19xi H5···C20xi H5···H14ix H5···H18xi H5···H19xi H5···H20xi H5O···O1 H5O···O2 H5O···O3i H5O···C1 H5O···C31 H5O···C32iv H5O···H9vii H5O···H31A H5O···H31B H5O···H32Aiv H5O···H35iv H5O···H4Oi H7···C17xi H7···C18xi H7···C19xi H7···H14ix H7···H15ix H7···H16xi H7···H18xi H8···Cl2viii

3.52 (5) 3.19 (5) 1.90 (5) 3.50 (5) 3.32 (5) 2.94 (5) 2.7322 3.3570 3.5340 2.72 (5) 1.68 (5) 3.35 (5) 2.50 (5) 3.3600 3.4882 3.1199 2.5668 3.3969 3.1337 3.5922 3.4980 2.3162 3.2767 2.7606 3.0879 3.5017 3.5978 2.7784 3.2907 1.90 (6) 3.06 (6) 3.41 (7) 2.75 (6) 3.06 (6) 3.31 (7) 3.1190 2.2278 3.1498 2.3505 3.5182 3.00 (8) 3.3463 3.0331 3.5793 3.3861 3.2799 3.3407 2.9868 2.9999

sup-7

supplementary materials O2···H15 O3···H27 O3···H4O O4···H25 O5···H1NA O5···H1NB O5···H35 N1···H5O N1···H32A N1···H32B N1···H33A N1···H33B N1···H36A N1···H36B C1···H3 C1···H15 C2···H14 C3···H5 C3···H15 C4···H12 C4···H14 C4···H16 C5···H3 C5···H7 C6···H8 C6···H10 C6···H12 C6···H16 C7···H5 C7···H9 C8···H10 C9···H7 C10···H8 C10···H12 C11···H5 C11···H7 C11···H9 C11···H23 C12···H10 C12···H14 C13···H3 C13···H5 C13···H15 C13···H23 C14···H12 C15···H3 C16···H18 C16···H28 C17···H5

Acta Cryst. (2013). C69, 1411-1413

2.4892 2.6577 2.27 (5) 2.4883 2.85 (5) 2.74 (5) 2.6941 2.86 (6) 3.2175 2.7052 3.0323 3.1377 3.3142 2.7232 2.6925 2.6538 3.2766 2.6132 3.2669 3.2837 3.2762 3.2516 2.7198 2.7190 3.2667 3.2765 3.2917 3.2000 2.6082 3.2642 3.2654 3.2659 3.2652 2.6198 3.2905 3.2813 3.2655 3.2411 2.7365 2.7435 3.2801 3.3086 3.2673 3.1882 2.6293 3.2665 2.7373 2.7267 3.2536

H8···C31viii H8···H15ix H8···H28xi H8···H31Aviii H8···H31Bviii H8···H36Aviii H9···O5viii H9···C31viii H9···C32vi H9···C33vi H9···C35vi H9···C36viii H9···H5Oviii H9···H31Aviii H9···H31Bviii H9···H32Avi H9···H33Avi H9···H35vi H9···H36Aviii H9···H36Bviii H10···O1vi H10···O2vi H10···O3ix H10···O4ix H10···C1vi H10···C30ix H10···C35vi H10···H1NBvi H10···H34Bvi H10···H35vi H10···H4Oix H12···O1vi H12···O4ix H12···C1vi H12···C2vi H12···C3vi H12···H3vi H12···H25ix H12···H4Oix H14···C4vi H14···C6vi H14···C7vi H14···H5vi H14···H7vi H14···H23ix H14···H25ix H15···C7vi H15···C8vi H15···H7vi

3.0960 2.8546 3.4533 3.3229 2.5238 3.5754 2.3764 3.3682 3.5104 3.3732 3.4768 2.9342 3.1190 3.2388 2.6142 3.1611 2.6145 2.6738 3.1860 2.6721 2.7044 3.3431 3.5853 2.9092 3.0464 3.3751 3.5884 3.3600 3.4914 2.6845 2.6488 3.4175 3.1047 3.2053 3.0513 3.2415 3.3969 3.4493 3.1065 3.5563 3.3055 3.2539 3.5017 3.3861 3.5750 3.0731 3.2181 2.9667 3.2799

sup-8

supplementary materials C17···H19 C17···H21 C17···H23 C18···H16 C18···H20 C19···H21 C20···H18 C21···H19 C21···H23 C22···H12 C22···H16 C22···H18 C22···H20 C23···H21 C23···H25 C24···H12 C24···H16 C24···H28 C25···H23 C25···H27 C25···H4O C26···H28 C26···H4O C27···H25 C28···H16 C29···H5 C29···H23 C29···H25 C29···H27 C30···H25 C30···H27 C32···H1NA C32···H1NB C32···H34A C32···H34B C32···H36A C32···H36B C33···H1NA C33···H1NB C33···H35 C34···H32A C34···H32B C34···H35 C35···H5O C35···H33A C35···H33B C35···H34A C35···H34B C36···H1NA

Acta Cryst. (2013). C69, 1411-1413

3.2608 3.2796 3.2944 2.6214 3.2661 3.2681 3.2684 3.2652 2.6171 3.2143 3.2797 3.2736 3.2639 2.7360 2.7182 3.2429 3.2818 3.2701 2.6119 3.2825 3.58 (5) 3.2597 3.06 (5) 3.2819 2.6104 3.2069 3.2858 3.2703 3.2662 2.6785 2.6504 2.70 (5) 3.23 (5) 3.0309 3.1381 2.8407 2.6900 2.94 (5) 3.21 (5) 2.6848 3.2461 2.8608 2.7470 2.43 (6) 2.8235 3.2115 3.1644 2.9433 2.51 (5)

H15···H8vi H15···H21ix H15···H23ix H15···H36Aiv H15···H36Biv H16···C20xi H16···C21xi H16···H7xiv H16···H20xi H16···H21xi H18···C22xi H18···C24xi H18···C25xi H18···H5xiv H18···H7xiv H18···H23xi H18···H25xi H19···Cl1xiv H19···O4xi H19···C25xi H19···C26xi H19···C30xi H19···H3xiv H19···H5xiv H19···H25xi H19···H4Oxi H20···Cl1xiv H20···Cl2xv H20···C34vi H20···H5xiv H20···H16xiv H20···H28xiv H20···H34Avi H20···H34Bvi H21···O2vi H21···C1vi H21···H1NBvi H21···H15vi H21···H16xiv H21···H34Bvi H23···C1vi H23···C2vi H23···C14vi H23···C15vi H23···H14vi H23···H15vi H23···H18xiv H25···C13vi H25···C14vi

2.8546 3.0430 2.7828 3.4003 3.4225 3.0246 3.1468 3.3407 3.0645 3.2779 3.5029 3.2851 3.2759 3.5978 2.9868 3.4684 3.4120 3.4339 2.8048 3.2929 3.0851 3.1181 3.1337 2.7784 3.3434 3.2976 2.8749 3.4142 3.3536 3.2907 3.0645 3.2666 3.2127 2.6154 2.8052 3.5748 3.4882 3.0430 3.2779 2.8729 3.5524 3.1339 3.2794 2.7776 3.5750 2.7828 3.4684 3.4807 3.1481

sup-9

supplementary materials C36···H1NB C36···H32A C36···H32B H1NA···H5O H1NA···H32B H1NA···H33B H1NA···H34A H1NA···H34B H1NA···H35 H1NA···H36A H1NA···H36B H1NB···H5O H1NB···H34A H1NB···H34B H1NB···H35 H1NB···H36B H3···H5 H5···H7 H5···H16 H5O···H35 H5O···H36A H5O···H36B H7···H8 H8···H9 H9···H10 H10···H12 H12···H14 H12···H23 H14···H15 H16···H18 H16···H28 H18···H19 H19···H20 H20···H21 H21···H23 H23···H25 H25···H4O H27···H28 H32A···H33A H32A···H33B H32A···H35 H32A···H36A H32A···H36B H32B···H33A H32B···H33B H32B···H34A H32B···H35 H32B···H36A H32B···H36B

Acta Cryst. (2013). C69, 1411-1413

2.86 (5) 2.9394 2.6824 3.14 (8) 2.6919 3.4301 2.2146 2.8008 2.8319 3.4638 2.4201 2.55 (7) 2.6556 2.2095 2.2727 3.3047 2.4255 2.4315 2.2436 2.3823 2.2366 2.6231 2.3525 2.3214 2.3410 2.4497 2.4625 2.2275 2.3321 2.4550 2.4293 2.3414 2.3312 2.3415 2.4397 2.4338 3.2658 2.3280 2.2778 2.5925 2.2982 2.8855 3.1802 2.8591 2.2802 3.1963 2.8695 3.0149 2.4400

H25···H12vi H25···H14vi H25···H18xiv H25···H19xiv H27···N1iv H27···C32iv H27···C33iv H27···C34iv H27···H1NAiv H27···H32Biv H27···H33Biv H27···H34Aiv H28···Cl2xvi H28···H8xiv H28···H20xi H28···H32Biv H28···H33Biv H31A···O1 H31A···O3i H31A···O5 H31A···C30i H31A···C36 H31A···H1NAiii H31A···H5O H31A···H8vii H31A···H9vii H31A···H32Aiv H31A···H33Aiv H31A···H36A H31A···H4Oi H31B···O5 H31B···C8vii H31B···C9vii H31B···C32iv H31B···C33iv H31B···H5O H31B···H8vii H31B···H9vii H31B···H32Aiv H31B···H33Aiv H31B···H33Biv H31B···H36A H32A···Cl1iii H32A···O1iii H32A···O2iii H32A···O5iii H32A···C1iii H32A···C31iii H32A···H3iii

3.4493 3.0731 3.4120 3.3434 3.3075 3.2504 3.1872 3.0994 2.7322 2.6064 2.8194 2.5708 2.9670 3.4533 3.2666 3.2035 3.1650 3.3253 2.6412 2.3870 3.4888 2.9538 3.3570 2.2278 3.3229 3.2388 3.1636 3.5332 2.5417 3.3463 2.9961 3.0853 3.1281 3.5708 3.1229 3.1498 2.5238 2.6142 3.0366 2.3268 3.3178 3.5271 3.4065 2.7513 3.5831 2.4294 3.0394 3.3729 3.5922

sup-10

supplementary materials H33A···H34A H33A···H34B H33A···H35 H33B···H34A H33B···H34B H34B···H35 H35···H36A H35···H36B Cl1···H19xi Cl1···H20xi Cl1···H32Aiv Cl1···H33Aiv Cl1···H33Bii Cl1···H33Biv Cl1···H34Aii Cl1···H34Bii Cl1···H4Oi Cl2···H1NAiii Cl2···H8vii Cl2···H20xii Cl2···H28xiii Cl2···H33Bii Cl2···H34Aiii Cl2···H34Biii O1···H1NB O1···H5O O1···H10ix O1···H12ix O1···H31A O1···H32Aiv O1···H35 O1···H4Oi O2···H1NA O2···H1NB O2···H5O O2···H10ix O2···H21ix O2···H32Aiv O2···H34B O2···H35 O2···H36Aiv O3···H1NAiv O3···H1NBiv O3···H5Ov O3···H10vi O3···H31Av O3···H34Aiv O3···H35v O3···H36Biv

Acta Cryst. (2013). C69, 1411-1413

2.7790 2.2253 2.7742 2.2250 2.7035 2.9790 2.3183 2.8578 3.4339 2.8749 3.4065 3.4679 3.3557 3.4067 2.9414 3.5147 3.50 (5) 3.52 (5) 2.9999 3.4142 2.9670 2.9194 2.8540 3.4928 2.72 (5) 1.90 (6) 2.7044 3.4175 3.3253 2.7513 2.9519 1.72 (5) 3.19 (5) 1.68 (5) 3.06 (6) 3.3431 2.8052 3.5831 3.1555 3.4687 2.5715 1.90 (5) 3.35 (5) 3.41 (7) 3.5853 2.6412 3.3944 3.5482 3.0418

H32A···H5Oiii H32A···H9ix H32A···H31Aiii H32A···H31Biii H32B···C1iii H32B···C2iii H32B···C3iii H32B···C26iii H32B···C27iii H32B···C28iii H32B···H3iii H32B···H27iii H32B···H28iii H33A···Cl1iii H33A···O5iii H33A···C9ix H33A···C31iii H33A···H9ix H33A···H31Aiii H33A···H31Biii H33B···Cl1x H33B···Cl1iii H33B···Cl2x H33B···C27iii H33B···H27iii H33B···H28iii H33B···H31Biii H34A···Cl1x H34A···Cl2iv H34A···O3iii H34A···C27iii H34A···H20ix H34A···H27iii H34B···Cl1x H34B···Cl2iv H34B···O2 H34B···C20ix H34B···C21ix H34B···H10ix H34B···H20ix H34B···H21ix H35···O1 H35···O2 H35···O3i H35···O5iii H35···C1 H35···C9ix H35···C10ix H35···H5Oiii

2.3505 3.1611 3.1636 3.0366 3.5247 3.4303 3.5015 3.5133 2.7882 3.1328 3.4980 2.6064 3.2035 3.4679 3.5918 3.0857 3.1646 2.6145 3.5332 2.3268 3.3557 3.4067 2.9194 3.4533 2.8194 3.1650 3.3178 2.9414 2.8540 3.3944 3.5014 3.2127 2.5708 3.5147 3.4928 3.1555 2.8726 3.0177 3.4914 2.6154 2.8729 2.9519 3.4687 3.5482 3.0615 3.5911 3.2719 3.2761 3.5182

sup-11

supplementary materials O4···H3v O4···H10vi O4···H12vi O4···H19xiv O5···H9vii O5···H31A O5···H31B O5···H32Aiv O5···H33Aiv O5···H35iv N1···H27iii C1···H1NB C1···H5O C1···H10ix C1···H12ix C1···H21ix C1···H23ix C1···H32Aiv C1···H32Biv C1···H35 C1···H36Aiv C1···H4Oi C2···H12ix C2···H23ix C2···H32Biv C2···H4Oi C3···H12ix C3···H32Biv C3···H4Oi C4···H14ix

2.5668 2.9092 3.1047 2.8048 2.3764 2.3870 2.9961 2.4294 3.5918 3.0615 3.3075 2.50 (5) 2.75 (6) 3.0464 3.2053 3.5748 3.5524 3.0394 3.5247 3.5911 3.0591 2.72 (5) 3.0513 3.1339 3.4303 3.23 (5) 3.2415 3.5015 2.99 (5) 3.5563

H35···H9ix H35···H10ix H36A···O2iii H36A···C1iii H36A···C31 H36A···H1NAiii H36A···H1NBiii H36A···H8vii H36A···H9vii H36A···H15iii H36A···H31A H36A···H31B H36B···O3iii H36B···C9vii H36B···C15iii H36B···C30iii H36B···H9vii H36B···H15iii H4O···Cl1v H4O···O1v H4O···C1v H4O···C2v H4O···C3v H4O···C10vi H4O···H3v H4O···H5Ov H4O···H10vi H4O···H12vi H4O···H19xiv H4O···H31Av

2.6738 2.6845 2.5715 3.0591 3.3737 3.5340 3.1199 3.5754 3.1860 3.4003 2.5417 3.5271 3.0418 3.1407 3.5678 3.4508 2.6721 3.4225 3.50 (5) 1.72 (5) 2.72 (5) 3.23 (5) 2.99 (5) 3.43 (5) 2.3162 3.00 (8) 2.6488 3.1065 3.2976 3.3463

C34—N1—C35 O1—C1—O2 O1—C1—C2 O2—C1—C2 C1—C2—C3 C1—C2—C15 C3—C2—C15 C2—C3—C4 C3—C4—C5 C3—C4—C13 C5—C4—C13 C4—C5—C6 C4—C5—C16 C6—C5—C16 C5—C6—C7 C5—C6—C11 C7—C6—C11 C6—C7—C8

106.0 (3) 123.0 (4) 118.4 (3) 118.5 (3) 121.4 (3) 119.7 (3) 118.9 (3) 120.7 (4) 122.2 (3) 119.7 (3) 118.0 (3) 107.1 (3) 112.7 (3) 110.7 (3) 122.2 (3) 117.3 (3) 120.5 (3) 119.3 (4)

C34—N1—H1NA C34—N1—H1NB C35—N1—H1NA C35—N1—H1NB H1NA—N1—H1NB C2—C3—H3 C4—C3—H3 C4—C5—H5 C6—C5—H5 C16—C5—H5 C6—C7—H7 C8—C7—H7 C7—C8—H8 C9—C8—H8 C8—C9—H9 C10—C9—H9 C9—C10—H10 C11—C10—H10

110 (3) 109 (3) 108 (3) 110 (3) 112 (4) 119.648 119.658 108.730 108.732 108.739 120.356 120.348 119.891 119.879 119.603 119.608 120.248 120.254

Acta Cryst. (2013). C69, 1411-1413

sup-12

supplementary materials C7—C8—C9 C8—C9—C10 C9—C10—C11 C6—C11—C10 C6—C11—C12 C10—C11—C12 C11—C12—C13 C11—C12—C23 C13—C12—C23 C4—C13—C12 C4—C13—C14 C12—C13—C14 C13—C14—C15 C2—C15—C14 C5—C16—C17 C5—C16—C29 C17—C16—C29 C16—C17—C18 C16—C17—C22 C18—C17—C22 C17—C18—C19 C18—C19—C20 C19—C20—C21 C20—C21—C22 C17—C22—C21 C17—C22—C23 C21—C22—C23 C12—C23—C22 C12—C23—C24 C22—C23—C24 C23—C24—C25 C23—C24—C29 C25—C24—C29 C24—C25—C26 C25—C26—C27 C25—C26—C30 C27—C26—C30 C26—C27—C28 C27—C28—C29 C16—C29—C24 C16—C29—C28 C24—C29—C28 O3—C30—O4 O3—C30—C26 O4—C30—C26 Cl1—C31—Cl2 C33—C32—C35 C32—C33—C34 N1—C34—C33

Acta Cryst. (2013). C69, 1411-1413

120.2 (4) 120.8 (4) 119.5 (4) 119.7 (4) 117.5 (3) 122.9 (3) 107.8 (3) 112.9 (3) 111.1 (3) 116.4 (3) 119.6 (3) 124.0 (3) 120.3 (4) 120.8 (4) 113.0 (3) 111.5 (3) 107.7 (3) 123.1 (4) 116.8 (3) 120.1 (4) 119.5 (4) 120.4 (4) 120.4 (4) 119.3 (4) 120.1 (4) 117.4 (3) 122.5 (3) 112.0 (3) 112.7 (3) 107.0 (3) 122.5 (3) 117.0 (3) 120.4 (3) 119.6 (4) 119.9 (4) 120.3 (3) 119.7 (3) 120.0 (3) 120.4 (4) 117.3 (3) 123.1 (3) 119.6 (4) 123.6 (4) 123.2 (4) 113.2 (3) 115.7 (4) 103.6 (4) 105.1 (4) 106.2 (3)

C11—C12—H12 C13—C12—H12 C23—C12—H12 C13—C14—H14 C15—C14—H14 C2—C15—H15 C14—C15—H15 C5—C16—H16 C17—C16—H16 C29—C16—H16 C17—C18—H18 C19—C18—H18 C18—C19—H19 C20—C19—H19 C19—C20—H20 C21—C20—H20 C20—C21—H21 C22—C21—H21 C12—C23—H23 C22—C23—H23 C24—C23—H23 C24—C25—H25 C26—C25—H25 C26—C27—H27 C28—C27—H27 C27—C28—H28 C29—C28—H28 Cl1—C31—H31A Cl1—C31—H31B Cl2—C31—H31A Cl2—C31—H31B H31A—C31—H31B C33—C32—H32A C33—C32—H32B C35—C32—H32A C35—C32—H32B H32A—C32—H32B C32—C33—H33A C32—C33—H33B C34—C33—H33A C34—C33—H33B H33A—C33—H33B N1—C34—H34A N1—C34—H34B C33—C34—H34A C33—C34—H34B H34A—C34—H34B N1—C35—H35 C32—C35—H35

108.348 108.351 108.344 119.829 119.829 119.616 119.603 108.166 108.165 108.175 120.229 120.226 119.789 119.798 119.791 119.780 120.330 120.334 108.323 108.315 108.316 120.211 120.222 120.007 120.005 119.791 119.789 108.352 108.353 108.356 108.356 107.436 111.026 111.030 111.033 111.030 109.020 110.712 110.717 110.715 110.718 108.814 110.479 110.481 110.484 110.481 108.668 109.079 109.070

sup-13

supplementary materials N1—C35—C32 N1—C35—C36 C32—C35—C36 O5—C36—C35 C30—O4—H4O C36—O5—H5O

102.9 (3) 110.2 (4) 116.2 (4) 112.1 (3) 109 (4) 105 (5)

C36—C35—H35 O5—C36—H36A O5—C36—H36B C35—C36—H36A C35—C36—H36B H36A—C36—H36B

109.073 109.187 109.185 109.183 109.189 107.891

C34—N1—C35—C32 C34—N1—C35—C36 C35—N1—C34—C33 O1—C1—C2—C3 O1—C1—C2—C15 O2—C1—C2—C3 O2—C1—C2—C15 C1—C2—C3—C4 C1—C2—C15—C14 C3—C2—C15—C14 C15—C2—C3—C4 C2—C3—C4—C5 C2—C3—C4—C13 C3—C4—C5—C6 C3—C4—C5—C16 C3—C4—C13—C12 C3—C4—C13—C14 C5—C4—C13—C12 C5—C4—C13—C14 C13—C4—C5—C6 C13—C4—C5—C16 C4—C5—C6—C7 C4—C5—C6—C11 C4—C5—C16—C17 C4—C5—C16—C29 C6—C5—C16—C17 C6—C5—C16—C29 C16—C5—C6—C7 C16—C5—C6—C11 C5—C6—C7—C8 C5—C6—C11—C10 C5—C6—C11—C12 C7—C6—C11—C10 C7—C6—C11—C12 C11—C6—C7—C8 C6—C7—C8—C9 C7—C8—C9—C10 C8—C9—C10—C11 C9—C10—C11—C6 C9—C10—C11—C12 C6—C11—C12—C13 C6—C11—C12—C23

35.5 (4) 160.0 (3) −16.9 (4) 1.9 (5) −177.6 (3) −178.0 (3) 2.5 (5) −177.9 (3) 177.4 (3) −2.1 (5) 1.6 (5) 177.0 (3) 0.2 (5) −131.7 (3) 106.2 (4) 177.1 (3) −1.5 (5) 0.2 (5) −178.4 (3) 45.1 (4) −76.9 (4) 134.8 (3) −45.0 (4) 118.7 (3) −2.7 (4) −1.2 (4) −122.7 (3) −101.9 (4) 78.3 (4) −179.8 (3) −179.7 (3) 0.1 (5) 0.5 (5) −179.7 (3) 0.0 (6) 0.3 (6) −1.0 (6) 1.5 (6) −1.2 (6) 179.0 (3) 45.7 (4) −77.3 (4)

C12—C13—C14—C15 C13—C14—C15—C2 C5—C16—C17—C18 C5—C16—C17—C22 C5—C16—C29—C24 C5—C16—C29—C28 C17—C16—C29—C24 C17—C16—C29—C28 C29—C16—C17—C18 C29—C16—C17—C22 C16—C17—C18—C19 C16—C17—C22—C21 C16—C17—C22—C23 C18—C17—C22—C21 C18—C17—C22—C23 C22—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C21 C19—C20—C21—C22 C20—C21—C22—C17 C20—C21—C22—C23 C17—C22—C23—C12 C17—C22—C23—C24 C21—C22—C23—C12 C21—C22—C23—C24 C12—C23—C24—C25 C12—C23—C24—C29 C22—C23—C24—C25 C22—C23—C24—C29 C23—C24—C25—C26 C23—C24—C29—C16 C23—C24—C29—C28 C25—C24—C29—C16 C25—C24—C29—C28 C29—C24—C25—C26 C24—C25—C26—C27 C24—C25—C26—C30 C25—C26—C27—C28 C25—C26—C30—O3 C25—C26—C30—O4 C27—C26—C30—O3 C27—C26—C30—O4

−177.6 (3) 0.9 (5) 101.7 (4) −79.0 (4) 77.4 (4) −101.7 (4) −47.1 (4) 133.8 (3) −134.7 (3) 44.5 (4) 178.0 (3) −177.5 (3) 2.5 (5) 1.7 (5) −178.2 (3) −1.2 (5) −0.4 (6) 1.4 (6) −0.8 (6) −0.8 (5) 179.2 (3) 77.0 (4) −47.0 (4) −103.0 (4) 133.0 (3) 100.9 (4) −79.0 (4) −135.5 (3) 44.6 (4) −179.3 (3) 2.1 (5) −178.8 (3) −177.9 (3) 1.3 (5) 0.7 (5) −2.0 (5) 177.9 (3) 1.4 (5) −154.7 (4) 24.8 (5) 25.2 (5) −155.4 (3)

Acta Cryst. (2013). C69, 1411-1413

sup-14

supplementary materials C10—C11—C12—C13 C10—C11—C12—C23 C11—C12—C13—C4 C11—C12—C13—C14 C11—C12—C23—C22 C11—C12—C23—C24 C13—C12—C23—C22 C13—C12—C23—C24 C23—C12—C13—C4 C23—C12—C13—C14 C4—C13—C14—C15

−134.4 (4) 102.6 (4) −45.5 (4) 133.1 (3) −2.0 (4) 118.8 (3) −123.1 (3) −2.4 (4) 78.6 (4) −102.8 (4) 1.0 (5)

C30—C26—C27—C28 C26—C27—C28—C29 C27—C28—C29—C16 C27—C28—C29—C24 C33—C32—C35—N1 C33—C32—C35—C36 C35—C32—C33—C34 C32—C33—C34—N1 N1—C35—C36—O5 C32—C35—C36—O5

−178.4 (3) 0.5 (6) 177.2 (3) −1.8 (6) −40.1 (4) −160.6 (3) 29.7 (4) −8.0 (4) 52.4 (4) 168.9 (4)

Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) −x, y+1/2, −z+1; (iv) −x, y−1/2, −z+1; (v) x, y−1, z; (vi) −x, y−1/2, −z; (vii) x, y, z+1; (viii) x, y, z−1; (ix) −x, y+1/2, −z; (x) x−1, y, z; (xi) −x+1, y+1/2, −z; (xii) x, y+1, z+1; (xiii) −x+1, y+1/2, −z+1; (xiv) −x+1, y−1/2, −z; (xv) x, y−1, z−1; (xvi) −x+1, y−1/2, −z+1.

Hydrogen-bond geometry (Å, º) D—H···A v

O4—H4O···O1 O5—H5O···O1 N1—H1NA···O3iii N1—H1NB···O2

D—H

H···A

D···A

D—H···A

0.83 (5) 0.84 (6) 0.99 (5) 1.03 (5)

1.72 (5) 1.90 (6) 1.90 (5) 1.68 (5)

2.534 (4) 2.695 (4) 2.886 (4) 2.708 (4)

167 (5) 156 (7) 172 (5) 173 (4)

Symmetry codes: (iii) −x, y+1/2, −z+1; (v) x, y−1, z.

Acta Cryst. (2013). C69, 1411-1413

sup-15

Copyright of Acta Crystallographica: Section C (International Union of Crystallography IUCr) is the property of International Union of Crystallography - IUCr and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Absolute configuration determination of the anti-head-to-head photocyclodimer of anthracene-2-carboxylic acid through cocrystallization with L-prolinol.

The absolute configuration has been established of the enantiopure anti-head-to-head cyclodimer of anthracene-2-carboxylic acid (AC) cocrystallized wi...
512KB Sizes 0 Downloads 0 Views